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Abstract

Sperm capacitation is the key event prior to fertilization. Success rate of  
currently used assisted reproductive technology like in-vitro fertilization is 50% 
dependent on sperm maturation or capacitation. In-vivo capacitation occur almost 
in female reproductive tract in response to various signaling or enzymatic mole-
cules. Interestingly, both early and late events of capacitation are centrally regulated 
by protein kinase A (PKA). Influx of Ca2+ and HCO3-transmembrane drive leads 
to change in pH and intracellular cAMP which ultimately activate PKA regulated 
capacitation. PKA phosphorylates several target proteins that are presumed to 
initiate different signaling pathways. Some divalent heavy metals like lead, mer-
cury, arsenic and cadmium mimic Ca++ entry and its functions and ultimately affect 
capacitation by inhibiting or inducing tyrosine phosphorylation. In this chapter 
we review the mechanism of heavy metals by which they affect the tyrosine phos-
phorylation during sperm capacitation.

Keywords: Tyrosine Phosphorylation, Spermatozoa, Capacitation, Heavy Metals

1. Introduction

Heavy metals are known to be harmful to humans, animals as well as plants in 
large amounts. Heavy metals are distributed throughout the environment from both 
natural sources (inorganic form) and human activities (organic form) and thus 
accumulating in biosphere including humans and animals’ body [1, 2]. Most of these 
non-degradable toxic elements, such as Arsenic (As), Cadmium (Cd), Chromium 
(Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), and Zinc (Zn), are listed 
as hazardous contaminants by the EPA [3, 4]. Potential health hazards as toxic 
manifestations and subtle effects of heavy metals are matter of concern because of 
daily and wide-spread exposure of humans and animals’ consequent to their daily 
life. The molecular mechanisms for metal carcinogens are still poorly understood. 
Mercury containing compounds have been used for thousands of years in preser-
vation of various vaccines, treatment of syphilis, skin creams, dental amalgams, 
and extraction of gold [5]. Direct application of cadmium, lead and arsenic in soil 
fertilizers and fungicides, leather tanning, waste-water treatment facilities, paper 
mills and disposal of solid wastes as well as batteries and thermometers in landfills 



Infertility and Assisted Reproduction

2

are the chief sources within the environment which may influence animal and 
human health [6]. The cause of male infertility in 50% cases is still not clear; thus, 
it is very important to flash a light on role of heavy metals in infertility [7]. Some 
malformations of male reproductive system, such as cryptorchidism, hypospadias, 
and prostate and testicular cancers may originate from exposure to endocrine 
disruptors [8, 9]. In addition, metals can cause hormonal imbalance by affecting the 
neuroendocrine system, disrupting the secretion of androgens from Leydig cells or 
inhibin-B from Sertoli cells [10]. Evidence also exists linking mercury with erectile 
dysfunction [11, 12]. Loss of libido have been reported in men acutely exposed 
to metallic mercury vapor [13]. Choy et al. [14] did a study in Hong Kong on 150 
infertile couples undergoing In-vitro fertilization versus 20 fertile couples. The 
infertile couples had significantly higher blood mercury levels than the fertile group. 
About 1/3 of the infertile men and 1/4 of the infertile females had high mercury 
levels and they attributed it to seafood consumption. Considering the fact that they 
looked only at blood, fish may have been the culprit. However, fish is not usually 
a major direct source of exposure. Nevertheless, this study reinforces the fact that 
mercury levels need to be investigated when dealing with infertility, both in males 
and females. Evidently, metal dependent and/or species-dependent differences in 
signaling mechanisms seem to exist in mediating toxic effects of metals; however, 
further studies on these aspects are required.

Arsenic is reported in human tissues ranging 100–6000 ppb [15]. Arsenic toxic-
ity has been reported in case of respiratory, dermatological, cardiovascular disorders 
including diabetes and obesity [16–19]. Cd is also reported to have toxic effects 
including endocrine nephrotoxicity, carcinogenity, and neurotoxicity [20–22]. 
These heavy metals affect the these heavy metals effect the molecular mechanism 
of tyrosine kinase that plays a central role in the response of cells to various kinds 
of stresses or growth factors and acts as switch in many cellular functions. For 
example, in regulation of cell proliferation regulation of cell proliferation, differen-
tiation, cell-cycle regulation, and cell signal transduction [23] specifically in cAMP-
dependent pathway, which is a hallmark event of capacitation, that leads to sperm 
hyperactivation which is necessary for fertilization [24]. Dysfunctional tyrosine 
phosphorylation mechanisms linked to abnormal cell signaling, frenzied cell growth 
leading to development of leukemia, lymphoma, multiple endocrine neoplasia type 
2, small lung cancer, breast cancer, and colon cancer [25, 26]. Proteins are building 
blocks of the living systems and alterations in protein function indicate the response 
to abnormal or stress condition [27].

Tyrosine kinase-dependent pathways are mediated by the activities of recep-
tor (RTKs) and non-receptor tyrosine kinases (NTKs) [28, 29]. The RTK are 
transmembrane-spanning receptor and an intrinsic protein and further classified as 
EGF receptor (EGFR), PDGF receptor (PDGFR), FGFR, VEGF receptor (VEGFR), 
while NRTKs act as substrates of RTKs, include Src family members [30] and, 
are classified as SRC, ABL, FAK and Janus kinase [31]. Upon stimulation, RTKs 
undergo autophosphorylation on the tyrosine residues located in their own carboxy 
terminus and induce conformational changes. This enhances kinase activities and 
creates binding sites for cellular substrates through SH2 domain interactions [30]. 
Some proteins which get phosphorylated at tyrosine residue during capacitation are 
A Kinase Anchoring Protein-4, dihydrolipoamide dehydrogenase, pyruvate dehy-
drogenase-A2, glycerol-3-phosphate dehydrogenase-2, pyruvate dehydrogenase, 
and phospholipid hydroperoxide glutathione peroxidase [32–38]. The molecular 
events of the acrosome reaction overlap substantially with those of capacita-
tion, including phosphorylation of similar tyrosine proteins, influx of Ca2+, and 
increased cAMP and PKA levels. The role of ROS in the in-vivo acrosome reaction 
involves the spermatozoa’s actions on ZP via phosphorylation of plasma membrane 
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proteins. In-vitro activation of the acrosome reactions (AR) is also reported against 
stressors like heavy metals, O2 −, H2O2, and NO. Cyclic-AMP regulation and Ca2+ 
influx are the key events of capacitation. In-vitro exposure of goat’s spermatozoa to 
mercuric chloride is reported to increase the intracellular Ca2+ release and alter the 
cAMP levels that leads to spontaneous acrosome reaction and inhibition of tyrosine 
phosphorylation [39, 40]. The primary downstream target of cAMP is protein 
kinase-A (PKA), whose activity increases during sperm capacitation [41]. Sperm 
motility stimulant, pentoxifylline (PF) significantly increased sperm hyperactiva-
tion and induced an early onset of sperm capacitation via various cell-signaling 
molecules such as cAMP, Ca2+ and protein kinases in hamsters [42]. Targeted 
disruption of the sperm-specific catalytic subunit, i.e., Ca2+ of protein kinase- A 
(PKA), led to hypo-tyrosine phosphorylation of sperm proteins accompanied by a 
lack of hyperactivation in mice spermatozoa [43].

In mammals, fertilization requires the release of spermatozoa into female 
reproductive tract. After ejaculation, to become fully fertilization competent, 
mammalian sperm must undergo a combination of sequential maturation process 
in female reproductive tract. Austin [44], demonstrated independently that sperm 
acquire fertilization capacity only after residing in the female reproductive tract 
for a finite period of time in a process known as sperm capacitation. Capacitation 
include variations in sperm intracellular ions concentrations, plasma membrane 
fluidity as a result of changes in localization of membrane antigens and removal 
of cholesterol [45]. In particular, capacitation has been associated with a cAMP/
PKA-dependent increase in protein tyrosine phosphorylation [46]. Capacitation 
involves modifications occurring both in the head (i.e., preparation for the acro-
some reaction) and the tail (i.e., motility changes such as hyperactivation) which 
renders sperm to penetrate the egg following acrosome reaction (exocytosis of 
acrosomal contents). The physiological event of mammalian sperm capacitation 
had been recognized for a long time, but the molecular players regulating capacita-
tion are still poorly understood. Interestingly, the process of capacitation can occur 
in-vitro in most species and the conditions required for sperm capacitation in-vitro 
include a balanced salt solution containing appropriate electrolytes concentrations 
(e.g., Na+, K+, Cl−, HCO3−, Mg2+, Ca2+, and PO4 3−), metabolic energy sources (e.g., 
glucose, pyruvate and lactate) which support the high ATP consumption needed for 
motility and serum albumin as a a cholesterol acceptor. The important mediators of 
signal transduction pathways leading to capacitation include cAMP, Ca2+, HCO3−, 
inositol triphosphate (IP3), protein kinase A (PKA), protein tyrosine kinase (PTK), 
phospholipase-C (PLC).

Ca2+ is shown to play a very important role in sperm capacitation and acrosome 
reaction by influencing the activity of sperm adenylate cyclase and PLC [47]. 
Pentoxifylline (cAMP phosphodiesterase inhibitor) causes hyperactivated motility 
of hamster spermatozoa via increasing sperm cAMP level [48]. Inhibition of Protein 
kinase – A (PKA) activity led to an inhibition of cAMP dependent protein tyrosine 
phosphorylation in mice [46] and in hamster [49]. Mice that lack the sperm-specific 
PKA catalytic subunit Cα2, was infertile despite normal mating behavior, and their 
sperm shows defects in motility and capacitation-associated events such as the 
increased tyrosine phosphorylation [43]. This indicates that sperm capacitation and 
protein tyrosine phosphorylation are regulated through a PKA pathway, invoking 
an important role for tyrosine phosphorylation in sperm capacitation. Time depen-
dent increase in protein tyrosine phosphorylation during capacitation has also been 
observed in cauda epididymis sperm [46]. As mature spermatozoa lack de novo 
gene expression, acquisition of fertilization competence is invariably dependent 
on post-translational modifications especially phosphorylation of pre-existing 
structural and intracellular proteins of spermatozoa during capacitation. AKAP4 
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was the first tyrosine phosphorylated protein identified in the humans [50], mouse 
[46] and hamster species [51]. The lack of AKAP4 gene expression results in loss of 
progressive sperm motility, leading to male infertility [52]. Similarly, tyrosine phos-
phorylated form of AKAP-3 recruits PKA to the sperm flagellum changing protein 
phosphorylation status and increasing sperm motility [53]. Phosphorylated AKAPs 
appears to interact with PKA and facilitate flagellar protein phosphorylation in a 
localization-specific manner. Chaperone protein VCP also undergoes tyrosine phos-
phorylation. VCP is important for membrane fusion, possibly involved in acrosome 
reaction [32, 33]. Dihydrolipoamide dehydrogenase (DHLD) [37], phospholipid 
hydroperoxide glutathione peroxidase (PHGPx) [38] and pyruvate dehydrogenase 
A2 (PDHA2) are among the metabolic-mitochondrial enzymes that are tyrosine 
phosphorylated and are localized to sperm flagellum; the inhibition of DHLD leads 
to decrease in sperm hyperactivation [54]. Calcium-binding tyrosine phosphoryla-
tion-regulated protein (CABYARa) and the Calcium/calmodulin-dependent protein 
kinase IV (CaMKIV) are other tyrosine phosphorylated proteins in humans and 
involved in calcium regulated protein tyrosine phosphorylation of sperm proteins 
[55, 56]. Thorough understanding of capacitation and molecular characterization 
of functionally important phosphorylated sperm proteins is required to benefit 
reproductive strategies, agriculture.

Sperm signaling pathways also required an optimal level of sperm-generated 
reactive oxygen species (ROS) for protein tyrosine phosphorylation [42]. The 
signaling pathway involving protein tyrosine phosphorylation is distinctly associ-
ated with hyperactivated motility during sperm capacitation in mice [46], humans 
[57], and hamsters [34, 35]. The number of Sertoli cells determine the number of 
sperms produced in adulthood, because each Sertoli cell can support only a finite 
number of germ cells that develop into sperm [58]. Cadmium (Cd) is reported to 
cross the blood-testis barrier and induce excessive oxidative stress in Sertoli cells 
leading to necrosis in mice spermatozoa [59]. Cd exposure led to halt the process 
of spermatogenesis and normal testicular development by inhibiting the synthesis 
of testosterone in adult mice [60]. Consequently, Cd caused remarkable drop in 
weight of testes and epididymis, sperm concentration, motility, and synchronously 
an elevation in dead and abnormal sperm [61]. Disruption of spermatogenesis in 
men at any stage of cell differentiation can decrease the total sperm count, increase 
the abnormal sperm count, impair the stability of sperm chromatin or damage 
sperm DNA [62], lowered epididymis sperm count, and testicular weight, aber-
rant chromosome numbers rather than the normal [63], chromosomes break, and 
lowered testosterone levels in male [64, 65]. Metal’s accumulation in epididymis, 
prostate, and seminal fluid may impair progressive sperm motility [66, 67] and thus 
reproductive efficiency. Therefore, in this chapter we have discussed the effect of 
different heavy metals that effect male reproduction with special focus on sperm 
capacitation via a modification in tyrosine signaling mechanisms [68–71].

2. Effect of mercuric chloride on tyrosine phosphorylation

Reproductive toxicity of mercury has been described in several animal studies 
in which sperm motility, epididymal sperm count and normal sperm morphology 
decreased among rats, mice, fish, monkeys and humans after mercury exposure 
[72–75]. Evidence is usually limited to animal data or to in-vitro studies [76, 77]. 
The clinical and epidemiological findings are scarce and controversial, and often 
difficult to interpret because of multiple exposures to different agents and latency 
of effects. Human studies are few and contradictory too [78]. Seminal fluid mer-
cury concentrations are correlated with abnormal sperm morphology and abnormal 
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sperm motility [79]. Furthermore, infertile, and sub-fertile men have higher 
mercury levels than the fertile men [80] and tubular atrophy and Sertoli-cell-only 
syndrome has been observed among infertile patients that have been exposed to 
mercury [81]. Kushawaha et al. [39, 40] reported that in-vitro exposure of mercuric 
chloride (0.031 μg/mL) leads to significant increase in spontaneous acrosome 
reaction, intracellular Ca2+ and cAMP levels, and capacitation failure may be due 
to inhibition of 55, 70, and 80 kDa tyrosine phosphorylation of protein. Proteins of 
80 and 105 kDa are the main substrates for enzymes and are important in acrosome 
reactions [82–84]. Sperm capacitation is a sequential process which involves several 
signaling pathways and ultrastructural changes such as modifications in membrane 
lipid composition, increased permeability to ions [85, 86] and phosphorylation of 
proteins on tyrosine (Tyr), serine (Ser) and threonine (Thr) residues [82, 87–89]. 
The cAMP/PKA-dependent increase in tyrosine phosphorylation of two fibrous 
sheath proteins, p80 and p105 related to A-kinase anchoring proteins (AKAPs), 
is one of the prominent events associated with capacitation [89, 90]. Martinez et 
al. [91] investigated the effects and underlying mechanisms of chronic mercury 
exposure at low levels on male reproductive system of rats. Three-month-old 
male Wistar rats were exposed to 4.6 μg/kg to 0.07 μg/kg/day subsequent dose of 
HgCl2 for 60 days and they found that mercury treatment decreased daily sperm 
production, count, motility, and increased head and tail morphologic abnormali-
ties. Moreover, mercury treatment decreased luteinizing hormone levels, increased 
lipid peroxidation in testis and decreased antioxidant enzymes activities (super-
oxide dismutase and catalase) in reproductive organs. According to the findings 
of in-vitro study by Arabi [92], HgCl2 at 50 to 550 μM concentration affected the 
sperm membrane and DNA integrity, viability, and acrosomal status of normal 
bull spermatozoa. They recorded a sharp increase in lipid peroxidation/LPO rate; 
highest was at 550 μM mercury concentration, indicating the deleterious effect of 
mercury on sperm membrane intactness. There was also a strong negative cor-
relation between LPO rate and % viable spermatozoa. Comet assay study revealed 
that mercury is capable of inducing DNA breaks in sperm nuclei. The correlation 
between LPO rate and % DNA breaks was 0.984 [92, 93]. Oxidative stress seemed 
to be the potential mechanism involved in mercury - induced male reproductive 
toxicity. Kinematic patterns of goldfish Carassiusauratus spermatozoa after mercury 
exposure (100 to 368 μM) studied by Van Look et al. [94]. They reported that 
sperm flagellar length was significantly shortened after instant exposure mercuric 
chloride, while curvilinear velocity (VCL) and the percentage of motile sperm were 
significantly decreased at mercuric chloride concentration of 1 and 10 mg/l (3.68 
and 36.8 μM), respectively. After 24 h exposure to 0.001 mg/l (0.0037 μM) HgCl2, 
flagellar length was significantly reduced in 38% of the spermatozoa. Following 
exposure to 0·1 mg/l (0·37 μM) mercuric chloride for 24 h, however, majority of 
the spermatozoa (98%) had significantly shortened flagella and increased sperm 
head length, width and area. Sperm motility was also significantly decreased at 
0.1 mg/1(0.37 μM) mercuric chloride, probably due to significantly reduced flagel-
lar length at this concentration. Several animal studies indicate that mercury is a 
male reproductive toxicant, but human studies are few and contradictory. Vergilio 
et al. [95] investigated the toxic effects of mercury chloride (1 μM - 30 μM) on testes 
and sperms of tropical fish (Gymnotuscarapo) and showed decrease in the sperm 
count (36.8%) after 20 μM/24 h treatment and subsequent decrease (48.7%) was 
observed after 20 μM/96 h. Hg (20 μM) also altered the sperm morphology in 24 h 
and 96 h where sperm head abnormalities were present.

Mocevic et al. [96] examined semen characteristics and serum levels of repro-
ductive hormones in relation to environmental exposure to mercury. Blood and 
semen samples were collected from 529 male partners of pregnant women living in 
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Greenland, Poland and Ukraine between May 2002 and February 2004 [97]. Total 
content of mercury in whole blood was 9.2 ng/ml in Greenland (0.2–385.8 ng/ml), 
1.0 ng/ml in Poland (0.2–6.4 ng/ml21) and 1.0 ng/ml in Ukraine (0.2–4.9 ng/ml). 
They found a significantly positive association between blood levels of mercury 
and serum concentration of inhibin B in men from Greenland (β = 50.074, 95% 
confidence interval (CI) = 50.021 to 0.126) and in an analysis including men from 
all three regions (β = 50.067, 95% CI = 50.024 to 0.110). The association may be due 
to beneficial effects of polyunsaturated fatty acids (PUFAs), which are contained 
in seafood and fish. No significant association (P < .0.05) was found between blood 
concentrations of mercury and any of the other measured semen characteristics 
(semen volume, total sperm count, sperm concentration, morphology and motil-
ity) and reproductive hormones (free androgen index (FAI), follicle-stimulating 
hormone (FSH), luteinizing hormone (LH), testosterone and LH3 testosterone) in 
any region. These findings did not provide evidence that environmental mercury 
exposure in Greenlandic and European men with median whole blood concentra-
tion up to 10 ng/ml had adverse effects on biomarkers of male reproductive health. 
Overall, studies have found that mercury accumulates in testes, inhibits enzymes 
necessary for sperm production, affects DNA in sperm, causes aberrant number 
of chromosomes in cells, and induces chromosomes breaks; all of which can cause 
infertility, spontaneous abortion, or birth defects. From the foregoing scientific 
data it is apparent that mercury is a metal of great global concern and has the 
potential to alter reproductive functions in males thus, still further investigation on 
protein phosphorylation during capacitation are warranted.

3. Effect of cadmium (Cd) on tyrosine phosphorylation

Cd possesses oxidation state +2 just like mercury and calcium with half-life 
of 15–30 years with low execration rate. It can accumulate into the non-smoking 
population via fumes, dust, contaminated food and water and it is widely use in 
cancer drugs [98, 99]. Tobacco plant absorbs Cd specially into leaves which is then 
used in smoking [100]. Apart from this 0.5 mg of Cd is radially reported into per kg 
fertilizer which is then accumulate into the fruits, vegetables and grains [101, 102]. 
Cd is reported to accumulate in various tissues via bloodstream [103]. Ca shows a 
high affinity toward sulfhydryl (–SH and GHS) and disulphide groups (-S-S) of 
the proteins and result in increased production of ROS [104]. Epigenetic changes 
like DNA methylation are reported to associated with the in-vivo Cd exposure in 
three-month-old rats. Short time exposure of Cd for 24 h–1 week induces hypo-
methylation, while longer times (8–10 weeks) induce hypermethylation [105]. 
In-vivo orally administered Cd (1, 2 or 4 mg kg−1) to 3–7-days postpartum rats for 
30 min did not showed any effect on sperm motility, but significantly decrease 
the rate of fertilization and embryo development indicating that Cd affects the 
epigenetic factors [106, 107]. Cd is also reported to induced germ cell apoptosis, loss 
of daily sperm production, and decreased sperm motility might be responsible for 
the decline of male fertility [108, 109] specifically spontaneous acrosome reaction 
in mouse [109–111], rats [112], ram [113], rabbit [114] and sheep [115, 116] sperms. 
Research indicates that oxidative stress and apoptosis are the major players which 
affects the in the post-translation modifications like phosphorylation and methyla-
tion [117, 118]. Ca2+/calmodulin-dependent kinase II (CaMK-II) which is sensitive 
to concentration of intracellular calcium and calmodulin, are involve in apoptotic 
pathway [119–121] and responsible for phosphorylation of serine/thrionine resi-
due of tyrosine kinase [119]. Wang et al. [122] reported that 10 μM Cd inhibited 
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the sperm motility, GAPDH activity, AMPK activity and ATP production, and 
induced tyrosine phosphorylation of 55–57KDa proteins. These results suggest that 
Cd-induced tyrosine phosphorylation of 55–57KDa proteins particularly localized 
in the middle piece of sperm that may inhibit or interfere with mitochondria and 
ultimately affect the motility of sperm. Exposure of adult rats to 2 mg/kg Cd for 
24 hr. induced the ROS and catalase activity and also inhibit the TGF- β3 response 
and p38 MAPK phosphorylation [123, 124]. Role of tyrosine-phosphorylated 
dihydrolipoamide dehydrogenase (DLD) was reported in capacitation, hyperactiva-
tion and acrosome reaction in hamster [37, 125] after Cd exposure of 1.2 mg/kg 
BW that induce tyrosine phosphorylation of DLD leads to lower the dehydrogenase 
activity, and thus affect the mitochondria and sperm motility. Only few studies are 
reported the effect of Cd during sperm capacitation. As capacitation process involve 
the influx of Ca2+ ions, thereby in presence of Cd which is also having similar charge 
as Ca, may mimic or replace the Ca entry by competitive binding and, thus affect-
ing the capacitation process. More research is warranted to find out the molecular 
mechanism of Cd toxicity on capacitation in different species with different doses.

4. Effect of arsenic on tyrosine phosphorylation

Arsenic is mainly present in four forms namely arsenate (As(V)), arsenite (As 
(III)), MMA (monomethylarsonic acid), and DMA (dimethylarsenic acid) [126]. 
Trace quantities of arsenic were found in drinking water of rats, hamsters, goats, 
chickens and humans [127]. Arsenic-induced male infertility is reported to cause 
abnormal sperms, decreased sperm count, and decreased sperm motility in both 
humans and animals [128–130]. Exposure of the cells to arsenic increased total 
cellular tyrosine phosphorylation of 110–120, 90, 70, 56, and 40 kDa proteins [131]. 
Arsenic-induced tyrosine-phosphorylation in EGFR [132]. It is not known how 
arsenic induces the activation of EGFR either by the conformational changes or by 
dimerization of EGFR, which results in the activation of EGFR [133]. It was proposed 
that arsenic might activate EGFR through generation of ROS that, in turn, triggered 
the conformational changes in the receptor [134, 135]. The arsenic-induced activa-
tion of EGFR recruits Sh-c and phosphorylates its tyrosine residues, which results in 
enhancement of the interactions between Sh-c and Grb2. Signals are then relayed to 
the downstream signaling proteins [132]. Inhibition of EGFR kinase blocked arsenic-
induced activation of MAPKs [136]. Arsenic may activate with the vicinal sulfhydryl 
groups of the Src molecule, (2) direct interactions with extracellular matrix proteins 
to induce integrin rearrangements, or (3) the generation of ROS [137, 138]. Biscardi 
and colleagues found that Src was able to phosphorylate EGFR at two unique tyrosine 
residues, distinct from the autophosphorylation sites, to activate EGFR in association 
with the activation of other cell signaling proteins [139, 140]. Arsenic induces Src and 
that activates downstream proteins e.g., MAPKs via EGFR-dependent and EGFR-
independent pathways [138, 141]. Shim et al. [142] reported that arsenic inhibits 
Ca2+ influx into antigen-activated mast cells and inhibit tyrosine phosphorylation. 
These results indicate that the target of arsenic is upstream of the Ca2+ influx which 
is a major pathway of sperm capacitation as well. Thus, further detailed studies are 
warranted to find out the effects of arsenic on sperm capacitation mechanism.

Six months exposure to sodium arsenite (1, 5, or 25 mg/L) reduced Voltage-
dependent anion channel protein 3 (VDAC3), which leads to impaired capacita-
tion and fertilization process in male rats [143, 144]. cAMP activates the serine/
threonine Kinase and cAMP-dependent protein kinase catalytic subunit alpha 
(PRKACA), which in turn activates tyrosine through phosphorylation. Blocking of 
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PRKACA altered the tyrosine phosphorylation at the protein level which results in 
impairment of capacitation of sperm [143, 144]. Arsenic exposure on the proteome 
and metabolome in rat testis leads to 36 up-regulated and 34 down-regulated 
proteins and 13 metabolites (8 high and 5 low). Theses altered proteins were related 
to spermatogenesis, fertilization, fertility, and mating behavior which may be medi-
ated by the ERK/AKT/NF-κB-dependent signaling pathway [143, 144]. However, 
these studies indicate the toxic effect of arsenic, but arsenic-induced male repro-
ductive toxicity, particularly effect on capacitation and tyrosine phosphorylation 
mechanisms are still far from being completely understood.

5. Effect of lead (Pb) on tyrosine phosphorylation

It is well known that there has been a worldwide decrease in human male fertility 
in recent years. One of the main factors affecting this is environmental pollution. 
Lead is one of the major heavy metal contaminants that threatens the health of 
animals and human beings at global level. It is a naturally occurring element and 
widely used in acid batteries, paints, smelters, and paper printing. It accumulates 
into human and animal blood, bone and soft tissues with a half-life of 35 days in 
blood and 20–30 years in bone via contaminated food, and drinking water [145]. 
Pb has also been reported to accumulate in the epididymus and some glands [146, 
147] and is considered a male reproductive toxicant [148]. The mechanism of 
toxicity of Pb is still not very clear. Pb mainly targets events of spermatogenesis and 
spermatozoa function via free radical generation, apoptosis, motility, and DNA 
fragmentation, and ultimately declines the rate of fertilization [149]. Recently 
Hassan et al. [150] reported that exposure of 20 mg PbAc/kg bwt, orally in rats for 
45 days resulted in significant decrease in testis weight, spermatozoa count, testos-
terone levels, and antioxidant enzymes levels. Histological study indicated that Pb 
-exposed group was devoid of germ cells and maturation arrest with the formation 
of giant primary spermatocytes. Some studies reported that Pb has the ability to 
displace zinc and results in alteration in Ca2+ mediated process [151].

Capacitation is highly Ca2+ dependent process which means lead exposure could 
inhibit or induce the capacitation. Only few studies are reported about the effect of 
Pb on tyrosine phosphorylation during capacitation. Yuanqiao et al. [152] reported 
that 10–100 μM lead acetate dose-dependently inhibited total and progressive motil-
ity measures, capacitation and progesterone-induced acrosome reaction in humans. 
It also decreased the intracellular concentrations of cyclic adenosine monophosphate 
(cAMP) and intracellular calcium (Ca2+ )i, and reduced the tyrosine phosphoryla-
tion of sperm proteins, all of which are thought to be key factors in regulation of 
capacitation. These findings suggest that lead inhibits human sperm functions by 
reducing the levels of sperm intracellular cAMP, (Ca2+)i and tyrosine phosphoryla-
tion of sperm proteins in-vitro. Voltage-dependent Ca2+ channels, known as Catsper, 
are mainly involved in regulation of capacitation by mediating Ca2+ influx [153]. 
Therefore, it can be postulated that Pb exposure decreases intracellular Ca2+ by 
inhibiting progesterone -induced acrosome reaction via voltage-dependent chan-
nels. Further concentration and time dependent studies are warranted to explicate 
the effects of Pb on sperm capacitation and tyrosine signaling mechanism.

6. Conclusions

Heavy metals affect tyrosine phosphorylation during capacitation of spermato-
zoa and lead to male infertility. Alteration in tyrosine signaling might be a result of 
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various stress conditions which are produced by heavy metals in cells like oxidative 
stress, apoptosis, mitochondrial damage, calcium influx and change in osmolarity 
of cells. Particularly Hg, Pb, As and Cd inhibit or induce tyrosine phosphorylation 
of sperm proteins. There are several factors including animal species and strains, 
gender, age, stress, genetic disorders, nutritional status, smoking, alcohol con-
sumption, use of medicines, and concomitant exposure to other chemicals or even 
physical factors which will influence both the metabolism and the dose–response 
relationships including reproduction that affects biological processes specifically 
signaling mechanism. Therefore, extensive research is warranted focusing on 
tyrosine phosphorylation signaling during sperm capacitation using large sample 
size or population with minimum dose which are reported in human blood after 
exposure of lead, mercury, arsenic and cadmium. It is now generally accepted that 
the mammalian testes are very sensitive to heavy metals, and these induce changes 
in the testicular biochemical functions via ROS and DNA damage that ultimately 
affect the fertilizing ability particularly capacitation in spermatozoa.
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