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Chapter

Pathogenesis, Pathology and 
Genetics of Osteoarthritis
Ferhat Ege

Abstract

Osteoarthritis (OA) is a condition with high prevalence worldwide. OA affects 
not only the articular cartilage, but the entire joint, including the subchondral bone, 
ligaments, capsule, synovial membrane and the periarticular muscles. Despite the 
fact that the risks associated with OA increase with age, it is not a part of the natural 
aging process. It typically involves the knee, hip, spine, hand and foot joints. Several 
factors play an important role in the pathogenesis of OA, including biomechanical 
factors, proinflammatory mediators and proteases. On the other hand, it was mostly 
the results of the studies conducted on the genetic, genomic and epigenetic aspects 
of OA, from among many of its underlying etiological factors, which shed light on 
the molecular processes involved in the etiopathogenesis of OA. As the mechanisms 
that cause joint tissue damage in OA come to light, the treatment of OA will go 
beyond just providing symptomatic relief. Consequentially, new treatments will 
emerge that will either slow or completely stop the progression of OA.

Keywords: Osteoarthritis, Genetics, Epigenetics, Etiopathogenesis, Pathology

1. Introduction

Osteoarthritis (OA) is a chronic disease that affects all structures of the joint as 
well as the periarticular tissues. In the past, OA was considered simply as a degen-
erative joint disease, yet the pathogenesis of OA is in fact much more complex than 
just wear and tear. Hence, the term “osteoarthritis” is indeed a pertinent term, as 
the suffix “itis” is indicative of an inflammatory process. It is estimated that approx-
imately 50% of the world population over 65 years of age is affected by OA. The 
symptomatic treatment of this common disease provides regression of symptoms, 
nevertheless it often does not constitute an effective treatment option thus causing 
an increase in the OA-related health expenditures. The elucidation of the etiopatho-
genesis of OA and the molecular studies to be carried out in respect thereof are 
likely to allow early diagnosis of OA and also contribute to the development of new 
treatment options.

2. Pathology and pathogenesis of osteoarthritis

Articular cartilage degeneration, which develop as a result of the deterioration 
of the balance between the production and destruction of cartilage, new bone 
formation, sclerosis of subchondral bone, ligament and meniscus damage, periar-
ticular muscle weakness, synovial inflammation and fibrosis are all involved in the 
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pathogenesis of OA [1]. Hence, the pathogenesis of OA would be better understood 
provided that the structure of the joint and the related histopathological features 
are reviewed.

2.1 Structure of the joint

Synovial joints consist of an articular cartilage that covers the ends of the oppos-
ing bones, the synovial fluid that nourishes and lubricates the tissues, the synovium 
that secretes the synovial fluid, the ligaments that hold the skeletal elements 
together, the tendons that connect the bones with the muscles, and the joint capsule 
surrounding the joint. In order to have normal joint functions, it is necessary that 
the opposing joint surfaces move over each other painlessly, that the load on the 
joint tissues is homogeneously distributed, and that the stability to that effect is 
sustained [2].

Articular cartilage is a connective tissue located at the bone ends and which 
has a thickness of 0.2 mm to 6 mm depending on the location. Articular cartilage 
provides a smooth and low-friction surface that primarily allows for normal gliding 
motion of the articular surfaces [3]. Cartilage consists of an extracellular matrix, 
65–80% of which is water and 20–35% of which is solid matter, and of chondrocytes 
dispersed in this matrix. 5–6% of the tissue is composed of inorganic material con-
sisting mostly of hydroxyapatite. The organic matter on the other hand is composed 
of fibrous proteins (collagen), hydrophilic sulfated proteoglycans (chondroitin 
sulfate, keratan sulfate I and II) and unsulfated proteins (hyaluronic acid). 90% of 
the collagen is type II collagen, whereas the remaining collagen consists of smaller 
amounts of type IX, XI, III, VI, XII and XIV collagen [4].

A proteoglycan consists of a protein and glycosaminoglycan chains attached 
to this protein. The most abundant type of proteoglycan is ‘aggrecan’ [5]. Type II 
collagen plays a role in maintaining the volume and shape of the content it is part of, 
whereas proteoglycans play a role in maintaining the hardness and elasticity [6].

Hyaluronic acid is the substance that maintains the viscosity in synovial fluid. 
Nonetheless, it requires the presence of a large mucinous protein, which is called 
lubrisin (proteoglycan-4), in order to maintain a low-friction environment and 
protect the surface of the joint [7].

Articular cartilage is a avascular heterogeneous structure with four different 
layers which has no nerve innervation and is fed by a bidirectional diffusion system. 
These layers are the superficial zone, transitional zone, deep zone and calcified 
zone. The calcified line between the deep zone and the calcified zone is called the 
Tide mark [8].

The extracellular matrix is synthesized by chondrocytes. Chondrocytes  
synthesize cartilage matrix molecules and the metalloproteinases which breakdown 
the matrix. The cartilage metabolism is based on the balance between the anabolic 
processes and the catabolic processes carried out by the matrix metalloproteinases 
(collagenase, gelatinase, stromelysin, cathepsin B and D) and the adamalysins  
[a disintegrin and metalloproteinase (ADAM), a disintegrin and metalloprotein-
ase with thrombospondin motifs (ADAMTS), aggrecanase] [5]. This balance is 
regulated by anabolic cytokines such as transforming growth factor beta (TGF-β), 
insulin-like growth factor-1 (IGF-1) and bone morphogenetic proteins (BMPs) and 
catabolic cytokines such as interleukin 1 alpha (IL-1α), interleukin 1 beta (IL-1β) 
and tumor necrosis factor-alpha (TNF-α) [6].

The synovium, which produces the synovial fluid, consists of two layers as inner 
and outer layers. It is firmly attached to the joint capsule and prevents the synovial 
fluid from leaving the joint. The inner and outer layers of the synovium are com-
posed of the synovial membrane and fibrous connective tissue, respectively. The 
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inner layer includes two types of cells. Type A synoviocytes have the characteristics 
of macrophages, whereas type B synoviocytes are cells with proliferative capacity 
and produce hyaluronic acid, collagen, lubricin and fibronectin [9].

The joint capsule is a tissue that contains vascular and nervous tissues and is 
rich in collagen fibers. It protects the whole joint both passively by restricting the 
movements of the joint and actively through the proprioceptive sensation triggered 
by the nerve endings.

2.2 Pathological changes that occur in connection with osteoarthritis

2.2.1 Changes that occur in the articular cartilage

Chondrocytes are active cells that maintain cartilage through normal anabolic/
catabolic activities. The earliest pathological changes observed in association with 
OA are the fibrillations seen on the surface of the cartilage. Fibrillations are more 
common at parts of the cartilage exposed to higher loads. Loosening of the col-
lagen network and loss of aggregate occurs in the cartilage at the onset of OA. This 
loosening of the collagen network allows the hydrophilic proteoglycans to attract 
water and expand.

The activity of chondrocytes, the only cell type found in cartilage, accelerates 
significantly as OA develops, that is, chondrocytes begin to proliferate moderately. 
Nevertheless, the reasons that trigger this premature aging and changes in the 
chondrocyte cycle such as inflammation, proteoglycan loss, collagen degeneration 
and chondrocyte failure, as well as the order of occurrence of these changes are still 
not fully known [10].

As OA progresses, extensive matrix breakdown and loss occur due to the contin-
ued production of the proteases driven by proinflammatory cytokines. Fragmented 
matrix proteins give rise to the further production of cytokine and protease by 
chondrocytes through autocrine and paracrine stimulations. Cartilage has limited 
regeneration capacity, hence once collagen is broken down and lost, regeneration 
does not occur at a measurable degree [11].

There are various histopathological staging-grading systems that are used to 
categorize the changes associated with OA according to their severity, extent or 
order of occurrence. These classification systems classically address the changes that 
occur in articular cartilage, since OA primarily targets the articular cartilage. One 
of these systems, the histological evaluation system proposed by Osteoarthritis 
Research Society International (OARSI) is a grading, staging and a scoring 
system. The grades used in the said OARSI system to classify the changes occur in 
articular cartilage, key features of these grades and the associated criteria in terms 
of tissue reactions are shown in Table 1 [12].

2.2.2 Changes that occur in the bone

Thickening of the subchondral bone (bone sclerosis) occurs due to increased 
production of improperly mineralized collagen. Osteophytes occur at the margins 
of the joints, usually at the insertion sites of tendons or ligaments. Osteophytes 
seen in the distal interphalangeal joints of the hand are called “Heberden’s nodes”, 
whereas the osteophytes seen in the proximal interphalangeal joints are called 
“Bouchard’s nodes”. Bone cysts form in the advanced stages of the disease, but bone 
erosions are not typically seen. Erosive OA is commonly seen in the distal joints of 
the hands (distal interphalangeals and proximal interphalangeals) and central ero-
sions are also seen as opposed to the marginal erosions seen in rheumatoid arthritis 
(RA) and gout [13].
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2.2.3 Changes that occur in the synovium

Four patterns have been described in OA-related synovial pathology, which 
are hyperplastic, inflammatory, fibrotic and detritic patterns. Hyperplastic pat-
tern is the most common manifestation in all stages of OA. Hyperplastic pattern is 
considered as an early OA finding in its isolated form. Inflammatory pattern is seen 
equally in both the early and late stages of OA. Inflammatory cell density in the 
inflammatory pattern is not as much as it is in rheumatoid arthritis. Fibrotic pattern 
is characterized by capsular fibrosis reflecting late-stage OA. Detrital pattern is 
characterized by macromolecular cartilages and debris within the synovium, and 
reflects late-stage OA [14].

2.2.4 Changes that occur in the meniscus

The changes that occur in the meniscus in connection with OA are first observed 
in the medial part of the meniscus. Meniscal tears are both a cause and effect of OA. 
Meniscal tears further increase the matrix degeneration through the inflammatory 
mediators which emerge as a result of the damage to the meniscus and may lead to 
the development of OA [15]. The regeneration capacity of the meniscus is limited. 
The red zone of the meniscus, which is peripherally located, is the area with the 
best blood supply and the best regeneration capacity, whereas the white zone of the 

Grade # Key features Associated criteria (tissue reaction)

Grade 0 Intact surface 

and cartilage 

morphology

Matrix: normal architecture

Cells: intact with appropriate orientation

Grade 1 Intact surface Matrix: intact superficial zone, oedema and/or superficial fibrillation 

(abrasion), focal superficial matrix condensation

Cells: death, proliferation (clusters), hypertrophy, superficial zone reaction 

must be more than superficial fibrillation only

Grade 2 Surface 

discontinuity

As above CMatrix discontinuity at superficial zone (deep fibrillation) 

GCationic stain matrix depletion (Safranin O or Toluidine Blue) upper 

1/3 of cartilage GFocal perichondronal increased stain (transitional zone) 

GDisorientation of chondron columns

Cells: death, proliferation (clusters), hypertrophy

Grade 3 Vertical 

fissures

As above Matrix vertical fissures into transitional zone, branched fissures 

GCationic stain depletion (Safranin O or Toluidine Blue) into lower 

2/3 of cartilage (deep zone) GNew collagen formation (polarized light 

microscopy, Picro Sirius Red stain)

Cells: death, regeneration (clusters), hypertrophy, cartilage domains 

adjacent to fissures

Grade 4 Erosion Cartilage matrix loss: delamination of superficial layer, transitional zone 

cyst formation

Excavation: matrix loss superficial and transitional zones

Grade 5 Denudation Surface: sclerotic bone or reparative tissue including fibrocartilage within 

denuded surface. Microfracture with repair limited to bone surface

Grade 6 Deformation Bone remodeling (more than osteophyte formation only) including 

microfracture with fibrocartilaginous and osseous repair extending above 

the previous surface

Table 1. 
A cartilage histopathology grading methodology.
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meniscus, which is more centrally located, is largely avascular and its regeneration 
is very slow and inadequate [16].

2.3 Etiopathogenesis of osteoarthritis

OA refers to a dynamic process, which is triggered by various biochemical and 
mechanical factors and in which destruction and regeneration both take place. 
In the past, OA was thought to be a degenerative joint disease that emerged with 
aging. Yet, it is known today that various factors such as biomechanical factors, 
proinflammatory mediators and proteases play a role in the pathogenesis of OA 
[17]. The release of biomarkers indicates that the findings that emerge in the earliest 
detectable stage of knee OA are bone and cartilage metabolisms that are impaired as 
a result inflammation [18].

2.3.1 Factors involved in the etiopathogenesis of osteoarthritis

2.3.1.1 Inflammation

The number of proinflammatory mediators included in the synovial fluid and 
tissue and which play a role in OA and is increasing by the day. Early studies on OA 
were focused on interleukin-1 (IL1), which stimulates cartilage catabolic activity. 
Nevertheless, the role of IL1 in OA has been questioned over the years, since the 
IL1 levels in OA joints are much lower than the levels that cause cartilage deteriora-
tion. It has been shown in the relevant clinical studies that the inhibition of IL1 in 
knee [19] and hand OA [20] have not improved the structure and symptoms of the 
disease.

Cytokines such as IL6, interferon-gamma inducible-protein-10 (IP-10), 
monocyte chemoattractant protein-1 (MCP-1) and monokine induced by gamma 
interferon (MIG) were found to be more abundant in OA synovial fluid than IL1 
or TNF-α [21]. This finding suggests that these proinflammatory cytokines play 
a role in inflammation. It has been demonstrated in experimental animal models 
that there may be a relationship between IL-6 level and increased cartilage loss. 
The results of all these studies support the hypothesis that IL-6, as a regulatory 
cytokine, plays a role in the development of OA [22]. Other cytokines and che-
mokines involved in cartilage degeneration caused by inhibition of the anabolic 
process and induction of the catabolic process are IL-7, IL-15, IL-17, IL-18, 
oncostatin M (OSM), growth related oncogene-alpha (GRO-alpha), chemokine 
(C-C motif) ligand 19 (CCL19) and macrophage inflammatory protein-1beta 
(MIP-1beta) [23].

It was demonstrated in some studies that there is complement activity in OA 
joints. In one of these studies, which was conducted on mice, it was demonstrated 
that complement activation was inhibited by gene deletion or pharmacological 
modulation and that, as a result of this inhibition, the joint is protected from 
surgery-induced OA [24].

Adipokines secreted by adipose tissue cause cartilage damage by activating the 
inflammatory cytokines along with the matrix metalloproteinases (MMPs) trig-
gered by the inflammatory cytokines. These adipokines include leptin, adiponectin, 
visfatin and resistin [25].

Prostaglandin E2 (PGE-2) has been shown to inhibit proteoglycan synthesis 
and increase matrix degradation. Additionally, it was shown that patients with OA 
have high levels of PGE-2 in cartilage [26]. Furthermore, leukotriene B4, a strong 
leukocyte chemotaxis, has been shown to stimulate proinflammatory cytokines in 
human synovial fluid samples [27].
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2.3.1.2 Proteases

Proteases are mediators that play a primary role in the catabolic process of OA. 
There are several proteases that have a role in the pathogenesis of OA. These prote-
ases are collagenase-containing matrix metalloproteinases, cathepsin K-containing 
proteases, and serine-containing proteases. As the proteases degrade collagen, the 
related catabolic process results in the progression of matrix loss, since the carti-
lage’s response to damaged matrix repair is limited [28].

‘Agreccan’, the largest proteoglycan, provides cartilage elasticity. The ADAMTS 
family of enzymes, also called aggrecanases (ADAMTS-4-5), is involved in the early 
stage of OA degeneration and is responsible for aggrecan degradation [28].

Type-2 collagen, the most abundant type of collagen found in the cartilage tis-
sue, provides cartilage tensile strength. It is broken down by collagenase-containing 
matrix metalloproteinases. MMP13 is considered to be the main collagenase respon-
sible for cartilage destruction in OA [28].

Aggrecanase-2 (ADAMTS-5) and MMP-13 have an important place in the 
pathogenesis of OA. The development of specific inhibitors to these proteases in the 
context of the development of potential modifying treatments for OA has been of 
interest [29].

2.3.1.3 Molecular patterns associated with cartilage damage

Damage-associated molecular patterns (DAMPs) are molecules released from 
the chondrocytes in the damaged cartilage. DAMPs include extracellular matrix 
proteins, high mobility group box 1 protein (HMGB1), advanced glycation end 
products (AGEs) and receptor for advanced glycation endproducts (RAGEs), and 
alarmins [S100 calcium-binding protein A8 (S100A8) and S100 calcium-binding 
protein A9 (S100A9)].

It has been demonstrated that DAMPs have important roles in the pathogenesis 
of OA. DAMPs activate intercellular signaling pathways such as RAGE, toll-like 
receptors (TLR) and mitogen-activated protein kinases (MAPKs), thereby inducing 
the expression of catabolic proteases and inflammation-related genes [30]. DAMPs 
give rise to the increase in MMPs and activated macrophages which in turn lead to 
chondrocyte apoptosis and cause damage to the extracellular matrix (ECM) and 
cartilage [31, 32].

Fragmented matrix proteins such as cartilage oligomeric matrix protein 
(COMP), fibromodulin, proteoglycan, collagen, tenascin C, fibronectin, biglycan 
and aggregate are released from the damaged matrix. These fragmented matrix 
proteins stimulate the immune response. Consequentially, TLR and integrin are 
activated and the upregulation of the degenerative pathway is achieved [23, 33–35].

RAGE is a member of the immunoglobulin family. It is expressed in chondro-
cytes and macrophages. RAGE has been demonstrated to increase in OA joints. 
This increase causes the production of MMPs, which play a direct role in the 
pathogenesis of OA [36].

Alarmins are intracellular proteins secreted from bone cartilage or synovium in 
OA. It is an important member of DAMP family that has a role in the pathogenesis 
of OA [33].

HMGB1 is a nonhistone nuclear protein. Its release from the nucleus is associated 
with the apoptosis or necrosis or inflammatory stimulation of cells [37]. A signifi-
cant increase occurs in the secretion of proinflammatory cytokines, chemokines 
and MMPs with the increase in HMGB1 secretion [38].

S100A8 and S100A9 are secreted from granulocytes, macrophages and mono-
cytes. There is evidence that these proteins play a role in the cartilage damage and 
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OA progression [39]. In addition to their catabolic effect, S100A8 and S100A9 lead 
to the formation of bone/osteophyte [40].

It has been demonstrated in the literature that the basic calcium phosphate 
(BCP) and calcium pyrophosphate dihydrate (CPPD) crystals, from among 
the inorganic calcium crystals, accumulate in the synovial fluid [41]. Calcium-
containing crystals trigger the inflammatory process by either directly stimulating 
the chondrocytes or indirectly stimulating the immune system [30]. Additionally, 
it has been reported in the literature that monosodium urate crystals also trigger 
inflammation and cause cartilage damage [42].

2.3.1.4 Free oxygen radicals

The amount of free oxygen radicals and the extent of the DNA damage they 
cause are higher in OA cartilages than in cartilages without OA. Free oxygen radicals 
have an important place in OA progression, since they increase the synovial inflam-
mation and cartilage destruction [43].

2.3.1.5 Biomechanical factors

Abnormal mechanical loading has an important role in the onset and progres-
sion of OA [44]. Abnormal mechanical loading may be caused by various factors 
such as obesity, joint alignment disorders or joint instability. Abnormal mechani-
cal loading leads to mechanical damage in the joint and result in an increase 
in the release of matrix-degrading enzymes. Cartilage destruction products 
trigger inflammation and damage to the joint cartilage occurs through cytokine 
activation.

2.4 Genetics of osteoarthritis

The molecular processes underlying OA, which have a complex etiology, have 
become clearer through genetic and epigenetic studies. OA has been categorized as 
early-onset OA and late-onset OA. Genetic factors are more prominent in the early-
onset OA. Genetic studies on the early-onset OA will provide a better understand-
ing of the etiopathogenesis of the disease.

Family and twin studies have been conducted to reveal the genetic factors in 
OA [45]. To give a few examples, in the family studies conducted by Kellgren in UK 
and US, it was determined that there is a genetic component of the hand and knee 
OA [46], whereas in the study conducted by Lanyon et al., it was shown that the 
risk of radiographic hip OA is higher in the siblings of the patients with advanced 
hip OA [47].

Studies, in which monozygotic (MZ) and dizygotic (DZ) twins were compared, 
have shown that genetic factors are effective in OA. In one of these studies, it was 
shown that genetic factors are 39–65% effective on hand and knee OA radiographs, 
independently of environmental and demographic factors [48]. In another study, 
knee OA progression was investigated in 114 MZ and 195 DZ female twin couples. 
Consequentially, a higher correlation was found in the MZ twins than in the DZ 
twins in terms of both osteophyte and joint space narrowing, and the heritability 
was calculated as 62% for osteophyte progression and 72% for joint space narrow-
ing progression. Additionally, it has been reported that the genetic effect on knee 
OA progression is more prominent in the medial compartment [49]. Furthermore, 
it has also been reported that the genetic effect differs according to the affected area 
in OA. Accordingly, the heritability was reported as 40%, 60%, 65% and 70% in the 
knee, hip, hand and spine regions, respectively [48].
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Candidate gene studies have focused on many gene groups such as cartilage 
structural genes [collagen type II alpha 1 (COL2A1), collagen type IX alpha 3 
(COL9A3), collagen type XI alpha 1 (COL11A1)], genes associated with bone 
mineral density (BMD) [vitamin D receptor (VDR), estrogen receptor 1 (ESR1)], 
genes associated with chondrocyte cell signal transduction (bone morphogenetic 
protein 5 (BMP5), frizzled-related protein B (FRZB), interleukin-4 receptor alpha 
(IL-4Rα)], inflammatory cytokine genes (IL-1, IL-10, TGFβ1, IL-6, TNFα) [50].

The finding that VDR gene polymorphism is associated with BMD lead to the 
studies on the possible relationship of VDR gene polymorphism with OA [51]. In 
this context, it was shown in a study conducted on 543 women in Finland that VDR 
polymorphism plays a role in the etiology of symmetrical hand OA [52].

The prevalence of knee OA is significantly higher in women than in men. This 
difference was atrributed to the estrogen receptor α (ERα), which is encoded by 
ESR1. Several polymorphisms in ESR1 [PvuII (rs2234693) and BtgI (rs2228480)] 
have been confirmed as risk factors for OA [53].

FRZB is a glycoprotein and plays a role in chondrocyte maturation and bone 
development. In Rotterdam and Genetics, Osteoarthritis and Progression (GARP) 
studies, R324G single nucleotide polymorphism (SNP) of the FRZB gene was 
found to be associated with generalized OA, whereas rs7775 and rs2888326 SNPs 
were found to be associated with knee and hip OA [50]. BMPs are bone-derived 
factors that can induce new bone formation. In a study conducted by Sharma et al. 
on BMP5 gene, rs1470527 and rs9382564 polymorphisms were shown to be signifi-
cantly associated with knee OA [54].

The hypothesis put forward in candidate gene studies is still being investigated 
in terms of the genetic variant. Researchers favor genome-wide association studies 
(GWAS), which is a hypothesis-free approach, in the event that they think that can-
didate gene studies do not contribute much to the etiopathogenesis of the disease. 
GWAS allows the identification of genetic loci and the discovery of new genetic 
variants. In this context, GWAS contributes to the discovery of prognostic biomark-
ers that can contribute to early diagnosis and the identification of new areas that can 
be targeted by medical treatments [55–58]. The number of OA genetic risk loci, most 
of which have small effect sizes, has increased to 90 in the GWAS studies carried out 
up till 2019 [59]. 56 new loci were identified in the two major OA analyzes published 
recently [59, 60]. First of these two studies, that is the deCODE (Decode Genetics, 
Iceland)-UKBB (UK Biobank, England) study, was conducted with more than 
650,000 British and Icelandic citizens. 11.6 million genotype variants were exam-
ined within the scope of the said study, and 23 significant variants were detected in 
22 loci [60]. Second of these studies, that is the Arthritis Research UK Osteoarthritis 
Genetics (arcOGEN)-UKBB study, was conducted with more than 455,000 British 
citizens. 17.5 million genotype variants were examined within the scope of the said 
study, and 65 significant variants were detected in 64 loci [61]. These studies, which 
were conducted via performing separate meta-analyses for the hip and knee OAs, 
are the largest OA GWAS studies published to date (Figure 1) [59].

Genetic variations are grouped into single nucleotide substitutions (mutations 
and single nucleotide polymorphisms (SNPs)], insertions and deletions, copy num-
ber variations or short tandem repeats [62]. Variations in the genome underlie the 
differences between the individuals. The most common of these variations are SNPs. 
SNPs are considered to be associated with susceptibility to diseases [63]. The majority 
of the common diseases that give rise to SNPs, including OA, are considered to affect 
the transcription of nearby genes by altering the transcription factor binding [59].

Epigenetics plays an important role in the regulation of gene expression and 
is associated with the pathogenesis of a number of human diseases. The term 
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epigenetics encompasses DNA and chromatin modifications and the functions 
related thereto, in addition to non-coding RNAs (ncRNAs). Epigenetic control 
of gene expression is necessary and essential for typical organism development 
and cell control [63]. Epigenetic changes are transmissible and reversible changes 
that do not change the nucleotide sequence but cause changes in gene expression 
[64]. Changes that occur within the gene itself cause structural changes in some 
synthesized proteins. These changes lead up to early onset-OA. Given the above 
considerations, epigenetics is a very important area in the diagnosis, prognosis 
and treatment of OA [63]. Three different epigenetic regulation are involved in the 
molecular pathogenesis of OA. These include DNA methylation, expression of non-
coding RNAs [ncRNAs, microRNAs (miRNAs), long non-coding RNAs (lncRNAs), 
small nucleolar RNAs (snoRNAs)], histone modifications that regulate gene 
expression at transcriptional and/or post-transcriptional levels [65]. DNA methyla-
tion is the most studied epigenetic control mechanism. 5-methylcytosine is formed 
as a result of the addition of a methyl group to the 5′ position of cytosine in the CpG 
dinucleotide by DNA methyltransferase [DNA Mtase (DNMT)]. Methylation at 
gene promoter regions is associated with suppression of gene expression. On the 
other hand, methylation within the gene bodies is associated with increased gene 
expression [66, 67]. The candidate gene study conducted to examine DNA methyla-
tion of matrix-degrading proteases such as MMP3, MMP9, MMP13 and ADAMTS4 
was the first study to describe the possible effect of DNA methylation in OA. In the 
said study, hypomethylation was demonstrated in the promoter regions of selected 
catabolic genes in OA chondrocytes, and it was found that this hypomethylation 
was associated with increased expression of the gene [68].

miRNAs are small ncRNAs, which consist of 19 to 25 nucleotides and function at 
the post-transcriptional level by binding and repressing the expression of specific 
mRNA targets. miRNAs are involved in different cellular pathways and play a role in 
OA and in maintaining cartilage homeostasis [69]. Despite the constantly increas-
ing number of publications and miRs related to the pathogenesis of OA, there is 
still no miR biomarker, which has been validated for use in the early diagnosis of 
the disease. This has been atrributed in part to the fact that OA is a multifactorial 
heterogeneous disease [63].

Figure 1. 
The new OA risk loci identified in either or/both of the deCODE-UKBB and arcOGEN-UKBB studies.
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lncRNAs are large RNA molecules comprising more than 200 nucleotides. 
Deregulated expression of lncRNAs plays an important role in inflammatory dis-
eases. lncRNAs have been shown to be associated with OA progression and cartilage 
degeneration [70]. LncRNAs regulate gene expression at the post-transcriptional 
level via micro-RNAs and modulate transcriptional gene silencing through chroma-
tin regulation [71].

2.5 New treatments and future in osteoarthritis

Since chronic low-severity inflammation is involved in OA, the development of 
drugs that act on pro-inflammatory cytokines has also become a new hope in the 
treatment of OA [72]. In a study, an intra-articular (IA) IL-1 receptor antagonist 
(IL-1Ra) was applied to the canine knee and it was reported that it reduced the 
number and size of osteophytes in the femoral condyle in the follow-ups [73]. 
However, in another study, anakinra, which is IL-1Ra, was applied IA to the knees 
of patients with OA. In this randomized controlled trial, they found no superior 
effect to placebo on pain and WOMAC scores [74].

It has been reported that the serum TNF levels of patients with OA are elevated. 
The positive results obtained with the use of TNF-α inhibitors especially in erosive 
hand osteoarthritis are promising. In the study of Magnano et al., 12 patients with 
erosive hand OA were treated with adalimumab (ADA) and reported a significant 
improvement in symptoms after 3 months [75].

Proteases are mediators that play a primary role in the catabolic process of OA. 
‘Agreccan’, the largest proteoglycan, provides cartilage elasticity. The ADAMTS 
family of enzymes, also called aggrecanases (ADAMTS-4-5), is involved in the 
early stage of OA degeneration and is responsible for aggrecan degradation 
[28]. Preclinical studies of the molecule GSK2394002, which effectively inhibits 
ADAMTS 4 and 5, were discontinued because serious cardiovascular side effects 
were encountered in animal experiments with systemic use [76]. However, phase II 
studies on 114810, an IA administration molecule developed to reduce systemic side 
effects, are ongoing [77].

OA is a dynamic process triggered by various biochemical and mechanical 
factors, where destruction and repair are together. The fibroblast growth factor 3 
(FGF-3) family, especially FGF 18, has an anabolic effect on human chondrocytes 
[78]. In a study including 549 patients with stage 2 and 3 knee OA, FGF-18 (sprifer-
min) IA was administered. An increase in tibiofemoral joint cartilage thickness has 
been reported up to 12 months. In the light of this information, it can be said that 
Sprifermin is currently one of the promising candidates for disease-modifying OA 
drug (DMOAD) [79].

The mechanism of action of platelet-rich plasma (PRP) is suggested to be that 
bioactive growth factors released from α granules in platelets stimulate tissue 
healing at high concentrations. In a meta-analysis of 16 studies, 1543 patients were 
examined; PRP and IA hyaluronic acid (HA) were compared. In terms of pain and 
functionality, it was found to be more effective than intra-articular HA injection 
[80]. However, the 2019 OARSI guidelines state that there is low-level evidence 
of the use of PRP in patients with knee, hip, and polyarticular OA and should not 
be used [81]. Larger randomized controlled studies with long-term follow-up are 
needed to elucidate its effects on tissue regeneration and delaying surgery.

In the light of these, the aim of OA treatment is to prevent disease formation or 
to provide regeneration of damaged tissue rather than eliminating the symptom. It 
would be more logical for DMOADs to be developed in the future to target the early 
stages of disease pathogenesis. For this reason, randomized double-blind controlled 
studies will contribute to the development of OA treatment.
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