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1. Introduction    

As it is well known, standard feedback control is based on generating the control signal 

u by processing the error signal, e r y= − , that is, the difference between the reference 

input and the actual output. Therefore, the input to the plant is   

 ( )u K r y= −  (1) 

It is well known that in such a scenario the design problem has one degree of freedom (1-

DOF) which may be described in terms of the stable Youla parameter (Vidyasagar, 1985).  

The error signal in the 1-DOF case, see figure 1, is related to the external input r  and d  by 

means of the sensitivity function 
1

(1 )oS P K
−= +& , i.e., ( )e S r d= − .  
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Fig. 1. Standard 1-DOF control system. 

Disregarding the sign, the reference r and the disturbance d have the same effect on the 

error e . Therefore, if r and d vary in a similar manner the controller K can be chosen to 

minimize e  in some sense. Otherwise, if r and d have different nature, the controller has to 

be chosen to provide a good trade-off between the command tracking and the disturbance 

rejection responses. This compromise is inherent to the nature of 1-DOF control schemes. To 

allow independent controller adjustments for both r and d , additional controller blocks 

have to be introduced into the system as in figure 2. 

Two-degree-of-freedom (2-DOF) compensators are characterized by allowing a separate 

processing of the reference inputs and the controlled outputs and may be characterized by 

means of two stable Youla parameters. The 2-DOF compensators present the advantage of a 

complete separation between feedback and reference tracking properties (Youla & 

Bongiorno, 1985): the feedback properties of the controlled system are assured by a feedback 
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Fig. 2. Standard 2-DOF control configuration. 

controller, i.e., the first degree of freedom; the reference tracking specifications are 
addressed by a prefilter controller, i.e., the second degree of freedom, which determines the 
open-loop processing of the reference commands. So, in the 2-DOF control configuration 
shown in figure 2 the reference r and the measurement y, enter the controller separately and 
are independently processed, i.e., 

 
2 1

r
u K K r K y

y
= = −

⎡ ⎤
⎢ ⎥⎣ ⎦

 (2) 

As it is pointed out in (Vilanova & Serra, 1997), classical control approaches tend to stress 
the use of feedback to modify the systems’ response to commands.  A clear example, widely 
used in the literature of linear control, is the usage of reference models to specify the desired 
properties of the overall controlled system (Astrom & Wittenmark, 1984). What is specified 
through a reference model is the desired closed-loop system response. Therefore, as the 
system response to a command is an open-loop property and robustness properties are 
associated with the feedback (Safonov et al., 1981), no stability margins are guaranteed 
when achieving the desired closed-loop response behaviour. 
A 2-DOF control configuration may be used in order to achieve a control system with both a 
performance specification, e.g., through a reference model, and some guaranteed stability 
margins. The approaches found in the literature are mainly based on optimization problems 
which basically represent different ways of setting the Youla parameters characterizing the 
controller (Vidyasagar, 1985), (Youla & Bongiorno, 1985), (Grimble, 1988), (Limebeer et al., 
1993). 

The approach presented in (Limebeer et al., 1993) expands the role of H
∞

 optimization tools 

in 2-DOF system design. The 1-DOF loop-shaping design procedure (McFarlane & Glover, 
1992) is extended to a 2-DOF control configuration by means of a parameterization in terms 
of two stable Youla parameters (Vidyasagar, 1985), (Youla & Bongiorno, 1985). A feedback 
controller is designed to meet robust performance requirements in a manner similar as in 
the 1-DOF loop-shaping design procedure and a prefilter controller is then added to the 
overall compensated system to force the response of the closed-loop to follow that of a 
specified reference model. The approach is carried out by assuming uncertainty in the 
normalized coprime factors of the plant (Glover & McFarlane, 1989). Such uncertainty 

description allows a formulation of the 
∞
H  robust stabilization problem providing explicit 

formulae.  
A frequency domain approach to model reference control with robustness considerations 
was presented in (Sun et al., 1994). The design approach consists of a nominal design part 
plus a modelling error compensation component to mitigate errors due to uncertainty. 
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However, the approach inherits the restriction to minimum-phase plants from the Model 
Reference Adaptive Control theory in which it is based upon. 
In this chapter we present a 2-DOF control configuration based on a right coprime 
factorization of the plant. The presented approach, similar to that in (Pedret C. et al., 2005), 
is not based on setting the two Youla parameters arbitrarily, with internal stability being the 
only restriction. Instead, 
1. An observer-based feedback control scheme is designed to guarantee robust stability. 

This is achieved by means of solving a constrained 
∞
H  optimization using the right 

coprime factorization of the plant in an active way. 
2. A prefilter controller is added to improve the open-loop processing of the robust closed-

loop. This is done by assuming a reference model capturing the desired input-output 
relation and by solving a model matching problem for the prefilter controller to make 
the overall system response resemble as much as possible that of the reference model. 

The chapter is organized as follows: section 2 introduces the Observer-Controller 
configuration used in this work within the framework of stabilizing control laws and the 
Youla parameterization for the stabilizing controllers. Section 3 reviews the generalized 

control framework and the concept of 
∞
H  optimization based control. Section 4 displays the 

proposed 2-DOF control configuration and describes the two steps in which the associated 
design is divided. In section 5 the suggested methodology is illustrated by a simple 
example. Finally, Section 6 closes the chapter summarizing its content and drawing some 
conclusions. 

2. Stabilizing control laws and the Observer-Controller configuration 

This section is devoted to introduce the reader to the celebrated Youla parameterization, 
mentioned throughout the introduction. This result gives all the control laws that attain 
closed-loop stability in terms of two stable but otherwise free parameters.  In order to do so, 
first a basic review of the factorization framework is given and then the Observer-Controller 
configuration used in this chapter is presented within the aforementioned framework. The 
Observer-Controller configuration constitutes the basis for the control structure presented in 
this work.   

2.1 The factorization framework 

A short introduction to the so-called factorization or fractional approach is provided in this 
section. The central idea is to factor a transfer  function of a system, not necessarily stable, as 
a ratio of two stable transfer functions. The factorization framework will constitute the 
foundations for the analysis and design in subsequent sections. The treatment in this section 
is fairly standard and follows (Vilanova, 1996), (Vidyasagar, 1985) or (Francis, 1987).  

2.1.2 Coprime factorizations over ∞RH  

A usual way of representing a scalar system is as a rational transfer function of the form 

 
( )

( )
( )

o

n s
P s

m s
=  (3) 
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where ( )n s and ( )m s are polynomials and (3) is called polynomial fraction representation 

of ( )
o
P s . Another way of representing ( )

o
P s is as the product of a stable transfer function 

and a transfer function with stable inverse, i.e., 

 
1

( ) ( ) ( )
o
P s N s M s

−=  (4) 

where ( ), ( )N s M s
∞

∈RH , the set of stable and proper transfer functions. 

In the Single-Input Single-Output (SISO) case, it is easy to get a fractional representation in 

the polynomial form (3). Let ( )sδ  be a Hurwitz polynomial such that 

deg ( ) deg ( )s m sδ = and set 

 
( ) ( )

( ) ( )
( ) ( )

n s m s
N s M s

s sδ δ
= =  (5) 

The factorizations to be used will be of a special type called Coprime Factorizations. Two 

polynomials ( )n s and ( )m s  are said to be coprime if their greatest common divisor is 1 (no 

common zeros). It follows from Euclid’s algorithm – see for example (Kailath, 1980) – that 

( )n s and ( )m s are coprime iff there exists polynomials ( )x s and ( )y s such that the 

following identity is satisfied: 

 ( ) ( ) ( ) ( ) 1x s m s y s n s+ =  (6) 

Note that if z is a common zero of ( )n s and ( )m s then ( ) ( ) ( ) ( ) 0x z m z y z n z+ =  and 

therefore ( )n s and ( )m s are not coprime. This concept can be readily generalized to transfer 

functions ( ), ( ), ( ), ( )N s M s X s Y s in
∞

RH . Two transfer functions ( ), ( )M s N s  in 
∞

RH  are 

coprime when they do not share zeros in the right half plane. Then it is always possible to 

find ( ), ( )X s Y s  in 
∞

RH  such that ( ) ( ) ( ) ( ) 1X s M s Y s N s+ = .  

When moving to the multivariable case, we also have to distinguish between right and left 

coprime factorizations since we lose the commutative property present in the SISO case.  

The following definitions tackle directly the multivariable case. 

Definition 1. (Bezout Identity) Two stable matrix transfer functions 
r
N and 

r
M are right 

coprime if and only if there exist stable matrix transfer functions 
r
X and 

r
Y such that 

 [ ]
r r r r r r

r

r

M
X Y X M Y N I

N
= + =

⎡ ⎤
⎢ ⎥⎣ ⎦

 (7) 

Similarly, two stable matrix transfer functions 
l
N and 

l
M are left coprime if and only if 

there exist stable matrix transfer functions 
l
X and 

l
Y  such that 

www.intechopen.com
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 [ ]
l l l l l

l

l

l

X
M N M X N Y I

Y
= + =

⎡ ⎤
⎢ ⎥⎣ ⎦

 (8) 

The matrix transfer functions ,
r r
X Y ( ,

l l
X Y ) belonging to 

∞
RH  are called right (left) Bezout 

complements. 

Now let ( )
o
P s  be a proper real rational transfer function. Then, 

Definition 2. A right (left) coprime factorization, abbreviated RCF (LCF), is a factorization 
1

( )
o r r
P s N M

−= (
1

( )
o l l
P s M N

−= ), where ,
r r
N M ( ,

l l
N M ) are right (left) coprime over 

∞
RH . 

With the above definitions, the following theorem arises to provide right and left coprime 
factorizations of a system given in terms of a state-space realization. Let us suppose that  

 ( )
o

A B
P s

C D
=
⎡ ⎤
⎢ ⎥
⎣ ⎦
&  (9) 

is a minimal stabilisable and detectable state-space realization of the system ( )
o
P s . 

Theorem 1. Define 

 

0

( )

0
r

r l

r l

r

l l

A BF B L

M Y
F I

N X
C DF D I

A LC B LD L

Y
F I

N M
C D I

X

+ −
−

=

+ −

+ − + −

=
−

−

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

&

&

 (10) 

where F and L are such that A BF+ and A LC+  are stable. Then, 
1

( ) ( ) ( )
o r r
P s N s M s

−=  

(
1

( ) ( ) ( )
o llP s M s N s

−= ) is a RCF (LCF). 

Proof. The theorem is demonstrated by substituting (1.10) into equation (1.7).  

Standard software packages can be used to compute appropriate F and Lmatrices 

numerically for achieving that the eigenvalues of A BF+  are those in the vector 

 
1 n

T

F F F
p p p= ⎡ ⎤⎣ ⎦L  (11) 

Similarly, the eigenvalues of A LC+ can be allocated in accordance to the vector 

                                                                  
1 n

T

L L L
p p p= ⎡ ⎤⎣ ⎦L  (12) 
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By performing this pole placement, we are implicitly making active use of the degrees of 

freedom available for building coprime factorizations. Our final design of section 4 will 

make use of this available freedom for trying to meet all the controller specifications. 

2.2 The Youla parameterization and the Observer-Controller configuration 

A control law is said to be stabilizing if it provides internal stability to the overall closed-

loop system, which means that we have Bounded-Input-Bounded-Output (BIBO) stability 

between every input-output pair of the resulting closed-loop arrangement. For instance, if 

we consider the general control law 
2 1

u K r K y= − in figure 3a internal stability amounts to 

being stable all the entries in the mapping ( ) ( ), , ,
i o

r d d u y→ . 

Let us reconsider the standard 1-DOF control law of figure 1 in which ( )u K r y= − . For 

this particular case, the following theorem gives a parameterization of all the stabilizing 
control laws. 

Theorem 2. (1-DOF Youla parameterization) For a given plant 
1

r rP N M
−= , let 

( )
stab
C P denote the set of stabilizing 1-DOF controllers 1K , that is,  

 { }1 1( ) : the control law ( ) is stabilizing .
stab
C P K u K r y= = −&  (13) 

The set ( )
stab
C P  can be parameterized by 

 ( ) :
y

y

y

stab

r r

r r

X M Q
C P Q

Y N Q
∞

+
= ∈

−

⎧ ⎫
⎨ ⎬
⎩ ⎭

RH  (14)  

As it was pointed out in the introduction of this chapter, the standard feedback control 

configuration of figure 1 lacks the possibility of offering independent processing of 

disturbance rejection and reference tracking. So, the controller has to be designed for 

providing closed-loop stability and a good trade-off between the conflictive performance 

objectives. For achieving this independence of open-loop and closed-loop properties, we 

added the extra block 
2
K (the prefilter) to figure 1, leading to the standard 2-DOF control 

scheme in figure 2. Now the control law is of the form  

 
2 1

u K r K y= −  (15) 

where 
1
K and

2
K are to be chosen to provide closed-loop stability and meet the performance 

specifications. This control law is the most general stabilizing linear time invariant control 

law since it includes all the external inputs ( y and r ) in u .  

Because of the fact that two compensator blocks are needed for expressing u according to 

(15), 2-DOF compensators are also referred to as two-parameter compensators. It is worth 

emphasizing that (15) represents the most general feedback compensation scheme and that, 

for example, there is no three-parameter compensator. 

www.intechopen.com
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(a) 

 
 
 

Ml,C Mr

-1z u

-

di

Nl,K2

do

y

r

x

Nl,K1 Nr

 
(b) (c) 

Fig. 3. (a)  2-DOF control diagram. (b) An unfeasible implementation of the 2-DOF control 

law 
2 1

u K r K y= − . (c) A feasible implementation of the control law 
2 1

u K r K y= − . 

It is evident that if we make 
1 2
K K K= = , then we have ( )u K r y= − and recover the 

standard 1-DOF feedback configuration (1 parameter compensator) of figure 1. Once we 

have designed 
1
K and

2
K , equation (15) simply gives a control law but it says nothing about 

the actual implementation of it, see (Wilfred, W.K. et al., 2007).  For instance, in figure 3b we 
can see one possible implementation of the control law given by (15) which is a direct 
translation of the equation into a block diagram. It should be noted that this implementation 

is not valid when 
2
K  is unstable, since this block acts in an open-loop fashion and this 

would result in an unstable overall system, in spite of the control law being a stabilizing 
one. To circumvent this problem we can make use of the previously presented factorization 

framework and proceed as follows: define 
1 2

[ ]C K K= and let 
1

1 , , 1l C l K
K M N

−= and 

1

2 , , 2l C l K
K M N

−= such that 
, , 1 , 2

( ,[ ])
l C l K l K

M N N  is a LCF ofC . Once 
1 2

[ ]C K K= has 

been factorized as suggested, the control action in (15) can be implemented as shown in 

figure 3c. In this figure the plant has been right-factored as
1

r r
N M

−
. It can be shown that the 

mapping 
1 2

( , , ) ( , , , )
i o

r d d z z u y→ remains stable (necessary for internal stability) if and 

only if so it does the mapping ( , , ) ( , )
i o

r d d u y→ . The following theorem states when the 

system depicted in figure 3c is internally stable. 
Theorem 3. The system of figure 3c is internally stable if and only if 

 
1

, , 2: ,   l C r l K rR M M N N R
∞ ∞

− = + ∈ ∈RH RH  (16)  

We can proceed now to announce the 2-DOF Youla Paramaterization. 
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Theorem 4. (2-DOF Youla parameterization) For a given plant
1

r rP N M
−= , let ( )

stab
C P  

denote the set of stabilizing 2-DOF controllers 
1 2

[ ]C K K= , that is,  

 { }
1 2 2 1

( ) [ , ] : the control law ) is stabilizing .
stab
C P C K K u K r K y= = = −&  (17) 

The set ( )
stab
C P  can be parameterized as follows 

 ( ) : ,,
ystab

y r

r

y y

r r

r r r r

C P Q Q RH
X M Q Q

Y N Q Y N Q
∞

= ∈
+

− −

⎛ ⎞⎧ ⎫
⎜ ⎟⎨ ⎬
⎩ ⎭⎝ ⎠
&  (18) 

Proof. Based on theorem 2, it follows that the transfer function R  will satisfy theorem 3 if 

and only if 
1

, , 1l C l K
M N

−
 equals 

1
( ) ( )

r y r y rrY Q N X Q M
−− + for some 

y
Q in 

∞
RH  such that 

0
r y r
Y Q N− ≠ . Moreover, R  is independent of 

1,l K
N . This leads at once to (18).  

Following with figure 3c, let us assume that we take  

 
, 1 , 2 ,1 11,   ,   1
l K l K l Cr rN N K X M K Y= = = +  (19) 

where 1K ∞
∈RH . Then the two-parameter compensator can be redrawn as shown in figure 

4a. For reasons that will become clear later on, this particular two-parameter compensator is 

referred to as the Observer-Controller scheme. 
 

 
 

 

xo

x

-

K1

Xr Yr

Mr

-1
Nr

r y

 
(a) (b) 

Fig. 4. (a)  Observer-Controller in two blocks form. (b) Observer-Controller in three blocks 

form where 
1

r roP N M
−= is a RCF. 

Applying theorem 3 for the particular case at hand the stability condition for the system of 

figure 4a reduces to  

 
1

1 1 1(1 ) ,   
r r r r r

R K X M K Y N M K R
∞ ∞

− = + + = + ∈ ∈RH RH  (20) 

It can be verified that the relation between r and y is given by
r
N R . In order to 

yr
T  being 

stable, we have to require R to be stable. On the other hand, 
1

R
−

is given by 1r
M K+ which 
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is stable having chosen 1K  stable. Choosing such an R  for our design the stability 

requirements for the overall system to be internally stable are satisfied. 
It is easy to see that figure 4a can be rearranged as in figure 4b, where the plant appears in 

right-factored form (
1

r roP N M
−= ). Now it is straightforward to notice that the relation 

between x and 
o
x is given by 

 ( )
o

r r r r
x X M Y N x x= + =  (21) 

where the Bezout identity applies. This way, the
r
X and

r
Y blocks can be though of as an 

observer for the fictitious signal x appearing in the middle of the RCF. So, feeding back the 

observation of x lets to place the close-loop eigenvalues at prescribed locations since the 

achieved input to output relations is given by 
r

y N Rr= and the stable poles of both 
r
N  

and R are freely assignable. This may remind of a basic result coming from state-space 

control theory associated with observed state feedback: assuming a minimal realization of 

the plant, state feedback using observers let you change the dynamics of the plant by 

moving the closed-loop poles of the resulting control system to desired positions in the left 

half plane. Let us assume the following situation for the figure 4b 

 ,   ,   ,   ,   
r r r r

K K L L

yx
nnb a b

P M N X Y
a p p p p

= = = = =  (22) 

Now let us take 1K to be of the form 

 1

K

m
K

p
=  (23) 

being m an arbitrary polynomial in s of degree n-1. With 
K
p  and 

L
p we refer here to monic 

polynomials in s having as roots the entries of the vectors in (11) and (12), respectively .The 

dependence of s has been dropped to simplify the notation. By choosing this stable 1K the 

relation between the input r and the output y remains as follows 

 yr

b
T

a m
=

+
 (24) 

So we have achieved a reallocation of the closed-loop poles leaving the zeros of the plant 

unaltered, as it happens in the context of state-space theory when one makes use of 

observed state feedback.  

What follows is intended to fully understand the relationship between the scheme of figure 

4 and conventional state-feedback controllers. For this purpose, we will remind here results 
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appearing in (Kailath, 1980), among others. Let us assume that the system input-output 

relation is given in the form  

 
b

y u
a

=  (25) 

One can now replace equation (25) by the following two  

 
1

,
p p
x u y bx

a
= =  (26) 

And choose the following state variables for describing the system in the state space 

 

1

2 1

( 1)

1

p

p

n

p n n

x x

x x x

x x x
−

−

=

= =

= =

& &

M

&

 (27) 

This leads to the well-known canonical controllable form realization 

 

[ ]

( 1) ( 2 )

( ) ( 1)

0 1 2 1

0 0 1 1 1 1

( 1)

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1

p p

p p

n n

p p

n n

p pn

p

p

n n

n

p

x x

x x

u

x x

x xa a a a

x

x

y b a b a b a u

x

− −

−

−

− −

−

= +

− − − −

= − − − +

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

& L

&& &L

M MM M M O M M

L

L

&

L
M

 (28) 

The corresponding realization is shown in figure 5a. 

The point is that the fictitious signal 
p
x can be used to determine the complete state (in the 

controllable canonical form realization) of the system by just deriving it n-1 times. Now 

suppose that z and w are polynomials such that 

 1za wb+ =  (29) 
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xp

-

1

a

r yb
1

z

m

w

xo
xp

 

(a) (b) 

 

xp

-

1

a

r yb
1

n

d
u

1

n

d
y

mxpmxo

 
(c) (d) 

Fig. 5. (a)  Controllable canonical form realization of 
b

a
. (b) Unfeasible observed-based state-

feedback scheme. (c) Towards a feasible observer-controller: part I. (d) Part II.  

In figure 5b we can see a way of thinking of a state-feedback controller. Through z and 
w we observe xp and by multiplying it by mwe achieve an arbitrary linear combination of 
xp and its derivatives, that is, a state feedback control law. Obviously, the scheme as such 
can not be implemented. But it is easy to make it realizable by introducing a nth-order 

polynomial (the so-called observer polynomial indeed) as in figure 5c, then zmd and 

wmd can be made of degree equal or less than n – see (Kailath, 1980) - without altering the 

state feedback gain, leading to 
y
n and 

u
n in figure 5d. So figure 5 summarises a procedure 

entirely based on the transfer function domain (but though at the level of polynomials) to 
implement a state-feedback control law. However, the scheme in figure 5d is not exactly the 
one we will work with.  

By introducing another nth-degree stable polynomial (
0
a ) figure 5c can be redrawn as in 

figure 6a.  
By doing this we are considering that our plant is the series connection of two systems, that 

is 
1 2

P PP= , where 0
1

a
P

a
= , 

2
0

b
P

a
= . So we are considering on purpose a non-minimal 

realization of the plant. The series connection system is not completely controllable but 
completely observable. Let denote by , , ,A B C D the corresponding realization matrices of 

P   in terms of the realization matrices of 
1
P (

1 1 1 1
, , ,A B C D ) and

2
P (

2 2 2 2
, , ,A B C D ) in 

controllable canonical form. Then we arrive at the non-minimal realization 

                                             

1 1

2 1 2 2 1

2 1 2 2 1

0A B
A B

P B C A B D
C D

D C C D D

= =

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

&                                            (30) 
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where the state vector for P is of the form [ ]1 2

T

x x x= , being 
1
x and 

2
x the state vectors 

of 
1
P and

2
P , respectively, in controllable canonical form. In more detail, the state matrix 

A of P  is given by  

 

2

0 1 1

0 1 2 10 1 1

2

0 1 2 1

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0

0 0 0 1 0 0 0 0

0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0

0 0 0 0 0 0 0 1

K

n

K K KK K K nn
n K

a a a a

A

p a p a p a p p p pp a

−

−−
−

− − − −

− − − − − − −−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

L L

L L

M M M O M M O M

L L

L L

L L

L L

M M M O M M M M O

L L

L L

 (31) 

 

(a) 
 

(b) 

 
(c) 

Fig. 6. (a)  Non-realizable Observer-Controller configuration. (b) Realizable Observer-
Controller configuration. (c) Realizable observer-controller put in the form of a standard 
observed state feedback (i.e., figure 5d). 

Now it is straightforward to see that 

 
1 1

2

0
'

0

A
A TAT

A

−= =
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (32) 
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where 

 
1

0 0
,   

nxn nxn nxn nxn

nxn nxn nxn nxn

I I
T T

I I I I

−= =
−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 (33) 

By using this similarity state transformation the new realization matrices are given by 

 1

2

1

1

2

0

0
0' , ' , ' , '

0
1

0

T

nxn

nxn

nx

n

n

c

A
A B C c D D

A

c

= = = =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

M M

M

 (34) 

where 0 1...2
i
c i n≠ ∀ = .From (34) it is evident that the controllable states are the n first 

states, which are obtainable through 
p
x and its n-1 succesive derivatives. Besides, it is easy 

to see that the similarity transformation employed does not alter the first n state 

components. The approach taken in this work consists of observing the 2n  states of the 
non-minimal realization (34) and consider just the n first states corresponding to the 

controllable part (this partial vector state of dimension n is equal to the state of ( )

( )

b s

a s
in 

controllable canonical form) for state feedback. By doing this, see figure 6b, we are 

introducing n extra degrees of freedom (the n roots of the Hurwitz polynomial
K
p ) into the 

design. In figures 6b and 6c we have returned to the terminology of section 2.1 when we 

introduced the coprime factorizations over 
∞

RH , with respect to figure 6a the following 

identities hold: 
0K

p a= ,
L
p d= . The term Observer-Controller is used in this work to make 

reference to an observed-based state feedback control system designed following this 
approach. The method presented in section 4 uses the extra freedom which arises from 

using a non-minimal order observer (see figure 6c, where the observer polynomial 
K L
p p has 

degree 2n , being n  the order of the plant) for trying to meet more demanding objecties. 

3.
∞
H -norm optimization based robust control systems design 

In this section we review the general method of formulating control problems introduced by 
(Doyle, 1983). Within this framework, we recall the general method for representing 
uncertainty for multivariable systems and determine the condition for robust stability in the 
presence of unstructured additive uncertainty. The presentation is fairly standard, we refer 
the reader to (Skogestad S., 1997) for a more detailed treatment. 

3.1 General control problem formulation 

Within the general control configuration (Doyle, 1983) of figure 9, G is referred to as the 

generalized plant and K is the generalized controller. Four types of external variables are 
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dealt with: exogenous inputs,w , i.e., commands, disturbances and noise; exogenous 

outputs, z , e.g., error signals to be minimized; controller inputs, v , e.g., commands, 

measured plant outputs, measured disturbances; and control signals, u. 
 

z

v

w

u

K

G

 

Fig. 7. Generalized plant and controller. 

The controller design problem is divided into the analysis and the synthesis phases. The 

controller K is synthesized such that some measure, mathematically a norm, of the transfer 

function from w to z is minimized, e.g. the 
∞
H  norm.  

Definition 3 (
∞
H -norm) The 

∞
H -norm of a proper stable system P  is given by 

 ( )( ) sup ( )P s P j
ω
σ ω

∞
=&  (35) 

where ( )Pσ denotes de largest singular value of the matrix P . 

In words, the
∞
H -norm of a dynamic system is the maximum amplification the system can 

make to the energy of the input signal in any direction. In the SISO case it is equal to the 

maximum value of the system’s frequency response magnitude (the magnitude peak in the 

Bode diagram). For the general MIMO case it is equal to the system’s largest singular value 

over all the frequencies. From this point on with every mention to a norm we would 

implicitly be considering the above defined 
∞
H  norm, and no further remarks will be made.  

The controller design amounts to find a K that minimizes the closed-loop norm from w to 

z  in figure 7. For the analysis phase the designer has to make the actual system meet the 

form of a generalized control problem according to figure 7. Standard software packages 

exist that solve numerically the synthesis problem once the problem has been put in the 

generalized form. In order to get meaningful controller synthesis problems, frequency 

weights on the exogenous inputsw and outputs z are incorporated to perform the 

corresponding optimizations over specific frequency ranges. 

Once the stabilizing controller K is synthesized, it rests to analyse the closed-loop 

performance that it provides. In this phase, the controller for the configuration in figure 9 is 

incorporated into the generalized plant G to form the systemN , as shown in figure 11 

 

�
zw

 

Fig. 8. Relation between w and z in the generalized control problem. 

It is relatively straightforward to show that the expression for N is given by 
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1

11 12 22 21
(1 ) ( , )

l
G G K G K G G K

−= + − =&N F  (36) 

where 
l
F  denotes the lower Linear Fractional Transformation (LFT) of G and K . In order 

to obtain a good design for K , a precise knowledge of the plant is required. The dynamics 
of interest are modeled but this model may be inaccurate (this is usually the case indeed). To 

deal with this problem the real plant P is assumed to be unknown but belonging to a class 

of models built around a nominal model
o
P . This set of models is characterized by a matrix 

Δ , which can be either a full matrix (unstructured uncertainty) or a block diagonal matrix 
(structured uncertainty), that includes all possible perturbations representing uncertainty to 

the system. Weighting matrices 
1
W and 

2
W are usually employed to express the uncertainty 

in terms of normalized perturbations in such a way that 1
∞

Δ ≤ . The general control 

configuration in figure 9 may be extended to include model uncertainty as it is shown in 
figure 9 

�
z

1

z
2

v

w
1

w
2

u

K

G

 

Fig. 9. Generalized control problem configuration. 

The block diagram in figure 9 is used to synthesize a controller K . To transform it for 

analysis, the lower loop around G is closed by the controller K and it is incorporated into 

the generalized plantG to form the system N as it is shown in figure 10. The same lower 

LFT is obtained as if no uncertainty was considered. 
 

D
z

1

z
2

w
1

w
2 �

 

Fig. 10. Generalized block diagram for analysis in the face of uncertainty. 

To evaluate the relation from [ ]
1 2

T

w w w= to 
1 2

[ ]
T

z z z= for a given controller K in the 

uncertain system, the upper loop around N is closed with the perturbation matrix Δ . This 

results in the following upper LFT: 

 
1

22 21 11 12
( , ) (1 )u

−Δ = + Δ − Δ&F N N N N N  (37) 

and so ( , )
u

z w= ΔF N . To represent any control problem with uncertainty by the general 

control configuration it is necessary to represent each source of uncertainty by a single 
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perturbation block Δ , normalized such that 1
∞

Δ ≤ . We will assume in this work that we 

can collect all the sources of uncertainties into a single full (unstructured) matrix Δ . 

3.2 Uncertainty and robustness   
As already commented, an exact knowledge of the plant is never possible. Therefore, it is 
often assumed that the real plant, denoted by P , is unknown but belonging to a set of class 

models characterized somehow by Δ  and with centre
o
P .  

Definition 4 (Nominal Stability) The closed-loop system of figure 9 has Nominal Stability 

(NS) if the controller K internally stabilizes the nominal model 
o
P  ( 0Δ = ), i.e., the four 

transfer matrices  
11 12 21 22

, , ,N N N N in the closed-loop transfer matrix N shown in figure 

13 are stable.  
Definition 5 (Nominal Performance) The closed-loop system of figure 12 has Nominal 

Performance (NP) if the performance objectives are satisfied for the nominal model 
o
P , i.e., 

22
1

∞
<N in figure 10 assuming 0Δ = . 

Definition 6 (Robust Stability) The closed-loop system has Robust Stability (RS) if the 

controller K  internally stabilizes the closed-loop system in figure 9 ( ( , )
u

ΔF N ) for every 

Δ such that 1
∞

Δ ≤ . 

We will just consider in this work additive uncertainty, which mathematically is expressed 
as 

 { }1:
A o

P P P W= = + ΔP  (38) 

Being 
A
w a scalar frequency weight and 1

∞
Δ ≤ . Now that we know how to describe the 

set of plants which our real plant is supposed to lie in the next issue is to answer the 
question of when a controller stabilizes all the plants belonging to this set.  
Theorem 5 (Robust Stability for unstructured uncertainty) Let us assume that we have 
posed our system in the form illustrated by figure 9. The overall system is robustly stable 
(see definition 6) iff 

 11 1
∞
≤N  (39) 

where N has been defined in (36), see figure 10.   
Robust stability conditions for the different uncertainty representations can be derived by 
posing the corresponding feedback loops as in figure 9 and then applying theorem 5, also 
known as the small gain theorem. See (Morari and Zafirou, 1989) for details. 

4. The design for the proposed robust 2-DOF Observer-Controller   

In this section a methodology for designing 2-DOF controllers is provided. The design is 
based on the Observer-Controller configuration described in section 2.2. In order to have a 

2-DOF scheme a prefilter block (
2
K ) has been added, leading to the general scheme shown 

in figure 11 
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Fig. 11. The proposed 2-DOF control configuration. 

The controller blocks 
1

, ,
r r
X Y K which implicitly fix the Youla parameter 

y
Q of theorem 5 

will be in charge of providing robust stability and good output disturbance rejection. On the 

other hand, the prefilter 
2
K (the Youla parameter 

r
Q  of theorem 5) has to cope with the 

tracking properties of the system by solving a model matching problem with respect to a 
specified reference model which describes the desired closed-loop behaviour for the 
resulting controlled system.  

4.1 Step I: Design of the Observer-Controller part through direct search optimization   
In section 2.2 we characterized the Observer-Controller configuration in terms of the 

polynomials ,
K L
p p andm . Let us assume without loss of generality that additive output 

uncertainty (38) is considered. In this first step of the design the objective will be to find 

convenient , ,
K L
p p m , defining entirely 

1
, ,
r r
X Y K in figure 12. This search will be 

performed in order to provide robust stability with the best possible output disturbance 
rejection. 
 

 

Fig. 12. Observer-Controller part with additive uncertainty. 

More specifically, for the scheme in figure 12 the following relations hold  
 

                                            
( )
( )( )'

1

'1 1

o

p

r r r r

r r rr

u

y

M RM Y M R d

W N R rN RM Y
=

−

− −
⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

                         (40) 
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where all the terms have been defined in section 2.2. It can be proved by applying theorem 5 
to figure 12 (once put in the generalized controller configuration of figure 9) that robust 
stability of the system in figure 12 amounts to satisfy the following inequality 

 ' 1
ou dT ∞

≤  (41) 

The design for the Observer-Controller part reduces finally to solving the following 

optimization problem 

 
( )( )

( )( )
, ,

1

min 1 1

1 1

K Lp p m
p r r r

r r r

W N RM Y

subject to W M RM Y

∞

∞

− −

− ≤
 (42) 

Direct search techniques - see (Powell, M., 1998) - are suggested for solving the problem (42). 

Basically they consist of a method for solving optimization problems that does not require 

any information about the gradient of the objective function. Unlike more traditional 

optimization methods that use information about the gradient or higher derivatives to 

search for an optimal point, a direct search algorithm searches a set of points around the 

current point, looking for one where the value of the objective function is lower than the 

value at the current point. At each step, the algorithm searches a set of points, called a mesh, 

around the current point—the point computed at the previous step of the algorithm. The 

mesh is formed by adding the current point to a scalar multiple of a set of vectors called a 

pattern. If the pattern search algorithm finds a point in the mesh that improves the objective 

function at the current point, the new point becomes the current point at the next step of the 

algorithm. In (Henrion, D., 2006) a recent application of direct search techniques for solving 

a specific control problem can be consulted. 

4.2 Step II: Design of the prefilter controller
2
K    

In this section we tackle the second step of our design. This step is aimed at designing a 

prefilter controller for meeting tracking specifications given in terms of a reference model. In 

order to achieve this goal a  model matching problem is posed as in figure 13 
 

 

Fig. 13. Model-matching problem arrangement for the design of 
2
K . 
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where 
ref
T  is the specified reference model for the closed-loop dynamics. The idea is to 

make use of the general control framework introduced in section 3 and design 
2
K  so as to 

minimize the relation from r to e  in an 
∞
H sense. In doing so, we also want to have certain 

control over the amount of control effort employed to make the close loop resemble the 
model reference. The parameter awill precisely play the role of enabling one to arrive at a 
compromise between the tracking quality and the amount of energy demanded by the 
controller, accommodating into the design this practical consideration. 

Note that in the nominal case, i.e., 
o

P P= , the prefilter controller 
2
K sees just 

r
N R . 

Therefore, the relation from the reference to the output reads as 

 
2ry N RK r=  (43) 

It should be noted that the 
r
N and R have already been fixed as a result of applying the first 

step of the design. To include different and independent dynamics for the step response, we 

have to take advantage of the second degree of freedom that 
2
K provides. From the overall 

scheme in figure 11 we can compute the transfer matrix function that relates the inputs 

[ ]T
o
d r , i.e., the disturbance 

o
d and the command signal r , with the outputs [ ]'

T

u e , 

i.e., the weighted control signal 'u  and the weighted model matching error e . 

 
( ) ( )

( ) ( )
1 1 2

2

2

' 1 ( ) 1r r r r r r r o

r r r r ref

W W Mu d

Ne r

M X RN Y RM Y K

X RN Y N RK T

−
=

− + −

+ −
⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

a

a
 (44) 

The 
∞
H -norm of the complete transfer matrix function (44) is minimized to find 

2
K without 

modifying neither the robust stability margins nor the disturbance rejection properties 
provided by the Observer Controller in the first step of the design. The 2-DOF design 
problem shown in figure 13 can be easily cast into the general control configuration seen in 
section 3. Comparing figures 12 and 13 with figure 9 we make the following pairings 

1 o
w d= , 

2
w r= , 

1
'z u= ,

2
'z e= , v = b , u u= and

2
K K= . The augmented plant G and 

the controller 
2
K are related by the following lower LFT: 

 
1

2 11 12 2 22 2 21
( , ) (1 )
l
G K G G K G K G

−= + −&F  (45) 

The corresponding partitioned generalized plant G is: 

                                  

( )
( )

1 1

2

11 12

21 22

'

'

'

'

1 ( ) 0

0 0

r r r r r

r r r r rref

o

o

u d
G G

e r
G G

r

d

r

r

W M X RN Y W M R

N X RN Y T N R

=

=

− − +

+ −

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

b

a a

a

                   (46) 
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Remark. The reference signal rmust be scaled by a constant 
r

W to make the closed-loop 

transfer function from r to the controlled output y match the desired reference model 
ref
T  

exactly at steady-state. This is not guaranteed by the optimization which is aimed at 

minimizing the 
∞
H -norm of the error. The required scaling is given by 

 ( ) 1

2
(0) (0) (0) (0)

r r ref
W K N R T

−
=&  (47) 

Therefore, the resulting reference controller is
2 r
K W . 

5. Illustrative example  

In this section we apply the methodology presented in section 4 for designing a 2-DOF 
controller according to figure 11 for the following nominal plant  

 
5( 1.3)

( 1)( 2)
o

s
P

s s

+
=

+ +
 (48) 

The uncertainty in the model is parameterised using an additive uncertainty description as 
in (38) with  

 
1

3( 1)

( 20)

s
W

s

+
=

+
 (49) 

Now we initialize the optimization problem (42) with the values 

[ ] [ ] [ ]10 10 , 20 20 , 1 2
T T T

Ko Lo o
p p m= − − = − − = , where 

0K
p (

0L
p ) contains the initial 

roots of the polynomials 
K
p  (

L
p ) and 

o
m the initial coefficients for the polynomialm . 

For this example we have used a non-constrained direct search optimization solver and we 
have defined as the objective function the same that appears in the problem (42) plus a 
penalty that acts when the robust stability restriction is not satisfied. In order to have nearly 

perfect output disturbance rejection in steady state the following weight for the 
oyd

T relation 

has been used 

 
1

0.01
p

W
s

=
+

 (50) 

this forces the direct search algorithm to provide small values for the 
oyd

T magnitude 

response at dc.  The optimization procedure results finally in the following optimal controller 
blocks for the feedback part of the design 
 

2 21

2

2

2.2710  + 401957.19 112500

35.67 245 35.67

0 0.0

24

5355  + 0.323
,   

5 24.53 148
,

.2
  

r r
X Y K

s s s s

s s s s s s
= =

+ −

+ + + + + +
=        (51) 
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or in terms of , ,
K L
p p m : 

 [ ] [ ] [ ]-10.7774 -13.7519 , -9.2857 -26.3793 , 0.0535 0.3230
T T T

K L
p p m= = =  (52) 

 

 
 

Fig. 14. Top: magnitude response of 
oyd

T . Bottom: magnitude response of 
1 oud
WT satisfying 

the robust stability condition. 

In figure 14 the finally resulting 
oyd

T (output disturbance rejection) and 
1 oud
WT magnitude 

responses are shown, providing the former specially good disturbance rejection at steady 

state and being the 
∞
H -norm of the latter less than one and thus ensuring the robust 

stability specification. 
So far we have obtained the final design for the Observer-Controller part ensuring robust 

stability and the best achievable output disturbance rejection in a 
∞
H sense. We turn now to 

the design of the prefilter controller 
2
K . 

Let us assume that we are given the desired closed-loop dynamics in terms of the following 
reference model 

 
( )2

49

7
ref
T

s
=

+
 (53) 

Such reference model (53) provides second order responses with time constant 1/7 seconds.  
The second step of the design explained in section 4 results in the prefilter block 

 

2

2

3

3 2

0.006051 11.65 106.8 181.7

28.65 184.8 508.3
K

s s s

s s s

− + + +

+ + +
=  (54) 
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This prefilter block has been achieved using a=6, see figure 17.  
In figure 15 it is shown that the value a=6 provides a tight model matching with the 
minimum possible control action. Larger values of the aparameter do not improve 
significantly the model matching and cause the control action to acquire higher values. 
 

 
Fig. 15. From bottom to top (in solid), magnitude responses of 

ur
T  (top figure) and 

yr
T (bottom figure) for a=1,3,6. In dashed it is shown the response of the target model 

ref
T . 

 

 

Fig. 16. Bode diagram for the original 11th order prefilter 
2
K (dashed) and the 3rd order 

prefilter 
2
K (solid) finally obtained by applying order reduction techniques. 

The use of the 
∞
H  optimization techniques traditionally results in very high order 

controllers. In this case, the resulting 
2
K is of order eleven. However, standard order 
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reduction techniques can be applied in order to reduce these orders. For this example, a 

model reduction based on a balanced realization and the hankel singular values – see 

(Skogestad S., 1997) - has been performed yielding finally a third order 
2
K  without 

sacrificing any significant performance, see figure 16. 

To summarize the carried out design, in figure 17 we show the closed-loop final response to 

a step command set-point change applied at t=0 seconds and a step output disturbance 

applied at t=3 seconds. 
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Fig. 17. Time response of the reference model 
ref
T (dotted), nominal controlled system (solid) 

and uncertain ( 0.25Δ = in (38)) controlled system (dashed).  It is also shown the response 
of the nominal controlled system without making use of the prefilter controller (x-marked). 

6. Conclusion 

A new 2-DOF control configuration based on a right coprime factorization of the model of 

the plant has been presented. The approach has been introduced as an alternative to the 

commonly encountered strategy of setting the two controllers arbitrarily, with internal 

stability the only restriction, and parameterizing the controller in terms of the Youla 

parameters. 

An non-minimal-observer-based state feedback control scheme has been designed first to 

guarantee some levels of robust stability and output disturbance rejection by solving a 

constrained 
∞
H optimization problem for the poles of the right coprime factors 

, , ,
r r r r
X Y N M and the polynomial m . After that, a prefilter controller to adapt the reference 

command and improve the tracking properties has been designed using the generalized 

control framework introduced in section 3.  
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