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Chapter

Arsenic Speciation Techniques in 
Soil Water and Plant: An Overview
Mohammed Zia Uddin Kamal and Md. Yunus Miah

Abstract

There are more than 100 different arsenic with different characteristics in the 
soil-water-plant ecosystem. The identification and quantification of individual 
arsenic species is essential for understanding the distribution, environmental fate 
and behavior, metabolism and toxicity of arsenic. Due to the hazardous nature 
of arsenic, people have a high interest in the measurement of arsenic species. The 
reaction of the formation of arsenic speciation in the soil-water-plant environment 
is briefly studied. There is little information on methods used to quantify arsenic 
forms and species in contaminated soil, water and plant. The purpose of this article 
is to understand the available sample pretreatment, extraction, separation, detec-
tion and method validation techniques for arsenic speciation analysis of arsenic 
species in soil, water and plant. The performances of various sample preparation 
and extraction processes, as well as effective separation techniques, that contribute 
greatly to excellent sensitivity and selectivity in arsenic speciation when coupling 
with suitable detection mode, and method validity are discussed. The outlines of 
arsenic speciation techniques are discussed in view of the importance to the com-
pleteness and accuracy of analytical data in the soil-water-plant samples. To develop 
cheap, fast, sensitive, and reproducible techniques with low detection limits, still 
needed to confine research on arsenic speciation present in environmental matrices.

Keywords: Arsenic speciation, extraction, separation, detection, techniques, soil 
water and plant

1. Introduction

Arsenic (As) is a geogenic toxic metalloid found ubiquitously in environmental 
systems such as lithosphere (earth crusts, soil, rock, and sediment), hydrosphere 
(surface water, aquifers, deep wells, and oceans), atmosphere and biosphere (food 
chain and ecosystems) [1]. Arsenic is considered as the 12th most abundant ele-
ments in the earth’s crust. Elevated arsenic having been introduced in the ecosystem 
either by natural routes involve in weathering and other biogeochemical processes 
or via anthropogenic activities, including mining, and smelting, excessive agricul-
tural utilization of As-based fertilizers and pesticides and irrigation with As-laden 
groundwater [2–4]. This problem becomes serious concern because once arsenic is 
released in the soil and water resources, it is bioaccumulated by the terrestrial and 
aquatic biota, and subsequently enters in the human or animal food chain [5, 6]. 
In highly arsenic contaminated (≥0.01 mg L−1) area, the migration of arsenic from 
soil to water and plant is a serious problem, becoming a major threat to sustain-
able agriculture practices and food security [7, 8]. Empirical data shows that the 
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concentration of arsenic in contaminated soils lies between 10 mg kg−1 and as high 
as 30,000 mg/kg [9]. In addition, the reported concentrations of arsenic in all natu-
ral waters is between <0.5 μg L−1 and more than 5000 μg L−1, although maximum 
permissible contaminant total As limits in drinking water by WHO is 10 μg L−1 
[1, 10]. Moreover, considering toxicity, the Joint Food and Agriculture Organization 
and the World Health Organization (FAO/ WHO) Expert Committee on Food 
Additives proposed that the maximum inorganic arsenic content in food such as 
polished rice is 0.2 mg kg−1 [11–13]. Thus, exposure to arsenic (As) in soil-water-
plant becomes global public health and the environment concern due to the wide 
distribution in ecosystem and its close association with numerous adverse effects.

There are more than 100 different arsenic compounds in the soil-water-plant 
ecosystem [14, 15]. It is well known that the toxicity, bioavailability, physiological 
and metabolic processes and mobility of arsenic vary greatly depending on the 
chemical species and oxidative states rather than its total content [16, 17]. Arsenic 
(As) speciation analysis may specify not only the determination of total As contents 
but also considering its specific ionic forms in the aqueous solution and the sequen-
tial extracted As related to various mineral phases [18]. According to the IUPAC 
recommendations, “speciation of an element” is defined as “the distribution of an 
element amongst defined chemical species in a system” rather than fractionation. 
While speciation analysis is defined as “analytical activity of measuring the quanti-
ties of one or more individual chemical species in a sample” [19].

Arsenic exists multiple oxidation states (+III, +V, 0, –III) and various inorganic 
and organic chemical species. In environmental assessment, it is far from enough to 
know the total arsenic content in actual samples, because the toxicity of As ele-
ment is predestined by distinct arsenical species [20]. Generally speaking, trivalent 
arsenic compounds are usually more toxic than pentavalent arsenic compounds [4] 
and inorganic species are more toxic than the organic ones. Again, trivalent organic 
arsenicals can be more toxic than trivalent inorganic arsenicals [21]. The United 
States Environmental Protection Agency (USEPA) priority pollutants list represents 
inorganic As is the first category of toxins [22], classified as Group I carcinogens 
based on human epidemiological data. In addition, the organic species toxicity usu-
ally decreases with the increase of methylation. For example, monomethylarsonic 
acid (MMA) and dimethylarsinic acid (DMA) are less toxic, arsenobetaine (AsB), 
arsenocholine (AsC) and other arsenosugars are even considered non- toxic [21]. 
However, in certain environments, such as in aquatic biomass, AsB can be con-
verted into toxic inorganic arsenicals and enter the food chain [23, 24]. Depending 
on the source, metals or metalloids may enter the environment, where they may 
be transformed into another compound. Therefore, As speciation is essential 
for understanding its distribution, transformation in the environment, toxicity, 
metabolism, bioavailability and health effects in the natural system [15].

There is a huge difference between the toxicity and distribution of the arsenic 
species observed in the environment, which heights the importance of detecting 
and quantifying a single compound. Recently, various techniques have been devel-
oped to figure out arsenic species in environmental and biological samples, includ-
ing soil, water and plants. The establishment of the new arsenic speciation analysis 
program not only improves our understanding of arsenic biogeochemistry, toxicity 
and metabolism but also provides a lot of information about exposure biomark-
ers and arsenic cycling in the natural environment. However, it is still a challenge 
to completely isolate the target arsenic compound from background interference 
[25]. Therefore, a quick and simple method is needed to analyze the arsenic spe-
cies in different matrices. In addition, optimizing the extraction of target arsenic 
is also crucial for accurate quantification [26]. Determining the exact species of 
arsenic in biological and environmental samples helps to more accurately assess the 
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environmental impact and health risks caused by arsenic exposure. Appropriate 
sample pretreatment techniques are necessary to reduce the influence of matrix, to 
enrich the target species and/or separation of As species for accurate identification. 
The newly developed As speciation protocols must achieve suitable detection mode, 
excellent selectivity and sensitivity in various environmental and biological species. 
Various non-chromatographic and chromatographic methods are involved in the 
selective separation of the arsenic species.

To date, several study on overall arsenic speciation analysis have been done  
[15, 27, 28]. Nevertheless, there is still a big knowledge gap in the speciation of arse-
nic. This overview includes arsenic speciation analysis, species detection systems, 
key extraction/separation techniques and mechanisms used in the accuracy assess-
ment of speciation methods, and focuses on important strategies for specific arsenic 
speciation. This study will provide sentinels on comprehensively discuss in the latest 
developments in arsenic speciation analysis and challenges for further research.

2. Reactions of arsenic speciation on environment

Arsenic is introduced into the environment either naturally or anthropogeni-
cally; once released, it cannot be degraded or destroyed. The environmental trans-
formation of arsenic depends on the availability of arsenic in the geological source, 
as well as their oxidation state, speciation and other environmental factors [29, 30]. 
There are different forms of arsenic containing mineral in the Earth’s crust. For 
example, 60% are in arsenate form, 20% are in the form of sulfides and sulfonates, 
and the remaining 20% are in the form of arsenites, arsenides, silicates, oxides, and 
elemental As [31]. In the soil and water environments, As can exist in four different 
oxidation states (As3+, As5+, As0 and As3−), in inorganic as well as in organic forms 
[4]. The most widespread arsenic species detected in the environment and biologi-
cal systems are shown in Table 1.

In natural environment, inorganic arsenic contains two oxygen anions, arsenite 
As (III) and arsenate As (V) but there are many organic arsenic compounds includ-
ing monomethyl arsonic acid (MMA) and dimethyl arsinic acid (DMA) is the most 
common. According to intake and mobility, the toxicity of arsenic compounds 
decreases in the following sequential order: arsines > inorganic arsenites > organic 
trivalent compounds (arsenoxides), inorganic arsenates > organic pentavalent 
compounds > arsonium compounds > elemental arsenic. Arsenobetaine and 
arsenocholine are considered nontoxic [4]. At the same time, arsenic species exhibit 
various reaction behaviors and metabolic transformations in soil-water and plant 
ecosystems. For arsenic risk assessment of environmental samples and detection of 
appropriate speciation analysis, it is necessary to understand the main forms and 
metabolic transformations of arsenic compounds.

2.1 Arsenic speciation in soil

The various species or chemical forms of As in soil include- free ionic forms, 
precipitated as solids, adsorbed on soil organic or inorganic constituents, exchange-
able, and structural constituent of primary and secondary minerals [32, 33]. There 
are both inorganic and organic forms (species) of arsenic in the soil. The most 
common inorganic species are arsenate (AsV) and arsenite (AsIII), while the most 
common organic species are monomethylarsonic acid (MMA) and dimethylarsinic 
acid (DMA). The order of toxicity of arsenic species is AsIII > AsV > MMA > DMA 
[34]. In general, minor amount of naturally occurring arsenic in soil exists as a form 
of amorphous iron and aluminum oxides.
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Arsenic can be transformed in the soils through various mechanisms, such as 
oxidation, reduction, adsorption, dissolution, precipitation, and volatilization. The 
inorganic species of As, As(III) and As(V), are present in different forms (e.g., fully 
protonated As acids or arsenous acid) [35]. The main and thermodynamically stable 
forms of As(V/III) in soil may include H2AsO4

−, HAsO4
2− and H3AsO3. The existence 

of different As forms in soil largely depends on the texture, organic matter, pH 
value and redox potential of the surrounding environment. Arsenic exists in aerobic 
soil (oxidized conditions) in the form of arsenate (AsV) and is rapidly adsorbed on 
clay minerals and Fe/Mn oxides/hydroxides [2]. However, in reducing soil environ-
ment such as paddy fields, the arsenite (AsIII) form of arsenic dominates and its 

Name Abbreviation Chemical structure

Inorganic form

Arsenite (Arsenous acid) As (III) H3AsO3, H2AsO3−, HAsO3
2−, 

AsO3
3−

Arsenate (arsenic acid) As (V) H3AsO4, H2AsO4
−, HAsO4

2−, 
AsO4

3−

Organic form

Monomethylarsenic acid MMA CH3AsO(OH)2

Monomethylarsonic acid MMA(V) CH3AsO(OH)2

Monomethylarsonous acid MMA(III) CH3As(OH)2

Dimethylarsinic acid DMA (V) (CH3)2AsO(OH)

Dimethylarsinous acid DMA (III) (CH3)2AsOH

Dimethylarsinoyl ethanol DMAE (CH3)2AsOCH2 CH2OH

Trimethylarsine oxide TMAO (CH3)3AsO

Trimethylarsoniopropionate TMAP (CH3)3As+CH2CH2COO−

Tetramethylarsonium ion TETRA, TMA (CH3)4As+

Arsenobetaine AsB (CH3)3As+CH2COOH

Arsenobetaine 2 AsB-2 (CH3)3As+CH2CH2COO−

Arsenocholine AsC (CH3)3As+CH2CH2OH

Trimethylarsine TMA (III) (CH3)3As

Arsines AsH3, MeAsH2, 
Me2AsH

(CH3)xAsH3 − x (x = 0–3)

Ethylmethylarsines EtxAsMe3 − x (CH3CH2)xAs (CH3)3 − x 
(x = 0–3)

Dimethylarsinyolacetic acid DMAA (CH3)2AsOCH2 COOH

Phenylarsine oxide PAO C6H5AsO

Phenylarsonic acid PAA C6H5AsO(OH)2

Arsenosugars C7H14AsO3CH2CH(OH)CH2R

Arsenosugar 1 (glycerol sugar) — R = OH

Arsenosugar 2 (phosphate sugar) — R = OP(O)(O−)OCH2CH(OH)
CH2OH

Arsenosugar 3 (sulphonate sugar) — R = SO3
−

Arsenosugar 4 (sulphate sugar) — R = OSO3
−

Table 1. 
Arsenic species commonly identified in the environment and biological systems.
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solubility, mobility, and toxicity are about 60 times that of As(V) [2]. In addition, 
under anaerobic conditions in the presence of sulfides, arsenic may precipitate in 
the form of arsenic sulfide and release excess arsenic into the environment [36]. 
Anaerobic bacteria degrade into less toxic volatile forms, such as dimethyl arsenic 
acid (DMAA) and monomethyl arsenic acid (MMAA) [37]. The oxidation and 
reduction of arsenic species takes place biologically and chemically in soil and water 
[38]. In addition, higher concentrations of arsenic were observed in alluvial soils 
and organic soils, while lower concentrations of arsenic were found in sandy soils 
[39]. Clay played a leading role in arsenic fixation. Arsenate is mainly adsorbed 
on clay particles in soils with neutral pH. Soil pH plays a major role in the types 
of arsenic compounds present in the soil. Under acidic conditions, arsenic tends 
to form compounds with aluminum and iron (AlAsO4, FeAsO4), whereas under 
alkaline conditions (limestone soils) Under acidic conditions, arsenic tends to form 
compounds with aluminum and iron.

Arsenate exists in the form of oxygen anions at neutral pH, while arsenite has 
a neutral charge at pH 7.0. It leads to the formation of Ca3(AsO4)2, Mn3(AsO4)2, 
AlAsO4 and FeAsO4 [40]. However, when the pH value is higher than 8.5, as the pH 
value increases, the adsorption capacity of AsV decreases, while the case of AsIII is 
the opposite. But at pH around 4, the adsorption for AsV on FeOOH is maximum, 
whereas for AsIII the optimum pH is 7–8.5 [41]. Arsenic is more soluble under high 
or low pH values. In reducing environment, as arsenate is reduced to arsenite, it 
binds less strongly to the hydroxide solids, which increase the bioavailability of 
arsenic [42]. On the contrary, due to the larger arsenic sorption affinity, organic 
matter has formed organo-arsenic complex and reduced the solubility of arsenic in 
the soil [43]. Naturally, arsenic can be released into the soil environment through 
the hydrolysis and oxidation process of primary sulfide mineral (i.e arsenopyrite) 
and absorbed by ferric hydroxide. Meanwhile, the retention and mobilization of 
arsenic in soil is largely controlled by Ferric hydroxide. Such as iron oxides has 
stronger arsenic adsorption capacity than manganese oxides. Moreover, Phosphate 
plays significant role in absorption of arsenic from contaminant soil. Williams et al. 
[44] reported that in iron oxides dominated acidic soil, approximately 60% of the 
adsorbed pentavalent arsenic and 70% of the trivalent arsenic were displaced by 
H2PO4. Soil microbial activities can affect the adsorption/desorption, solubility, 
bioavailability, mobility and soil–plant transfer of arsenic by changing the chemical 
speciation of As in soil [45, 46]. Due to the action of microorganisms or the past use 
of methylated arsenic compounds, dimethyl sulfoxide, or sodium salts of MMA and 
DMA as pesticides, methylated As species, (i.e MMA and DMA) might be accumu-
late in soil [45]. Microorganisms in soil may interconvert As species AsV and AsIII 
and further transform into MMA and DMA.

2.2 Arsenic speciation in water

The presence of arsenic in water is either dissolved or in particulate form. 
Arsenic pollution in groundwater mainly occurs due to release of geothermal 
water, desorption and reductive dissolution of iron oxides and oxidation of sulfide 
minerals [37]. High levels of arsenic in groundwater have been observed in many 
countries, such as more than 3000 μg L−1 because As has been released geogeni-
cally either by oxidation of arsenopyrite, or by reductive dissolution of arsenic rich 
ferrous oxyhydroxides in reducing aquifer environment [47, 48]. The most common 
forms of arsenic in natural waters are arsenite and arsenate. However, the main 
species found in natural water are forms of inorganic arsenic, namely H2AsO4-, 
H3AsO3, HAsO4

− and As3O4
3−. The change in the arsenic solubility in sulfidic 

water promotes the formation of amorphous metal-sulfide complex thioaresenic 
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compounds [49]. Various species of aquatic micro and higher organisms plays 
important role on biomethylation process of arsenic, which reduces As5+ to soluble 
As3+ species [37]. Arsenate is the main form of arsenic in seawater. Dimethyl arsenic 
acid (DMMA) and methylarsenic acid (MMA) are also present in small amounts in 
seawater [50]. Moreover, the determination of arsenic in saline waters bear much 
importance due to gaining knowledge on because salinity induced inorganic arsenic 
specifically arsenite transformation to arsine gas [51].

2.3 Arsenic speciation in plants

Arsenic is not essential elements for plants development, although very small 
amounts of As in plants may have a positive effect on plant species. The concentration 
of As in plants is usually less than 1.0 mg kg−1 dry weight (DW) [52]. The mechanism 
by which plants absorb arsenic varies depending on the chemical form of arsenic.

2.3.1 Transformation of inorganic arsenic species in plants

Plants absorb inorganic arsenic through two mechanisms. The first mechanism 
involves the use of a high-affinity PO4 transporter through phosphate (PO4) 
transport pathway [53, 54] which uptake As (V) from soil solution and subse-
quently to aerial parts of the plants [55]. While, the second route for plant roots to 
absorb arsenic is through the aquaporin channels, which uptake As (III) (silicic acid 
analog) and methylated As species (MMA and DMA) [56]. In rice root cells, As (III) 
uses generally Si transporter owing to its similarities with silicic acid. Once in plant 
cell, As (V) is reduced to As (III) with the help of As reductase, ACR2 [57]. The 
detoxification of As (III) is achieved by forming complexes with thiol- rich peptides 
[58]. The form of As in the phloem is considered to be very crucial for the redistri-
bution of As in various tissues in the plant [59].

2.3.2 Organic arsenic species transformation in plant

The methylated arsenic species, such as MMA and DMA, contribute less to the 
total arsenic in the soil. The organic arsenic substances MMA and DMA have taken 
up by the intrinsic protein of Oncokin 26. Rabb et al. [60] showed that the absorp-
tion efficiency of inorganic As species (AsIII and AsV) in roots is much higher than 
that of methylated As species (DMA and MMA), but the translocation efficiency of 
inorganic species in plant stems is much lower than that of methylation As species. 
The decrease in the As complex formed with ligands (such as glutathione) in the 
root may be the reason for the better translocation of methylated As species [60]. In 
rice, As (III) is found to be the most abundant species, followed by DMA. As (V), 
MMA and two other unidentified As also have found in lower concentrations [61]. 
A speciation analysis revealed the As (V) as a predominant species in rice straw 
followed by As (III) and DMA [62]. Meanwhile, in rice grain, As (III) and DMA are 
the dominant species.

3.  Soil, water and plant sample preparation and extraction of arsenic 
species

3.1 Soil, water and plant sample preparation for arsenic speciation

Sample preparation and storage procedures are considered to be a key prerequi-
site for maintaining the concentration and chemical structure of the original species 
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in the sample during the analysis process to obtain accurate As speciation infor-
mation. Impractical As speciation data may arise due to losses during sampling, 
unrepresentative samples [63], contamination, mutual conversion between species, 
inefficient extraction of the analyte, and the possibility of precipitation and wall 
effects from the sample container [64]. To obtain reliable arsenic speciation data 
in soil, water and plant samples, two main strategies should be considered. First, 
determine appropriate species preservation practices to keep the chemical species 
of interest unchanged throughout the analysis process through avoiding changes in 
oxidation state, changes caused by microbial activity, and losses caused by volatil-
ization or adsorption. Secondly, the species can be quantitatively converted into 
appropriate derivatives for further separation, accumulation and quantification 
[65]. Microbial transformation of arsenical compounds in contaminated samples 
is observe through a change in valence (i.e.oxidation/reduction) or chemical form 
(i.e. solid, liquid and gas) and formed biomethylate arsenic and both volatile (e.g., 
methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) 
compounds [66]. To avoid degradation of arsenic speciation, biological samples 
should be kept in low temperature. To reduce analyte loss, drying in oven used for 
the stabilization of samples particularly freeze-drying [67].

To avoid arsenic speciation loss during sampling, the soil–plant-water should 
be collected in polyethylene flip-top bottle/plastic with lock and/or seal lead. 
Immediately after collection all of the samples should be kept in freezer until 
sample preparation for analysis. The soil samples were air-dried, gently crushed 
and sieved through a 2 mm sieve and used for analysis. Meanwhile the plant sample 
placed in a oven drier at 40°C until constant weight and then grind and sieve the 
sample and stored in brown glass bottles in a desiccator in order to avoid exposure 
to light and moisture until required for analysis. Sample preparation for solid 
samples generally may include procedures such as mincing, freeze drying, milling, 
grinding, homogenization, and sieving, followed by extraction. For achieving the 
best extraction efficiency and reproducibility of arsenic speciation in soil and plant 
sample, the tested sample must dried and homogenized before extraction. Because, 
particle size plays a crucial role in the extraction efficiency of As [68]. After sam-
pling the fresh plant sample, it should be kept in freezing (−80°C) to avoid species 
interchange. Moreover, dry and grind plant and soil sample can store at −20°C up to 
one year [69].

The most reliable method for preserving natural water samples is, therefore, 
acidification to pH 2, refrigeration and deoxygenation [70]. Preservation of natural 
water in polypropylene bottles in refrigerator arsenic species in water is stabile 
under neutral conditions for a period of 4 months [71]. To increases the stability 
of dissolved As redox species (As (III) and As(V)) of water sample, the samples 
to be filtered and stored in darkened polythene containers. For longer preserva-
tion, water samples are acidified with HCl [72], HNO3 [73], H2SO4 [74] and H3PO4 
[75], ascorbic acid [76] ethylene diamine tetraacetic acid [65]. Filtering the sample 
removes most of the colloidal material and microorganisms; acidification prevents 
oxidation and precipitation of Fe and Mn hydroxides and EDTA sequesters Fe and 
inhibits precipitation. Using 10 mM H3PO4 as a preserving agent combined with 
keeping samples at 6°C in dark, As species remain stable for 3 months, even with 
high concentrations of Fe and Mn.

3.2 Extraction procedures for arsenic speciation

The great challenge of As speciation, as it has been highlighted, is to maintain 
the original characteristics of species during extraction step. Extraction is the first 
step for speciation of target As species from their matrix (water, soil, sediment, 
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plant, biological tissue or fluid). Determining an appropriate sample preparation 
method that provides high extraction efficiency for the arsenic species of inter-
est and prevents inter-conversion between arsenic species can be challenging. 
To achieve maximum extraction competence of arsenic speciation from solid or 
liquid matrix, the extraction protocols must have three criteria’s, such as (і) the 
extracting solution must solubilize only the specific form, (іі) reduction of native 
As (V) to As (III) may not occur during the extraction, and (ііі) oxidation of 
native As (III) to As (V) should not occur [77]. Extraction procedures employ a 
range of approaches including solid–liquid extraction [78] liquid– liquid extrac-
tion, solid phase extraction (SPE) [79] and solid phase microextraction (SPME) 
[80]. Enhanced techniques such as soxhlet, [69] sonication, [81] pressurized 
liquid extraction (PLE), [82] microwave-assisted extraction (MWA) [83] and 
supercritical fluid extraction (SFE) [84] have also been utilized for the deter-
mination of As speciation in soil–plant-water sample. Soil-pant-water sample 
preparation and extraction methods applied for the arsenic speciation analysis are 
presented in Table 2.

3.2.1 Solvent extraction

The solvent extraction technique is often used to determine organic arsenic 
compounds, especially arsenic compounds in biological samples. The extraction of 
arsenic substances is usually achieved through mild extraction solvents (ie water, 
methanol, methanol–water solvent system) and/or rarely uses acetonitrile-water 
and sequential extraction [15, 103]. Methanol/water mixture 1/1 (v/v) is widely 
used for the quantification of water-soluble As compounds in environmental 
samples, followed by centrifugation and filtration [104], while methanol-
chloroform or hexane is used in non-polar species [15]. Moreover, extraction with 
water–methanol (1:1vv−1) had offered easy oxidation of As (III) in basic medium 
such as soil and the best efficiency was achieved after 20 min of extraction [105]. 
Extraction efficiency of arsenic species in soil–plant-water samples varied accord-
ing with the changing the ratio of methanol– water solvent. Nevertheless, the 
methanol:water extraction solvent ratio of 1:1 provides the best processing and 
extraction efficiency for the extraction of arsenic species from plant samples, 
while 1 M phosphoric acid is suitable for soil samples [15]. At the same time, 
Rahman et al., [98] noticed that addition of extracting agent NH4H2PO4 in edible 
part of spinach had shown similar extraction efficiency of As (III) and As (V) by 
water, 50% vv−1water/methanol solution on shaking and microwave techniques. 
However, As(III) was extracted twice as much by the protein extract, indicating 
that it is a good extractor. Zheng and Hintelmann [106] pointed out that methanol/
water mixture is an effective extractant for organic species, and its efficiency for 
inorganic species drops sharply. The solvent extraction reagent, tetramethylammo-
nium hydroxide (TMAH) in alkaline medium, is also useful for the determination 
of AB, DMA and inorganic arsenic form a wide variety of biological matrices. In 
addition, sequential extraction procedure using different solvents (i.e (NH4)2SO4, 
(NH)4H2PO4, NH4-oxalate buffer, KOH and hot water) can effectively extract 
organic and inorganic arsenic species, namely arsenous acid, arsenic acid, mono-
methylarsonic acid, dimethylarsinic acid, arsenobetaine, trimethylarsine oxide 
and glycerol-ribose in both soil and plant [107, 108]. Larios et al. [109] found that 
orthophosphoric acid followed by graphite block heating at 90°C for 60 min was 
provided the best conditions for As speciation in plants grown in contaminated 
environment. The applied extraction solvent led to an extraction efficiency of 80% 
for samples without species interconversion and recovery of 95% for leaves As 
speciation of Arsenic (V), As (III), DMA and MMA.
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Matrix Arsenic species Sample preparation/extraction Extraction solution Detection References

Soil AS total, ASIII, AS V Shaking/mixing 10 M HCl HGAAS; XRF [85]

Soil AS total, ASIII, AS V Shaking/mixing 10 mM phosphate HPLC [86]

Soil AS total, ASIII, AS V Micro wave heating + Shaking 1 M H3PO4 + 0.5 M ascorbic acid (C6H8O6) LC=UV- HG- AFS [87]

Soil ASIII, AS V, MMAV, DMA V Ultrasonic, shaking, Microwave 
heat

500 mM Phosphate solution HPLC-HG-AFS [88]

Soil ASIII, AS V Filtration. Shaking and water 
bath heat

[BMIM][PF6] IL-LLME-ETAAS [89]

Soil AS total Microwave heat HNO3 + HClO4+ H2SO4 HGAAS [90]

Soil AS total, ASIII, AS V Microwave heat 1 M H3PO4 + 0.1–1 M ascorbic acid LC–HG–AFS [91]

Soil ASIII, AS V Shaking/mixing 2.5 mM CaCl2 LC–HG–AFS [21]

Soil AS V Shaking/mixing 1 M HCl XRF [92]

Soil and plant 
(chickpea)

ASIII, AS V, MMAV, DMAV Shaking/mixing Buffer solution (1.5 mM NaH2PO4+ 
0.2 mM Na2EDTA + 3 mM NaNO3,+ 10 mM 
CH3COONa + 1% C2H5OH; pH 6.0)

ICP-MS [93]

Plant ASIII, AS V, MMAV, DMAV Shaking/mixing 0.3 M H3PO4 HPLC-ICP-MS [94]

Plant ASIII, AS V, MMAV, DMAV Shaking/mixing 1% HCOOH HPLC-ICP-MS- 
ESI-MS

[95]

Plant ASIII, AS V, MMAV, DMAV Sonication 2 mM NaH2PO4 + 0.2 mM Na2EDTA 
(pH 6.0)

HPLC-ICP-MS- 
ESI-MS.

[95]

Soil and plant ASIII, AS V, MMAV, DMAV, AsC Shaking/mixing + sonication CH3OH/H2O 1 + 1 v/v HPLC-ICP-MS [96]

Soil and plant ASIII, AS V, MMAV, DMAV, Shaking/mixing + sonication (a) CH3OH/H2O 1 + 1 v/v; (b) 0.1 M HCl HPLC, AAS and 
XANES

[97]

Plant ASIII, AS V, MW-heating 0.33 M sucrose, 50 mM MES, 5 mM EDTA, 
5 mM Lascorbate

HPLC-ICP-MS [98]

Plant Total As, ASIII, AS V, MW-heating Methanol–water (1: 1) /HNO3 HPLC-ICP-MS [99]
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Matrix Arsenic species Sample preparation/extraction Extraction solution Detection References

Plant ASIII, AS V, MMAV, DMAV, MW-heating 1% (v/v) HNO3 HPLC-ICP-MS [100]

Plant ASIII, AS V, MMAV, DMAV, MW-heating 0.01 mol/L TMAH ETAAS [101]

Surface/drinking 
water

ASIII, AS V, MMAV, DMAV Filtration EDTA HPLC-ICP-MS [102]

Sea water AsIII, AsV, MMA, DMA, AsB,
TMAO

Shaking/mixing + ulta-sonication 1% (v/v) HNO3 HPLC-ICP-MS [26]

Table 2. 
Several soil-water-plant sample preparation/extraction methods for determination of arsenic speciation.



11

Arsenic Speciation Techniques in Soil Water and Plant: An Overview
DOI: http://dx.doi.org/10.5772/intechopen.99273

3.2.2 Enzymetic hydrolysis

Biomolecular hydrolysis of complex matrix, enzymes are able to break down 
specific bonds of the substrate at neutral pH and room temperature, and they allow 
selective release of the analyte from the sample matrix without chemicalchanges. 
Enzymes can digest various matrix components, enzyme-assisted reactions usually 
require several hours of incubation. Microwave-assisted extraction (MAE) is used 
in combination with the enzyme extraction of pronase E and lipase to effectively 
extract AsB, As(III), DMA, MMA, and As(V) from seafood, rice, and plants 
[110, 111]. Viscozyme, was considered the most effective multi-enzyme mixture 
(consisted of a wide range of carbohydrases, including arabanase, cellulase, gluca-
nase, hemicellulase, and xylanase) useful to extracted arsenic species from algae 
and terrestrial plant materials [112].

3.2.3 Microwave-assisted extraction

Microwave extraction is a common technique for extracting biological and 
environmental matrices, which is much faster than traditional Soxhlet extraction 
procedures. The extraction procedure using dilute acids or organic solvents at 
low temperatures can be easily achieved in a focused microwave oven. Generally 
microwave extraction is used to determine inorganic arsenic in food and provided 
good arsenic speciation extraction efficiencies (generally >90%) for samples of rice 
and wheat [113]. The method is based on extracting samples with trifluoroacetic 
acid/H2O2 and measuring arsenate by anion exchange HPLC-ICP-MS using aque-
ous malonic acid as the mobile phase. By using 2 M trifluoroacetic acid assisted 
with microwave heating for 6 h at 100°C to hydrolyze rice samples, the conversion 
between AsIII and AsV was also observed and recovered 83, 88, 100, and 93% of for-
tified arsenite (100 ng As g−1), arsenate (100 ng As g−1), methylarsonic acid (MMA, 
50 ng As g−1), and dimethylarsinic acid (DMA, 200 ng As g−1), respectively [114].

3.2.4 Solid phase extraction

Solid phase extraction (SPE) method is an efficient extraction technique for 
arsenic speciation from complex environmental and biological matrices. The prin-
ciple mechanism of SPE is partitioning sorbent and sample matrix phase and may 
include simple adsorption, chelation, ion exchange or ion-pair solid phase extrac-
tion. In recent years, the techniques gaining popularity for As speciation because 
of its simple operation offers acceptable recovery and pre-concentration efficiency, 
lower reagent consumption and offer effective combination ability with different 
on-line and off-line As detection systems.

3.2.4.1 Conventional sorbent

Several conventional sorbent (i.e ion exchange resin, glass and modified 
mesoporous silica) based protocols have been developed for inorganic As specia-
tion. To avoid inter-conversion of arsenic species, extraction with anion exchange 
cartridges prior to the inductively coupled plasma sector field mass spectrometric 
(ICP-SF-MS) becomes an efficient technique. During on- site separation and 
speciation of inorganic arsenic (As (III) and As (V)) from high arsenic- ground-
water and ferrihydrite removal anaerobic arsenics species, anion-exchange resin 
(AG 1-X8) adsorbed As(V) in acetate form, while no adsorption to As(V)/As(III) 
in chloride form [115]. A dual-sorbent SPE protocol, in which the sorbent is com-
posed of strong basic anion exchange (SBAE) resin and hydrate iron oxide particles 



Arsenic Monitoring, Removal and Remediation

12

integrated HY resin, has been adopted successfully for the retention of inorganic 
arsenic species As (V) and As(III) simultaneously [116]. On-line continuous leach-
ing extraction method is also effective for speciation of bio-accessible As species in 
plant [108].

3.2.4.2 Functional nanomaterials extractant

The modern technological invention of nanomaterials such as Nanofibers 
[117], magnetic nanoparticles [118], metal hydroxide precipitation [119], and 
nano-TiO2 colloid [120] has offered selective and efficient extraction techniques 
for As speciation from different matrix. Like ammonium pyrroine- dithioc-
bonate (APDC) have excellent selectivity of As (III) from ground water samples 
[117]. Moreover, yttrium hydroxide precipitate layer coated cellulose fiber is 
used as extracting material, [119] of As (III) and As (V) at acidic condition. 
Multi-wall carbon nanotubes (MWCNTs) modified with branched cationic 
polyethyleneimine(BPEI)is also proved to be excellent adsorbent with favorable 
selectivity toward adsorption of As(V) [121] in combined with sequential injec-
tion technique. Nano particle TiO2 colloid has effectively extracted ultra-trace As 
from environmental water sample without agglomeration [120]. Besides, As (III) 
and As(V)from aqueous solution can be effectively extracted by hematite-coated 
Fe3O4 particles. Moreover, due to the fact simple and rapid separation capac-
ity of As species, magnetic extraction techniques also gaining much popularity 
day by day.

3.2.4.3 Multi-sorbent based SPE procedure

A combined SPE procedure for arsenic speciation developed by using three 
molecular recognition technology (MRT) gel resins, which includes strong base 
anion exchange (SBAE) and two hybrid (HY) resins, HY–Fe and HY–AgCl, This 
methods has constructed for simultaneously extraction of four water-soluble 
arsenic species: arsenite, arsenate, monomethylarsonic acid (MMA) and dimethyl-
arsinic acid (DMA) and retain in the SPE columns and separatedly eluted by using 
different elution [115].

3.2.5 Liquid–liquid extraction (LLE)

A liquid–liquid extraction generally used dodecane modified with 4% dodecanol 
containing Aliqua t336 as the extractant has been developed for the extraction of 
arsenic species in environmental matrices [122]. Here only As (V) is quantitatively 
transported to organic phase but no transport of As(III) takes place. A rapid in-situ 
liquid–liquid micro-extraction procedure has been developed for successfully 
determination of As (III) and As(V) in water samples, food salts, and total As in 
biological samples [123].

4. Derivitization of total arsenic

The vital challenge in element speciation is to determine each form indepen-
dently without interference from other species. Because arsenic could complex with 
certain derivatizing agents, that hampered the detection. The derivitization process 
consists of two steps for example. i) reduction of AsV to AsIII and ii) convert to 
arsine (AsH3) [124]. During measurement, the inert g N2 is pushed by hydride 
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generation (HG) step, reaches the atomic absorption spectrophotometer or ICP-MS 
and finally produced arsines [125]. The main limitation of derivitization is that it 
only limits the formation of volatile arsines materials, but it is difficult to separate 
un-derivatized arsenic species (eg. AsB, AsC, or arsenosugars), using conventional 
reversed phase liquid chromatography and almost impossible by spectrophotom-
etry or mass spectrometry [126]. In addition, the derivitization process requires 
control condition In addition, the derivitization process requires control condition. 
This technique largely depends on the type and concentration of the sample matrix. 
To overcome obstacle, sodium borohydride is now commonly used for the hydrides 
synthesis [18]. Arsenic speciation after derivatization can be overcome by combin-
ing couple technique with detection techniques such as LC–MS/MS retention in 
liquid chromatography and ionization in mass spectrometry. Under such circum-
stances, the hyphenated technique is the most reliable because it includes several 
facilities like high sensitivity, good reproducibility, short analysis time and reduced 
risk for species transformation [18].

5. Separation techniques of arsenic speciation

Usually, two main techniques, namely chromatography (gas and liquid) and 
capillary electrophoresis are used to separate arsenic from various complex matrices 
[65]. Based on the complexity of As compounds, sometimes two technologies are 
introduced simultaneously or cumulatively.

5.1 Liquid chromatography

Liquid chromatography generally provides excellent possibilities for the separa-
tion of environmental and biological samples [18]. Various commonly used liquid 
chromatography techniques are high performance liquid chromatography (HPLC), 
ion chromatography and ion interaction chromatography [127]. Chromatographic 
separation can be performed by using ion exchange columns to separate metal ions 
directly or by adsorption (reverse phase or normal phase) liquid chromatography 
(if the metal species are complexed with organic ligands). Liquid chromatography 
is connected to many other detection systems, such as ICP-MS, HG-AFS, HG-AAS 
and GF-AAS [65]. Several liquid chromatography techniques can be used for the 
organic and inorganic As species, as follows:

5.1.1 Anion exchange liquid chromatography

Anion exchange chromatography is commonly used for speciation analysis of 
arsenic in environmental and biological samples. The anionic nature of arsenic 
species is different (at neutral pH, arsenic acid As(V), monomethylarsonic acid 
(MMA) and dimethylarsonic acid (DMA) are deprotonated, but As(III)) exists) 
to make anion exchange chromatography suitable for their separation. Anion 
exchange chromatography has been used to analyze many arsenic compounds, 
including As(III), As(V), MMA, DMA, arsenobetaine (AsB), arsenocholine (AsC), 
oxoarsenic sugar (oxoAsS), thiosulfate Arsenic sugar (thioAsS) and benzene 
arsenic [27, 28]. The most commonly used column for arsenic speciation analysis 
is a strong anion exchange column, such as PRP-X100. Generally, the As form of 
the matrix separated by anion exchange chromatography techniques is detected by 
inductively coupled plasma mass spectrometry (ICP-MS) and electrospray ioniza-
tion tandem mass spectrometry (ESI-MS/MS).
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5.1.2 Cation exchange liquid chromatography

Cation exchange chromatography works similarly to anion exchange, except 
that the stationary phase is negatively charged to interact with the cation analyte. 
However, in cation exchange liquid chromatography, the separation speed of As 
species is relatively fast. The retention of arsenicals is directly related to the strength 
of its cationic charge: positively charged analytes have stronger retention. Cation 
exchange chromatography is commonly used for speciation analysis of positively 
charged As compounds, such as AsB, AsC, trimethylarsenic oxide (TMAO) and 
tetramethylarsenic ion (TMA) [15].

5.1.3 Reverse phase liquid chromatography

Reversed-phase chromatography is the most common HPLC separation tech-
nique used to separate compounds that are less hydrophobic or polar. In particular, 
reversed-phase liquid chromatography is particularly suitable for the analysis of 
arsenic lipids, including arsenic-containing hydrocarbons, fatty acids, phospho-
lipids, phosphatidylcholines, fatty alcohols, and phosphatidylethanolamines of 
biological samples [24].

5.1.4 Ion pair chromatography

Ion pair chromatography can separate ions and neutral analytes using popular 
reversed-phase chromatography. It has been widely used for arsenic speciation 
analysis of various substrates. The reagent of ion pair chromatography reagent 
comprises with two groups a charged group for interaction with the analyte 
and a hydrophobic region for interrelates with the stationary phase. Usually, 
tetraalkylammonium, tetrabutylammonium and tetraethylammonium are used 
as the ion pair reagents for the separation of anionic and neutral arsenic species, 
and alkyl sulfonates, such as hexanesulfonic acid and 1-pentane sulfonic acid, for 
cationic and neutral arsenic species. Two most commonly used organic modifiers, 
methanol and acetonitrile are added to the mobile phase to decrease retention 
time [15].

5.1.5 Hydrophilic interaction liquid chromatography

Hydrophilic Interaction Chromatography (HILIC) is an important substitute to 
RP-HPLC separations of polar compounds. Although the stationary phase is polar, 
HILIC can separate neutral, cationic and anionic species simultaneously. HILIC has 
great potential to separate more arsenic species in a single analysis. This separation 
technique is more useful for organoarsenicals. Xie et al. [128] successfully detected 
nine kinds of organoarsenicals (I,e MMA, DMA, AsB, AsC, TMAO, phenylarsonic 
acid (PAA), phenylarsine oxide (PAO), 4-hydroxy-3-nitrophenylarsonic acid 
(Roxarsone), and 4-aminophenylarsonic acid (p-arsanilic acid, ASA) using a zwit-
terionic HILIC column followed by ICP-MS/ ESI-MS detection.

5.1.6 Size exclusion chromatography

Size-exclusion chromatography (SEC), also known as molecular sieve chro-
matography, is a chromatographic method in which molecules in solution are 
separated by their size, and in some cases molecular weight. SEC is very effec-
tive for analysis of arsenic interactions with large molecules or macromolecular 
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complexes such as arsenic-protein binding, humic acid-arsenic complexesand 
industrial polymers. SEC commonly used to separate protein-bound arsenic from 
free arsenic [129]. This separation method is expensive and useful for biological 
samples.

5.1.7 Multidimensional chromatography

Combining a variety of chromatographic columns and separation modes, try 
to separate a series of arsenic substances. Multidimensional separation has been 
performed offline or online. These usually involve a cation exchange column and an 
anion exchange column connected by a switching valve. This combination allows 
separation of cationic and anionic arsenic species. Applications were demonstrated 
for the determination of water-soluble arsenic species [20].

5.2 Capillary electrophoresis

Capillary electrophoresis separates As species according to the electrophoretic 
mobility related to the charge, viscosity, and atomic radius of the molecule, which 
is controlled by the composition, concentration, and pH of the buffer. This method 
is applicable for all type of soil–plant-water samples. Capillary electrophoresis can 
be used in many different detection systems but the most common is ICP-MS [15]. 
Although, Although capillary electrophoresis separation is simple, cost-effective, 
fast analysis and a certain degree of matrix independence, the additional complex-
ity of coupling with the detection system makes CE a less common As speciation 
analysis method.

6. Detection systems of arsenic species

Several sensitive and element techniques can be used for the detection of arsenic 
species. Various detection techniques are: atomic mass spectrometry, molecular 
mass spectrometry, optical spectrometry, X-ray methods and others (voltam-
metry, potentiometry, conductometry and spectrophotometry), which provide 
different level of specificity, cost effectiveness and detection limits [21]. Detection 
methods applied for the arsenic speciation analysis of soil–plant-water samples are 
assembled in Table 3.

ICP-MS is the most commonly used technique for the detection of multiple 
arsenic species because of its high sensitivity, high selectivity and wide dynamic 
range. The coupling of chromatography to ICP-MS has several benefits due to the 
compatibility of the mobile phase with the behavior of the plasma torch and the 
carefully determined quality inspection interference. Various techniques have been 
developed to eliminate or reduce isobaric interference in the detection of arsenic 
by mass-to-charge ratio. Recently, compared with the traditional single quadrupole 
ICP-MS, the combination of ICP and triple quadrupole tandem mass spectrometry 
(ICP-QQQ ) helps to eliminate isobaric interference, reduce background, and 
improve selectivity [156]. Quantification is performed by preparing standard solu-
tions of commercially available substances, such as iAs(III), iAs(V), MA, DMA, 
and AB. It is generally believed that arsenate is used to calibrate anionic substances, 
and arsenobetaine is used to calibrate cationic substances [157]. DMA is considered 
to be the most suitable calibration standard for arsenic lipid quantification [158]. 
The sensitivity of ICPMS to detect arsenic is limited by its relatively high ionization 
potential. In order to compensate for this effect, various methods have been used, 
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Matrix Arsenic species Detection 

techniques

Coupled 

with

References

Atomic mass spectrometry

Soil ASIII, AS V ICP = MS — [130]

Water ASIII, AS V, MMAV, 
DMA V

[131]

Soil-water-plant Total As, ASIII, AS V, [132]

Water ASIII, AS V ICP-SFMS — [133]

Water ASIII, AS V, MMAV, 
DMAV, AsB AsC

ICP = MS HPLC [134]

Plant ASIII, AS V, MMAV, 
DMAV, AsB

[135]

Soil ASIII, AS V [136]

Soil ASIII, AS V, MMAV, 
DMA V

ICP-SFMS HPLC [137]

Plant ASIII, AS V, MMAV, 
DMA V

[138]

Water ASIII, AS V, MMAV, 
DMA V

[139]

Soil MMAV, DMA V ICP = MS GC [140]

Soil ASIII, AS V, MMAV, 
DMA V,

ICP = MS CE [137]

Molecular mass spectrometry

Soil PA and AA ESI-qMS HPLC [141]

Soil -water PA and AA ESI-TOF-MS = [142]

Soil–plant ASIII, AS V, MMAV, 
DMAV, MMMTA, 
DMMTA, DMDTA

ESI-qTOF-MS = [143]

Soil–plant ASIII, AS V, MMAV, 
DMAV, MMMTA, 
DMMTA, DMDTA

ESI-qTOF-MS HPLC [143]

Soil ASIII, AS V, N-AHPAA, 
3-AHPAA

ESI-triple quad-MS = [144]

Plant Arsenolipids ESI-triple quad-MS HPLC [145]

Water ASIII, AS V, MMAV, 
DMAV, TMAO

ESI-Orbitrap-MS = [146]

Plant Arsenic peptides ESI-IT-MS HPLC [147]

Plant PA and AA EI-MS GC [141]

Optical spectroscopy

Plant AS total, ASIII, AS V GF-AAS = [148]

Soil AS total, ASIII, AS V HG-AAS = [85]

Water ASIII, AS V, MMAV, DMAV HG-AAS HPLC [127]

Soil–plant ASIII, AS V, MMAV, DMAV [69]

Soil AS total, ASIII, AS V HG-AFS = [87]

Soil ASIII, AS V, MMAV, DMAV HG-AFS HPLC [88]

Plant ASIII, AS V, MMAV, DMAV [149]
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including adding supplemental methanol or ethanol solution to the spray chamber 
[159] or after the column via the T-piece [91], and the use of correction response 
factors. Finally, internal standardization was used to overcome the non-spectral 
matrix effects and instrumental drift [160].

Recently, molecular mass spectrometry is considered as a forward-looking 
technique for arsenic speciation analysis, especially for the detection of new organic 
arsenic species, such as thioarsenosugar [21, 161] and arsenolipids [21, 60, 162]. In 
this detection technique, the purified part of the extractable sample is introduced 
by electrospray ionization (ESI), and then mass spectrometry is combined with 
liquid chromatography. Generally, for the As forms, a simple single quadrupole 
mass analyzer is used, while tandem mass spectrometry is used for precise structure 
determination, whether it is a “spatial” triple quadrupole or a quadrupole time 
combination, or a “time” and Orbitrap system [21]. However, it has been recognized 
that ESI-MS analysis lacks selectivity for complex matrices, and quantification is 
more difficult than ICP-MS [163]. Therefore, the most powerful setting for arsenic 
speciation analysis that combines atomic and mass spectrometers is used as the 
detector of the same chromatographic system [21, 60, 145].

The optical spectroscopy technique such as atomic absorption spectroscopy 
(AAS) and atomic fluorescence spectroscopy (AFS) is popular to researcher as an 
attractive alternative to mass spectrometry. Due to the low purchase and operation 
cost, high speed, low consumption of organic solvents, high enrichment coefficient, 
combined with hydride generation provides high sensitivity and reduced matrix 
effect, this technology has been applied to the determination of arsenic species 
in environmental samples. Moreover, hydride generation systems (HG-AAS and 
HG-AFS) facilitate a direct measurement of the more As. Graphite furnace atomic 
absorption spectroscopy can be an independent facility and does not require AsH3 
because of the low level of interference [18]. In fact, the optical spectroscopy is 
an effective technique, when combined with different separation techniques and 
chemical modifiers, iAs(III), iAs(V), MA, DMA and TMAO, can be identified, 
and significant hydride generation of arsenosugars [164] and thioarsenates can 
be observed [21]. Nevertheless, HGAAS and HG-AFS are mainly used for water 
samples [150], sediment extracts and soil, [165] and plants [97] mainly contain 

Matrix Arsenic species Detection 

techniques

Coupled 

with

References

X-ray methods

Soil and Plant ASIII, AS V, MMAV,  
DMAV

XANES [150]

Soil ASIII, AS V EXAFS [151]

Soil ASIII, AS V STXM [152]

Soil AS V XPS [153]

Others

Water ASIII, AS V, Voltammetry = [154]

Water AS V Potentiometry = [155]

Water ASIII, AS V Spectrophotometry HPLC [126]

Aqueous phenylarsonic acid (PA); o-arsanilic acid (AA); N-acetyl-4-hydroxy-m-arsanilic acid (N-AHPAA), 
3-amino-4-hydroxyphenylarsonic acid (3-AHPAA).

Table 3. 
Examples of detection systems for arsenic speciation analysis of soil-water-plant samples.
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inorganic arsenic. These techniques are also applicable to biological substrates and 
more stubborn arsenic Analysis [166].

X-ray method is an important technique for morphological analysis of envi-
ronmental samples, which can record raw data about the chemical environment 
of arsenic atoms in situ without sample preparation. X-ray atomic absorption 
spectroscopy (XAS) is generally divided into two regions: X-ray absorption near 
edge structure (XANES) and extended X-ray absorption fine structure (EXAFS). 
These technologies are mainly used to directly detect solid samples, including 
sediments, [167] soil [97, 168] and plants [96, 97, 169]. Both XANES and EXAFS 
have studied abiotic matrices to measure arsenic redox status and geochemical 
correlation.

7. Accuracy evaluation of speciation methods

In order to obtain precise analytical information about the bioavailability 
and toxicity of arsenic in the environmental process, it is necessary to carefully 
consider any possible sources of error during analysis and validate the data. To 
avoid or minimize the impact of species changes and ensure the reliability and 
quality of speciation data, mass balance ratio, extraction efficiency, column recov-
ery of arsenic species during separation and standard reference materials quality 
need to be tracked. The main difficulty of specific analysis of arsenic may occur 
in the sample preparation stage and species stability. Mass balance data provides 
information about the distribution of elements in each analysis step (extraction, 
separation, and species detection) and quantitatively determine the fate of arsenic 
during speciation [170]. The extraction efficiency can provide some important 
information about the extraction procedure, the polarity of the extracted species, 
and help to select the best extraction solvent and separation system. It helps to 
establish a non-toxic, effective and simple extraction procedure for arsenic specia-
tion analysis. Column recovery is an important aspect of any separation tech-
nique. It is critical to eliminate loss and to ensure there is no cross-contamination 
between analyses. The column recovery compares the total arsenic concentration 
with the sum of the detected substances, which can provide information about 
the elution and retention of the analyte. In fact, depending on the type of sample 
and the concentration of the arsenic species, the column recovery rate of the 
arsenic species has great variability [171]. The column recovery also affected by 
the extraction solvent of the column. It is difficult to evaluate the mutual trans-
formation of arsenic species in the actual sample in the column, which is related to 
the individual arsenic standard. However, the lack of available standards for new 
arsenic species is the main challenge in studying the inter-conversion of arsenic 
compounds during separation [15]. For accurate method validation of arsenic 
speciation, the use of standard reference materials (SRM) and certified reference 
materials (CRM) is essential. With reference or certified values available, SRM 
and CRM can be used to test and verify the accuracy of the method. In order to 
verify the arsenic speciation analysis methods of environmental samples, differ-
ent types of soil and sediments, natural waters, marine and terrestrial plants and 
other biological samples are used as reference samples. It should be noted that a 
single SRM or CRM could not be used to verify method calibration and results 
[15]. SRM 1640 (NIST) is commonly used to check calibration curves for trace 
elements in water. The type of CRM used depends on the sample matrix and the 
type of arsenic studied [1].
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8. Conclusion

Arsenic pollution is a universal problem. The form of arsenic in soil, water, 
and plants play an important role in understanding arsenic exposure, metabolism 
and environmental arsenic cycle, and food chain. A crucial requirement for 
obtaining reliable speciation information is to maintain the concentration of the 
original chemical species in the sample prior to analysis. In order to determine 
the total element concentration, the main considerations for sample collection 
and storage are to prevent contamination and minimize the loss of trace analytes. 
Research on simple and efficient extraction procedures that use less or non-toxic 
solvents is very urgent for better arsenic speciation In the case of speciation 
analysis, the concentration of individual species of the element must be con-
stant through sample handling and processing. Therefore, the time between the 
extraction procedure and the analysis must be as short as possible to avoid inter-
conversion between species. The selection of extraction and sample preparation 
methods must be complementary and compatible with the separation method in 
order to perform qualitative and quantitative analysis of arsenic species and its 
concentration. It may require a combination of multiple extraction methods and 
multiple separation techniques to achieve a comprehensive arsenic speciation 
analysis. Several techniques have been used to study arsenic speciation, each with 
its advantages and disadvantages. However, research efforts are still needed to 
develop cheap, fast, sensitive, and reproducible methods for arsenic species that 
can work at low detection limits. However, research efforts are still needed to 
develop cheap, fast, sensitive, and reproducible methods for arsenic species that 
can work at low detection limits. In addition, in order to find a unified analysis 
protocol i.e. at least for the more common matrices, for the prevalent and uniden-
tified arsenic species, advanced investigations and routine measurements are 
necessary.
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