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Chapter

The Unique Existence of 
Chromosomal Abnormalities in 
Polyploidy Plants
Van Hieu Pham

Abstract

Chromosomal abnormalities are a popular natural phenomenon, especially in 
polyploid plants, and their unique existence in plants is one of the major forces for 
speciation and evolution. This means that plants with existing chromosomal abnor-
malities developing through sexual and asexual pathways shed light on increasing 
biomass and adapting ecology. Regarding the former, plants with chromosomal 
abnormalities experience not only enlargement effects but also increased phyto-
chemical compounds. As far as ecological perspectives are concerned, chromosomal 
abnormalities in plants enhance biotic and abiotic tolerance to climate change. This 
chapter focuses on chromosomal abnormalities in whole genome doubling, such as 
autopolyploid, allopolyploid, and aneuploidy plants, and discusses the effects and 
benefits of these abnormalities to evolution and ecological adaptation at the indi-
vidual and population levels. It also discusses some advantages and disadvantages of 
polyploid animals in comparison with polyploid plants.

Keywords: chromosomal abnormality, polyploidy, evolution, climate change, 
reproduction

1. Introduction

Darwin’s theory of natural selection maintains that the polymorphism that 
exhibits gross chromosomal alteration in plants as a way to reciprocally translocate 
along with changes in the segregation of pairs of chromosomes to ensure hetero-
zygosity maintenance and limitation of the expression of lethal genes. Every day, 
living organisms ingest all kinds of food, taking in energy and nutrients to nourish, 
maintain, and develop their bodies. As such, food security is vitally important to 
survival. Attaining food security, however, has been a challenge. Potential solutions 
to food insecurity might lie in the genetic mechanisms regulating the reproduc-
tive process of plants. Different organisms reproduce in different ways, either via 
sexual combining of male and female gametes or asexually. Asexual reproduction 
generates a new plant by using parts of the parent plants. Some artificial asexual 
reproduction methods include grafting, layering, and micropropagation. Genetic 
identicalness to the progenitor plant is an outstanding feature of plants produced 
asexually. Reproductive chromosome abnormalities derive from mistaking meiosis 
and mitosis occur [1]. For instance, observing meiotic processes revealed evidence 
that the trio of genes SMG7, SDS, and MS5 interrelated with both other chromatin 
organizing factors and proteins functioning DNA repair-related, involved in MSH6 
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and DAYSLEEPER. The convergent tasks detected (other meiotic pathways, chro-
mosome arrangement or remodeling, ABA cues and ion transport) offer insights 
into the challenges of polyploidization. Investigation of the meiosis of autotetra-
ploid potato Solanum tuberosum revealed a variety of challenges in correct segre-
gation and recombination of multiple homologous chromosomes that constrain 
meiotic chromosomal configuration [2].

With advances in genetic engineering and continual elucidation of genes 
governing the reproductive pathway, humanity is on the verge of being able to 
control the expression and regulation of these genes [1, 3]. Key genes related 
to flowering, such as CO, CRY2, FT, FPF1, FD, GA1, and ELA1, have already 
been studied [3]. Scientists and breeders worldwide use biotechnology to study 
reproductive processes in laboratories and field trials. Sustainable agricultural 
development is required to increase crop diversity, stabilize yield, and increase 
resilience via the accelerated development of several crops containing desired 
traits that have the capacity to adapt to and mitigate consequences from climate 
change [4, 5].

In terms of biodiversity, speciation, and evolution, there are thousands of existing 
plant species that can adapt to various topographies and climates. This means that 
plant species not only increase the abundance of genetics but also enhance the ability 
to adapt to boost genome evolution in harsh environments [1, 6]. The best examples 
are those that involve autopolyploids, allopolyploids, and aneuploidy. There are 
more than 4000 potato varieties, including more than 180 wild potato relatives [7]. 
More specifically, potato, one of the most multifaceted genetic modes with a variety 
of ploidy levels, such as 76%, recognizes diploids, 3% triploids, 12% tetraploids, 2% 
pentaploids, and 7% hexaploids, among which the highest yield is tetraploid due to a 
further level of genetic heterogeneity [8–10]. Based on practical empirical proof, two 
clusters of cultivated potato have been categorized: the Andigenum group located in 
the high Andes of northern and central South America that exhibit a wide range of 
ploidy levels, and the Chilotanum group from the lowlands of southern Chile, which 
are tetraploids [11].

Plant karyotypes at individual, species, and genera levels exhibit an abnormal 
number of chromosomes. A typical example is Chayote (Saccharum edule (Jacq.) 
Sw.) with variable chromosome numbers of 12, 13, and 14 resulting from cytological 
analysis [12], as shown in Table 1.

This chapter focuses on chromosomal abnormalities in whole genome doubling, 
such as autopolyploid, allopolyploid, and aneuploidy plants, and then discusses the 
effects and benefits of these abnormalities to evolution and ecological adaptation at 
the individual and population levels. It also discusses some advantages and disad-
vantages of polyploid animals in comparison with polyploid plants.

Species n 2n Source

Saccharum edule 11, 12, 13, 14 22, 24, 26, 28 [13–17]

Curcuma parviflora Wall. 14, 14, 16 28, 30, 32 [18]

Curcuma zedoaria Rosc. 21 63, 64 [19–23]

Curcuma longa L. 21 62, 63, 64 [19–22, 24]

Paspalum aff. arundinellum Mez 10 50, 51 [25]

Jacobaea vulgaris 20 30, 31 [26]

Brassica rapa L. ssp. pekinensis 10 20, 24 [27]

Table 1. 
Summary of plant species with chromosomal abnormalities.
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2.  Chromosomal abnormalities affect giant effects and alternative 
natural secondary metabolites

That chromosomal abnormality outranks other plants in terms of parts of plant 
size and biochemical compounds characteristically states that gene regulation 
plays an important role. Regarding the upregulation of genes, cell division and cell 
expansion are related to genes such as ARGOS, ANT (AITEGUMENTA), CYCD3;1, 
Growth Regulating Factor 1 (AtGRF1) and EXPASIN 10 (AtEXPA10) [27–29], EXPB3, 
and TCP [30]. Alongside these genes, lipid transport genes such as wbc11–2 and 
cer5–2 are a way to make large autotetraploid plants [31–33]. Moreover, proteins 
involved in cell proliferation, glutathione metabolic pathways, and cellulose, 
chlorophyll, pectin, and lignin synthesis play a role in enlarging plant size [34, 35]. 
Cytosine methylation in the whole genome also contributes to changes in organ size 
in polyploid plants, which can effectively improve potential and complex agro-
nomic traits in many crops [36, 37]. Cell size in polyploid plants plays an important 
role in changing phenotypes [38]. Enlarged organ size due to chromosomal abnor-
malities usually leads to increased yield and production of cultivated plants [39]. 
Studying autotetraploid Vicia cracca L. revealed that seed size and germination of 
tetraploids are more dominant than diploid seeds [40]. Although chromosomal 
abnormalities lead to large plants, autotetraploid birch plants (Betula platyphylla) 
and apple plants (Malus domestica) have a dwarf phenotype caused by reduced 
growth regulation signals [41, 42].

Similarly, chromosomal abnormalities also alter secondary metabolites, 
especially phytochemical compounds, in several plant species [43]. For example, 
natural components observed in tetrasomic tetraploid opium poppy (Papaver 
somniferum L.) enhanced morphine content by 25–50% by changing the expres-
sion of several genes regulating the alkaloid biosynthesis pathway [44]. Another 
example is cytosine methylation occurring genome-wide, enhancing phyto-
chemicals in autotetraploid cymbopogons [36]. The autotetraploid Arabidopsis 
thaliana Col-0 alters metabolites and genes regulating tricarboxylic acid cycle 
(TCA) and gamma-Aminobutyric acid (GABA) compared with diploids [45]. 
Lycopene significantly increased autotriploid watermelons because of a regula-
tion of phytohormones on metabolic pathways and upregulation of genes control-
ling biosynthetic lycopene [46]. Interestingly, polyploidization is a promising 
approach for gaining significant value, especially with medicinal plants, by 
producing secondary metabolites [43]. For example, upregulating genes contrib-
uting to the biosynthesis pathway of podophyllotoxin (PTOX) in autotetraploid 
Linum album enhanced the content of PTOX [47]. Vitamin A enrichment in 
triploid banana has been initiated by inducing tetraploids from several types of 
diploids and then creating hybrids [48]. Many total flavonoids and gastrodin are 
produced in autotetraploid Anoectochilus formosanus Hayata [49]. The tetraploid 
type of Physalis angutala Linn. from Rajasthan alters palmitic acid, linoleic acid, 
and linolenic acid [50]. In the last decade, many plant studies have given objects 
based on the outstanding benefits of chromosomal abnormalities. Those breed-
ers have been observing chromosomal abnormalities as a way to gain elite plant 
cultivars because an increase in plant organ size is derived from some of the most 
significant consequences of chromosomal abnormalities [51, 52].

The chromosomal abnormality of the level of ploidy variation is useful for 
breeding both within and among autopolyploid and allopolyploid plant species 
[25]. Another view is that chromosomal abnormalities contribute to plants’ abil-
ity to withstand detrimental environmental conditions. As far as the first idea is 
concerned, a chromosomal abnormality is not appropriate for sexual reproduction 
in aneuploidy due to chromosomal abnormalities in gametes. Another utilization 
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of polyploidy is that grafted crops can use artificial polyploidy as parts of rootstock 
and scion with potential agronomic traits in the context of climate variability [53].

3.  Chromosomal abnormalities enhance abiotic and biotic stress 
tolerance

Chromosomal abnormalities in plants enhance both biotic and abiotic stress 
tolerance. For example, many studies have proven that several pathways respond 
to salinity stress. Chromosomally abnormal flora use several processes to adapt to 
high salt concentration conditions, including accumulating Na+ extrusion in roots, 
increasing Na+ transport to leaves, regulating osmotics, enhancing gene expression 
related to antioxidants, mitigating reactive oxygen species (ROS), photosynthesiz-
ing cues, changing SNP markers related to salt stress, upregulating aquaporin genes, 
phytohormone transduction cues, protein processing, regulating transcription 
factors, upregulating ATP synthase to enhance ion transport and changing pro-
tons, and using miRNAs [54–63]. Chromosomally abnormal plants can also adapt 
to water insufficiency through miRNA mechanisms and target genes controlling 
transcriptional regulation, hormone metabolism, and plant defense. An increase in 
abscisic acid (ABA) content in response to drought stress in several polyploid plants 
such as Paulownia fortunei, P. australis, P. tomentosa, and Lycium ruthenicum has been 
observed [64–69]. Antioxidant defense systems were activated to sufficiently sup-
port heat tolerance in Dioscorea and Arabidopsis [70, 71]. Plants with chromosomal 
abnormalities might tolerate cold stress by growing antioxidants and epigenetics 
[72, 73]. Changing root anatomical characteristics supports autotetraploids to adapt 
to high concentrations of boron in soil and enhance Cu transport genes. Activation 
of antioxidation defense and positive regulation of ABA-responsive gene expression 
are ways to survive in environments containing high concentrations of copper  
[74, 75]. Enhancing the expression of target genes that regulate proline biosynthesis 
to support autopolyploid birch plants (B. platyphylla) in NaHCO3 stress tolerance 
has been investigated [76]. In addition, biotic resistance was demonstrated in auto-
tetraploid Malus × domestica and Solanum chacoense. More specifically, significantly 
increasing the Rvi6 resistance gene locus was observed as a way to assist autopoly-
ploids in enhancing Venturia resistance [77]. Similarly, autotetraploid potato has the 
capacity of common scab resistance by crossing 2n gametes from the diploid 
S. chacoense [78].

4.  Chromosomal abnormalities help plants adapt to ecological invasion 
and climate variability

Chromosomal abnormalities are one of the major adaptation ecologies and 
climate changes, such as fixing on growth, potential morphological traits and 
ecological invasion, pollinators, and the factors supporting pollination in nature 
[79]. After appearance of chromosomal abnormality in some rare cases, the increas-
ing cell size leads to alteration of physiological manners with their environmental 
condition, augmenting multiple novel alleles and changing regulatory pathways to 
create new potentially beneficial phenotypic variations. For instance, studying the 
transcriptome in aneuploidy maize revealed qualitative changes in gene expression 
in comparison to wild-type plants [80]. The number of expanding ecological spaces 
to polyploid plants has been recorded in various studies [81]. Polyploid A. thaliana 
is a plant with adaptive potential caused by the increased resources of transposable 
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element (TE) insertions at higher ploidy levels and enhanced gene expression 
related to reproduction [82, 83]. Several studies have proven that chromosomal 
abnormalities adapt to ecological invasion and climate variation. For example, 
biological invasions in Brassicaceae proved to be evolutionary processes to adapt and 
widespread in central Europe [84]. Another example is that of the native range of 
distribution of Lythrum salicaria. Several cytotypes with 2×, 3×, 4×, and 6× varia-
tions are found in regions of the Middle East, while only tetraploids are located in 
North America. In addition, the invasive spread of North American populations 
lacks differences in ploidy level [85]. Studying potato germplasm demonstrated 
markers related to unique geographic identity associated with traits of abiotic 
stress tolerance [86]. One of the priorities in genotype development is to gain stress 
tolerance and beneficial nutritional aspects as a way to reduce the effects of climate 
change [87, 88]. The view is that polyploidization contributes to better adaptation 
to the environment in terms of suitability for growth and other benefits of cell size. 
Breeders and human beings can benefit immensely from more ecological adaptation 
after chromosomal abnormality since it improves potential traits being exploited 
for breeding experiments.

For the most part, polyploidy is probably less popular in the animal kingdom 
than in the plant kingdom. More specifically, polyploids have been observed in 
amphibia (African clawed frog, Xenopus spp.), and different species of fishes 
exist [89]. This is because the polyploid animal species can overcome meiosis and 
exhibit parthenogenesis in which an egg cell can develop into an individual without 
fertilization. In addition, polyploid animal kingdoms are similar to polyploid plant 
kingdoms. They both have beneficial and detrimental effects and are the reason for 
meiotic imbalance. The greatest advantage of polyploid animals is that polyploid 
offspring are shielded from the deleterious effects of recessive mutations. However, 
chromosomal abnormalities may lead to congenital diseases and pregnancy loss in 
animals, especially in humans. Regarding meiotic imbalance, spindle irregulari-
ties might occur in polyploids, resulting in chaotic segregation of chromatids and 
aneuploid cells. An abnormal number of chromosomes in aneuploid cells might 
result in three or more sets of chromosomes produced in meiosis being different 
from diploid cells. This can explain why polyploid animals could form multiple 
arrangements of homologous chromosomes in metaphase I, resulting in abnor-
mal or random segregation to produce aneuploid gametes or to form imbalanced 
gametes [89, 90].

5. Conclusion

It is unquestionable whether chromosomal abnormalities derived from sex or 
asexual reproduction are essential for the successful existence of organisms on this 
planet. With climate variability becoming more alarming than ever, chromosomal 
abnormality has been occurring naturally as a way to address the issue of food 
security by expanding breeding opportunities to develop seedless triploid plants, 
increase ornamental features, increase environmental tolerance, enhance biomass, 
and more. Chromosomal abnormalities are also vital to human beings mainly 
because their exploration can open opportunities for securing food security. For 
example, breeders who are experienced in hybrid development are more likely to 
find desired agronomic traits. More importantly, several breeders today require at 
least a desired trait of novel crops before considering using them for production. 
Chromosomal abnormalities are essential for success in adapting ecology and play a 
vital role in evolution due to generating variation in a natural population.
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