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Multimodal Imaging of
Hepatocellular Carcinoma Using
Dynamic Liver Phantom
Muntaser S. Ahmad, Osama Makhamrah

and Mohammad Hjouj

Abstract

Liver phantom is used at various medical levels, such as detecting hepatocellular
carcinoma (HCC) in the early stages, training medical staff to deal with HCC by
taking biopsies, developing new sequences on medical imaging devices, confirming
the image quality, applying treatments to HCC, and others. All of the trials should
be applied before entering the real human body. The phantom includes properties
very similar to those of the human body, as well as the properties of liver cancer and
how it is treated within the body through its biological form. Therefore, the present
chapter aims to provide comprehensive information to consider when fabricating
HCC-containing phantoms and the characteristics of those phantoms in proportion
to multimodal medical imaging to aid in understanding the main target of dynamic
phantom for HCC.

Keywords: Liver phantom, HCC, Dynamic Phantom, Multimodality Imaging,
phantom characteristic

1. Introduction

Cancer is one of the most common diseases in the world and threatens human
life on an unprecedented scale. Hepatocellular carcinoma (HCC) is one of the
cancer types that originate in the human liver, and usually, it discovers at a late
stage [1, 2]. The detection of HCC at the early stage increases the clinical efficacy of
treatment by 60% compared to late detection. Several methods are used to detect
HCC; alpha-fetoprotein (AFP); Ultrasound (US); computed tomography (CT);
magnetic resonance imaging (MRI); and hybrid fluorodeoxyglucose positron emis-
sion tomography with FDG PET/CT [3].

The difficulties of detecting liver cancer in its early stages lie with researchers
and medical practitioners. Therefore, researchers need to provide any method that
will enable them to achieve this goal. Thus, the researchers turned to a tool that can
be used to detect liver cancer before the actual application to the real patient. One
such tool is the phantom, which mimics hepatocellular carcinoma [4, 5].
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2. Diagnosis of HCC

HCC is detected in several medical methods, one of which is the use of non-
invasive medical imaging technology. For HCC, the detection depends primarily on
the detection of vascular perturbation of cancer. Therefore, contrast media
enhancement is used in medical imaging techniques, which are relied upon to detect
these disorders through the three imaging phases: late arterial phase, Porto-venous
phase (PVP), and delayed phase.

The HCC is supplied by the hepatic artery, while the normal liver parenchymal
cells are nourished by the portal vein. Based on this information, it is possible to
distinguish between HCC and normal liver cells by contrast enhancement in both
CT and MRI scans. The HCC cells show hyper-vascularity in the late arterial phase,
while in the Porto-venous phase it appears less bright because it contains blood free
of contrast (washout), and these features are known as classic features. These
characteristics of cancer depend on the size of cancer itself, as the early stages of
cancer do not have a large blood supply, in this stage are usually less than 1 cm in
size, but in the advanced stages of cancer, it reaches 1-2 cm or more [6, 7].

2.1 HCC diagnosis in CT and MRI

The sensitivity of both CT and MRI to detect HCC varies according to HCC
size. The sensitivity of MRI reaches 62% compared to 48% in CT for the HCC of less
than 2 cm, while it reaches 95% in MRI compared with 92% in CT for HCC more
than 2 cm. The major difference in both modalities lies in the detection of
lesions less than 1 cm. Although MRI shows better results than CT, both have low
specificity [8].

The image characteristics of both MRI and CT scans are similar in detecting liver
cancer through the use of contrast enhancement. It appears as a very bright (strong
signal) in the arterial phase and is less bright (lower signal) in the porto-venous
phase and in the delay phase, it appears black. However, in MRI it appears hyper-
intensity also on T2-weighted and diffusion-weighted images. A specific contrast
agent is used in the MRI to increase the sensitivity of the examination in the
detection of HCC, which is the gadolinium-ethoxybenzyl-diethylenetriamine
pentaacetic acid (Gd-EOB-DTPA, Primovist, or Eovist). The reason is that only 50%
of gadoxetic acid is absorbed into the liver cells and it is excreted by bile ducts and
the remaining 50% is excreted by the kidneys [9].

In the arterial stage, the excessive enhancement this stage is caused by increases
in the arterial supply of the nodules. While the washout appearance in the PVP and
delayed phase depends on different factors such as the new drainage in the veins,
the liver background enhancement, the amount of blood supply in the portal vein,
the hyper-cellularity rate of a tumor, and the fundamental components of the
cancer tissue. Indeed, the hemodynamic changing in the nodules through the
development of carcinogenesis starts with decreasing the arterial supplies and pres-
ence of portal perfusion, after that the decreases on both arterial supplies and portal
blood supplies would occur. Subsequently, the increase of arterial vascularity is
developed, and the hypervascular pattern would appear [10]. Figure 1 shows the
typical features for HCC in MRI and Figure 2 Shows a typical pattern of HCC in CT.

2.2 Contrast-enhanced ultrasound

Contrast-enhanced ultrasound (CEUS) can be used in ultrasound imaging to
detect HCC. However, the possibility of error in diagnosis is high in this technique,
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due to the rapid washout of the CEUS in less than 60 seconds after contrast material
injection, and thus increases the risk of diagnostic error [7].

The contrast media used in CEUS such as sulfur hexafluoride and octafluor-
opropane combined with a phospholipid shell has a short arterial phase, so the liver
exploration is not adequate to visualize the deep lesions [13]. Another problem with
ultrasound is the inability to review the output image. CEUS and contrast enhanced
MRI in lesions less than 2 cm can be used to improve diagnosis [14].

Figure 1.
Typical enhancement patterns of HCC; (A): Hyperintensity on T2 weighted image; (B): Arterial enhancement
(arrow) on arterial phase image; (C): Tumor shows washout on portal venous phase image; and (D): Diffusion
restriction on DWI [11].

Figure 2.
Typical vascular pattern of HCC in CT: Liver lesion in the right hepatic lobe observed in a cirrhotic patient. The
lesion is presenting a typical HCC vascular pattern with arterial hyperenhancement (left images) and venous
wash-out (right images) visible both in magnetic resonance imaging (MRI) (upper row) and computed
tomography (CT) (lower row) [12].
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2.3 FDG-PET/CT

FDG PET/CT imaging is based on molecular imaging in different diagnoses of
cancers. HCC is characterized by a low uptake of the FDG, and therefore the
sensitivity of the examination is reduced compared with MRI and CT. Where it
reaches less than 70%. In addition, normal liver cells absorb FDG significantly, and
thus the sensitivity of detecting HCC than normal cells would be less [15].

3. Liver dynamic phantom component for hepatocellular carcinoma

3.1 Liver phantom

Different liver MRI phantoms are commercially available, that mimics blood
vessels structures, tumor models, and real appearance [16]. However, none of them
is a dynamic phantom. There are many commercial phantoms that offer 3D liver
designs, but they are quite pricey. Therefore, we need to fabricate a liver phantom
that is available at a lower cost. These phantoms use in multimodal medical imaging
(US, CT and MR) such as CIRS model 057A [17], IOUSFAN® phantom [18], and
Quality Assurance in Radiology and Medicine (QRM) GmbH supplies another ver-
sion of a semi-anthropomorphic liver phantom (QRM-Abdomen Phantom, QRM
GmbH, Möhrendorf, Germany) [19].

In previous studies, many chemical materials have been used to fabricate the
human liver as TMMs. Most of these materials are represented on carrageenan [20],
Poly Acrylic Acid (PAA), agar, PolyVinyl Alcohol (PVA) [21], polysaccharide,
agarose [22], gelatin and silicone [23], polyurethane [4], commercial rigid plastics
[24], and elastomeric (rubber-like) materials [25]. Shevchenko et al., (2011) [26],
and Chmarra et al. (2013) [27], developed a phantom to simulate the liver using
candle gel with cellulose. The simulation included the liver blood vessels in a simple
form and the phantom was used for CT and US imaging. Another study conducted
by Rethy et al. (2018) [4], using polyurethane to simulate the liver due to its
durability. The phantom involved the simulation of the arterial and venous system
of the liver with high accuracy as it was the first phantom that applying the contrast
media. Phantom has been used on various medical modalities including CT, MRI,
and US. All of Advantages and disadvantages of chemical materials for phantom
fabrication were summarized in Appendix A.

The liver phantoms were increasingly used in clinical practices for different
purposes including medical training and education, surgical and interventional
planning, diagnosis and treatment planning, and research aims. Qiu et al., (2018)
[25], developed a 3D phantom used as a surgical assistant for various human organs
to provide an effective pre-operative planning solution. The study used rigid-plastic
materials to create and develop a body that mimics the human liver. Another study
conducted by Zein et al. (2013) [28], in the development of a human liver model
using the PolyJet process, where simulated three liver models of three liver donors.
These phantoms were used in anatomical evaluations before and during the surgical
procedure. Javan and Zeman, (2018) [24] developed a 3D-printed model using
polyamide material to fabricate the liver. The study was conducted for liver ana-
tomical evaluation and to develop advanced functional interventional liver phan-
tom. With a different purpose of the phantom, Bazrafshan et al. (2014) [29],
developed a liver phantom made of acrylamide gel used in the development of tools
for thermal mapping and coagulation progress which is applied in thermal tumor
ablation methods such as radiofrequency ablation, and laser-induced interstitial
thermotherapy.
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3.2 HCC phantom

Several previous studies have included liver phantom within HCC samples. All
of these studies focused on differentiating between normal liver cells and HCC by
varying the density, intensity, and echogenicity for CT, MRI, and US, respec-
tively. However, none has dealt with HCC samples in a dynamic way that simu-
lates three phases; Arterial phase; Porto-venous phase; and Delayed phase, as in
typical HCC.

Rethy et al. (2018) [4], designed a phantom similar to the human liver. This
design contained HCC made of polyurethane blended with calcium carbonate.
Where they used the concentration of �100 parts by weight (pbw) of polyure-
thane and 0.6% of Sephadex added with 5% calcium carbonate bw. Chmarra
et al. (2013) [27], also designed another human liver phantom, including HCC
samples which is made from agarose, with glycerol. The samples were made with
7.5 g of agarose, 30 ml of glycerol, 200 ml of distilled water, and 4 g of sephadex.
The phantom was applied to various medical modalities and showed similar
results to human tissue characteristics. In addition, the Javan and Zeman, (2018)
[24] developed a 3D phantom of the liver containing cancer samples using
polyamide material. The normal liver cells were distinguished using resin while
polymer was used to simulate the internal structures which is allowed the cath-
eters and wires for passaging. In contrast, Shevchenko et al. (2011) [26], devel-
oped a liver phantom including tumor model made from agarose-glycerol mix.
The phantom was applied under CT and US imaging while it was not applied
under MRI. K. Li et al., (2017) [30] conducted a study of Evaluation of the
ablation margin of hepatocellular carcinoma for testing Radiofrequency ablation
on the HCC which was made from carrageenan. The phantom was applied in
CEUS, CT, and MRI.

3.3 Dynamic phantom

Dynamic contrast-enhanced (DCE) imaging is a method used to measure the
kinetic perfusion of tumors within the body. It is also used to simulate the motion of
blood circulatory inside the organ and to improve the diagnostic value, radiation
treatment planning, treatment effectiveness, and monitoring [31]. This technique
was used to simulate the perfusion in different tissues. However, most of the
capillaries could not be imitated accurately [32]. This technique relies on the
dynamic movement of contrast agent (CA) through different tissues. Therefore, the
technique depends on the measurement of time-attenuation curves (TAC) for CA
through the intra-arterial, intra-venous, and delay phases. The differences of CA
physio-chemical properties such as solubility, viscosity, and electric charge effect
on tumor pharmacokinetics [32].

The quantitative parameters such as blood flow, permeability, and blood volume
control the amount of blood supply to the cancer cell. Each stage of cancer requires
a different blood perfusion. Thus, it is possible to simulate the stages of cancer
through DCE technique. There are several issues that need to be considered when
using dynamic phantom. The phantom should be in a container that allows the
transfer of contrast material from the arteries to the veins through the study sam-
ples, the substance of the sample should possess the appearance of HCC, the sample
should interact with the contrast material, the sample should work to remove the
contrast material without altering the sample structure, flexibility regarding chang-
ing the HCC samples without affecting the liver parenchyma structure, and the
phantom should allow the pumping and disposal process of the contrast material by
using an automatic injector and suction device [33, 34].
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4. Phantoms properties-related modality

In order to use the phantom instead of the human tissue, different human tissue
characteristics must be present in the phantom. In addition, when simulating an
organ of human body, the shape, size and characteristics of the phantom must be
similar to that organ. The materials used in the simulation must be non-toxic, non-
degradable over time without change in properties, easy to manufacture and inex-
pensive. Each medical imaging modality has its own features to detect a special
tissue charactarestic, the features must exist in the manufactured Phantom to
mimik the human biological tissue. An explanation of these characteristics to be
available in the Phantom according to medical imaging modality type.

4.1 Computed tomography

The phantom fabricated to CT device should has the same mass density (ρ_m)
resulting in the same CT numbers or Hounsfield units (HU), same linear attenuation
coefficient (AC), same effective atomic number (Zeff), and the same electron density
(ρ_e) of the human tissue [16]. CT numbers can be calculated by the Eq. (1) [35]:

CTnumber HUð Þ ¼ μtissue � μwater

μwater

∗ 1000 (1)

While the linear attenuation coefficient (μ) can be calculated using the Eq. (2):

Ix ¼ I0 ∗ e
�μx (2)

While the effective atomic number (Zeff) can be calculated through the Eq. (3):

Zeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w1Z
x
1 þ w2Z

x
2 þ w3Z

x
3 þ … þ wnZ

x
n

x

q

(3)

Finally, the electron density (ρe) and mass density (ρm) are calculated using the
Eq. (4):

ρe ¼ ρm ∗NA ∗Z=A (4)

Where μtissue is the linear attenuation coefficient for the tissue, μwater is the linear
attenuation coefficient of water, Ix is x-ray intensity after interact with human tissue,
I0 is x-ray intensity before interact with human tissue, x is the human tissue thick-
ness, wn is the number of atom Zn in the compound, Zn is the atomic number of the
element, NA is the Avogadro’s number, and A is the atomic mass of the element [16].

4.2 Magnetic resonance phantoms

The majority of MRI phantoms are represented in a fluid-filled model. These
phantoms differ in their dimensions and forms depending on the body organ to be
simulated. The phantoms are fabricated in order to achieve several purposes
including evaluate image contrast, evaluate image uniformity, estimate spatial res-
olution, improve the signal-noise ratio (SNR), check the accuracy of slice thickness,
and achieve geometric accuracy.

MRI phantom should have several characteristics compatible with MRI technol-
ogy, these characteristics include tissue-specific relaxation for both; longitudinal
relaxation time (T1) and transverse relaxation time (T2); variation of signal inten-
sity with temperature changing; the mechanical properties should be fixed over an
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extended period [36]; and the phantom should be suitable to fit in the existing MRI
coils [37]. The recovery time and decaying time depend on molecular motion in the
local environment. Thus, T1 and T2 relaxation times changing with different dis-
eases such as inflammation, hemorrhage, and any biological dysfunction. Also, the
T1 and T2 relaxation times depend on tissue rigidity and viscosity. Low signal
intensity on T1W and T2W appears when using phantom materials with greater
viscosity and higher rigidity.

MRI phantoms have been manufactured using either aqueous solutions or poly-
mer gels. Aqueous solutions are usually doped with paramagnetic ions like MnCl2,
CuSO4, GdCl3, and NiCl2. These materials are used for testing MRI equipment
because it has the property of stability. However, they are affected by motion
artifacts and need a container to maintain shape [36]. Regarding gel phantoms, a lot
of materials have been used in the literatures for fabricating MRI phantom includ-
ing gelatin [38], gelatin-agar [39], agarose [40], agar [41], PVA [42], polysaccha-
ride TX-150 [43], polysaccharide TX-151 [44], PAA [45], room-temperature-
vulcanizing (RTV) silicone [46], and carrageenan [30, 47].

The properties of materials used to fabricate the MRI phantom are categorized
into four groups including chemical properties, mechanical properties (density,
pressure, elasticity, and hardness), electrical properties (conductivity and permit-
tivity), and imaging properties (relaxation times T1 and T2). The chemical proper-
ties of the material examine using several vibrational spectroscopic techniques
(VST). Different VST was used to know the chemical properties of the different
samples including Fourier transform infrared spectroscopy (FTIR) [48], Near-
infrared spectroscopy (NIRS), Mid-infrared Spectroscopy (MIR), Raman spectros-
copy, and hyperspectral imaging (HSI) [49].

The mechanical properties of the phantom are among the most important prop-
erties that should be taken into considerations to give the best simulation of the
human body organs. These properties consist of density, compressive modulus,
elastic modulus, and toughness. Density depends on the quantity of mass per unit
volume. The material densities should be around 1.03 � 0.04 g/cm^3 which is
closed to human tissue density [50]. The concentration of materials used in the
phantom fabrication manipulates until reaches the suitable human tissue density.
To confirm the stability of phantom density, several readings take overtime to
monitor any density changes for phantom materials. Compressive modulus or
compressibility expresses the material’s ability to withstand pressure without
changing the shape or size. The unit of compression strength is the pascal (Pa).
Different models are used to measure the compression modulus such as the stan-
dard test method used for polymers; flexible cellular polymeric materials used for
cellular [51]; and tensile strength for fused filament fabrication [52]. According to
these models, the compressive strength measurements are different. Instron
compression-testing machine is widely used in estimating compressive strength.

An electric is any insulated object that polarizes through applying an electric field.
The most common property used in electricity is conductivity (σ) which is varied
with frequency. For example, liver conductivity increases with increasing frequency
[53]. Conductivity is the amount of resistance of the material or a material’s ability to
conduct electrical current. The signal intensity unit of electrical conductivity is
siemens per meter (S/m or S.m-1) [54]. The dielectric Win DETA 5.64 from
Novocontrol Technologies is used to measure the polymer dielectric properties.

4.3 Ultrasound

The phantom fabricated in the ultrasound should have the same velocity of
sound or acoustic velocity, same Attenuation coefficient (AC), same acoustic
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impedance (Z), and same backscatter coefficient of the human tissue [55, 56]. The
acoustic velocity (Cs) can be calculated by the Eq. (5):

Cs ¼
dp
dρ

� �0:5

¼ ks
ρ

� �0:5

(5)

While the Attenuation coefficient (αs) in the ultrasound can be calculated
through the Eq. (6):

αs ¼ αw � 1
∆x

lnAs � lnAw � 2 ln 1� R½ �ð Þ (6)

The R magnitude can be calculated by this Eq. (7):

R ¼ Z2 � Z1

Z2 þ Z1
(7)

The Backscatter coefficient (BS) is calculated by the Eq. (8):

BS f , zð Þ ¼ Ss f , zð Þ
SR f , zð ÞBSR f , zð ÞA f , zð Þ (8)

Where dp is the pressure change in Pascal, dρis the change of density in Kg.m-3,
ks is the modulus of bulk elasticity, αw is the water attenuation coefficient, As is the
ultrasound pulse amplitude, Aw is the water amplitude, R is the coefficient of
acoustical reflection at the interface between material and water itself, Z2 is the
acoustic impedance of the material, Z1 is the acoustic impedance of the water, Ss is
the sample spectra, SR is the phantom spectra, BSR is the reference phantom
backscatter, A is compensates function for attenuation along the propagation path,
f is the frequency of ultrasonic wave, and z is the region depth of analysis [16].

4.4 Scintillation camera imaging

The following characteristics should be present on the phantom under scintilla-
tion camera imaging: same sensitivity, spatial resolution, count rate linearity, and
contrast recovery of some radiopharmaceuticals such as 99mTc, 90Y, and 166Ho
[57]. The Calibration factor (CF) can be calculated by the Eq. (9):

CFcps=Bq
¼ cps=A (9)

While the sensitivity (S) or minimum detectable activity can be calculated
through the Eq. (10):

S ¼ 4:65
ffiffiffiffi

N
p

CF ∗ t
þ 3
CF ∗ t

(10)

Where cps is count per second of the phantom, A is the activity amount inside
the phantom, N is the total background counts of the region of interest and t is the
count time [16].

5. Conclusions

In summary, in order to achieve the best simulation of hepatocellular carcinoma,
researchers should investigate as much as possible the characteristics of this disease
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and how it behaves inside the real human body. It varies from stage to stage, and
therefore the simulation of HCC should be in a specific for each stage and likes to
take into account the size of the cancer and the blood supply to it in each stage.
Then the characteristics of the phantom should match with the characteristics of the
multimodality imaging to be used for screening.

Acknowledgements

We would like to acknowledge the Universiti Sains Malaysia staff especially
Dr. Nursakinah Suardi, Proff. Ahmad Shukri, and Dr. Nik Noor Ashikin Nik Ab
Razak for supporting our research.

Conflict of interest

The authors declare no conflict of interest.

Appendices and nomenclature

Advantages and disadvantages of chemical materials for phantom fabrication.

Material Material

advantage

Material disadvantage Material used in image

modality

PAA gel Elastic and easily
formed
• Used for multi-

layered sample.
• Inexpensive.
• low ↓

Temperature
fluctuations.

Time stability for
5 months
Requires storage in sealed
glass tubes

Suitable for MRI device

Carrageenan gel Easily mold to
different shapes.
Inexpensive.

The relaxation time
different. During
hardness.

Suitable for MRI device

PAAG gel Provides wide sites
for hydrogen.

Properties affected by
temperature.

Suitable for MRI device

Agar gel Hydrophilic organic
materials.
Easily formed by
temperature.

Properties affected by
temperature.
Restricted movement in
free water.

Suitable for MRI, US, CT and
scintillation camera imaging

Agarose gel Independent of
temperature.
Used in different
shape.
Stable in long
period

Time stability for
5 months.
More complicated
components than agar.
Affected by bacterial
infection

Suitable for MRI and CT

PVA (cryogel) Low-cost price.
Stable in long time.
Easily handling.

Suitable for MRI and US

Polyurethane gel High elastic
recover.
Resistance to

Complex in molecular
design.

Suitable for US
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Material Material

advantage

Material disadvantage Material used in image

modality

bacterial infection
Low.
Low viscosity.

Gelatine-alginate High Stability.
Store beneath
water.

Complex structure.
Lack of longevity.

Suitable for US and scintillation
camera

Silicone polymer,
RTV

Robust material.
High Stability for
long time.
Easily formed.

Mismatching with
biological tissues.

Suitable for CT

Commercial rigid
plastics

High Stability in
shape.
High Stability for
long time.

Stiffness more than
normal tissue.
Complex structure.
Need specific device.

Suitable for CT and scintillation
camera imaging.

Elastomeric
(rubber-like)
materials

Good flexibility.
Good Elasticity

Complex structure.
Need specific device.

Suitable for MRI and US
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