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Chapter

Drosophila Central Taste Circuits 
in Health and Obesity
Shivam Kaushik, Shivangi Rawat and Pinky Kain

Abstract

When there is a perturbation in the balance between hunger and satiety, food 
intake gets mis-regulated leading to excessive or insufficient eating. In humans, 
abnormal nutrient consumption causes metabolic conditions like obesity, diabetes, 
and eating disorders affecting overall health. Despite this burden on society, we 
currently lack enough knowledge about the neuronal circuits that regulate appetite 
and taste perception. How specific taste neuronal circuits influence feeding behav-
iours is still an under explored area in neurobiology. The taste information present 
at the periphery must be processed by the central circuits for the final behavioural 
output. Identification and understanding of central neural circuitry regulating taste 
behaviour and its modulation by physiological changes with regard to internal state 
is required to understand the neural basis of taste preference. Simple invertebrate 
model organisms like Drosophila melanogaster can sense the same taste stimuli as 
mammals. Availability of powerful molecular and genetic tool kit and well char-
acterized peripheral gustatory system with a vast array of behavioural, calcium 
imaging, molecular and electrophysiological approaches make Drosophila an 
attractive system to investigate and understand taste wiring and processing in the 
brain. By exploiting the gustatory system of the flies, this chapter will shed light on 
the current understanding of central neural taste structures that influence feeding 
choices. The compiled information would help us better understand how central 
taste neurons convey taste information to higher brain centers and guide feeding 
behaviours like acceptance or rejection of food to better combat disease state caused 
by abnormal consumption of food.

Keywords: Taste, neural circuits, pharynx, gustatory receptors, feeding behaviour

1. Introduction

The sense of taste is a fundamental sensory modality for all animals. It controls 
many behavioural decisions by processing and integrating information from the 
periphery. In all animals, gustatory system plays a critical role in evaluating the 
nutritional value of food. The sense of taste warms animals against consumption 
of spoiled/fermented or toxic compounds and orchestrate appetitive responses to 
energy, protein and calorie-rich food sources.

In humans, taste buds on the tongue can differentiate between the five basic 
tastes: sweet, sour, salty, bitter, and umami (a savoury taste) by processing the taste 
information in the brain. These are important building blocks for our understand-
ing of flavour. Animals show attraction towards low salt, sweet and umami taste 



Role of Obesity in Human Health and Disease

2

and aversive behaviour towards high salt, bitter and sour foods. Such responses 
are innate and largely invariant throughout animal’s life suggesting physiological 
 hard-wiring of taste quality to hedonic value.

For decades, flies have been used as a genetically accessible system to study 
molecular mechanisms that coordinate feeding behaviour with sensory signals. 
They show an array of feeding characteristics that can be easily exploited for 
various behavioural and physiological analysis. Identification of gustatory che-
mosensory receptors has provided a major impetus in understanding taste signal 
transduction [1–5]. Gustatory sensory neurons located in external mouth region 
as well as internally in the pharynx project to sub esophageal zone (SEZ-a region 
implicated in feeding and taste) [5–8]. Much less is known about the organization 
of the SEZ. Very few neurons that connect SEZ to higher brain centers have been 
identified. These circuits represent critical higher-order features of gustatory 
system including various set of interneurons, projection neurons, modulatory 
neurons and motor neurons that help flies to process and integrate peripheral 
taste signals. Although recently, many studies have focused on understanding how 
gustatory neural circuits are spatially organized to represent information about 
taste quality. Yet, the role of various regions in the central nervous system (CNS) in 
integrating feeding behaviour with sensory signals on the availability and quality 
of nutrients is currently insufficiently understood. How central taste circuits play 
an important role in health and disease is still undetermined. In this chapter, we 
have assimilated the information together to present a map of various taste circuits 
identified in the past few years beyond the level of primary taste neurons specifi-
cally in Drosophila melanogaster. Hopefully the information provided in the chapter 
would be useful to gain insight into brain structures and the neural networks 
that control taste and feeding behavior in simple model organisms and may 
provide information that would be useful in combating obesity or other metabolic 
 disorders in humans.

2. Central taste circuits in humans

Tongue is the peripheral taste organ of the human taste system essential for 
tasting, chewing, swallowing and speech [9–11]. Tiny bumps present on the tongue 
called papillae give the tongue its texture. Many thousand taste buds cover the 
surfaces of the papillae that respond to taste and transmit that information from 
periphery to the CNS [9]. Different types of papillae are present on the tongue 
classified as circumvallate, fungiform, filiform and foliate. All except the filiform 
papillae are associated with taste buds. The most common mushroom-shaped 
fungiform papillae cover two third of the tongue and are involved in detecting taste. 
They also contain sensory cells for detecting touch and temperature. The human 
taste system, along with the olfactory and trigeminal systems, helps in identifying 
and controlling the nutrient versus toxic compounds that finally leads to acceptance 
and rejection behaviour [9, 12]. Inside the mouth, the chemical components of 
food interact with taste receptors cells located inside the taste buds on the tongue 
and evaluate the quality and intensity of the taste. The other areas where taste cells 
are present includes the back of the throat, and at the junction of the hard and soft 
palates, epiglottis, the nasal cavity, and even in the upper part of the esophagus 
[13, 14]. The current findings also suggest nutrient sensing and presence of taste 
receptors in the gut [15–18].

Taste buds are generally present as clusters of 50-100 polarized neuro-epithelial 
cells which can detect nutrients and other chemical compounds. They have 
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numerous sensory cells that are in turn connected to many different nerve fibres 
[12, 19]. The first stage of gustatory signal processing starts with the taste buds. 
They communicate using electrical coupling via gap junctions and by cell to cell 
chemical communication via neurotransmitters including glutamate, serotonin, and 
ATP among other possible transmitters [20, 21]. Taste receptor cells get consistently 
replaced in taste buds to compensate the injury of the gustatory epithelia [22]. 
Several afferent nerves carry specific sensory information from a specific peripheral 
region. The chorda tympani (CT), a branch of the facial nerve (cranial nerve VII), 
transmits gustatory information from fungiform papillae, while the lingual branch 
of the trigeminal nerve (cranial nerve V) carries information from fungiform 
about pain, tactile, and temperature and filiform papillae in the same area [23, 24]. 
Multimodal information including taste, tactile, pain, and thermal cues get con-
veyed from circumvallate papillae by the glossopharyngeal nerve (cranial nerve 
IX), from palatal taste buds by the greater superficial petrosal nerve (GSP, another 
branch of VII), and from the throat by the superior laryngeal branch of the vagus 
(cranial nerve X) [25–28]. Foliate papillae are innervated by the CT (taste) and V 
(tactile) in anterior regions and by IX (multimodal) in posterior regions [29, 30]. 
All together taste and oral somatosensory cues combine centrally with retro nasal 
olfaction to generate the composite experience of taste [31].

The entire human taste system includes both peripheral receptors and central 
pathways. As afferent taste signals ascend the brain from caudal to rostral, the 
information flow split between the ventral forebrain and more dorsal thalamo-
cortical regions where primary and secondary gustatory cortices (opercular, 
insular, orbitofrontal) give rise to conscious taste sensation [32–34]. Taste 
qualities, attention, reward, higher cognitive functions and multiple-modal 
sensory integration are managed by multiple secondary and tertiary cortices 
that are involved in the dorsal pathways [20, 35, 36]. While sensory processing 
at the extent of the taste bud is complex, the information transfer to the CNS via 
marked line [37]. A gustotopic map has been produced when taste signals extend 
to the insula of the gustatory cortex [38]. Each individual taste has a representa-
tion in the insular cortex by fine-tuned cells organized in a precise and spatially 
ordered taste map with each taste quality encoded in its own stereotypical 
 cortical field [38].

The final step in perceiving taste is relaying the taste information collected 
by taste cells to the central nervous system via cranial nerves VII (Facial), IX 
(Glossopharyngeal), and X (Vagus), where there is a topographical representation 
of the oral cavity within the first nuclear relay, the solitary tract nucleus, in which 
brainstem reflexes of acceptance and rejection are controlled (Figure 1) [39]. The 
taste cells within the taste buds transduce the stimuli from the ingested food and 
provide additional information about the identity, concentration and pleasant or 
unpleasant quality of the substance [20]. Taste nerve fibers on stimulation by the 
binding of chemicals to their receptors, depolarize, resulting in an action potential 
that gets ultimately transmitted to the brain [19]. This information also prepares 
the gastrointestinal system to receive food by causing salivation and swallowing 
(or gagging and regurgitation if the substance is noxious). The principal receptors 
involved to transduce human sweet stimuli are T1R2/T1R3, T1R1/T1R3 for umami 
stimuli (although mGluR1, mGluR4 and NMDA have been implicated), and T2R 
family for bitter taste stimuli. Growing evidences have suggested the role of epithe-
lial sodium channel (ENaC) in part, in transducing salty taste, and acid sensing ion 
channels (ASICs) for sour taste stimuli [20, 40–42].

The ventral pathways are involved in autonomic and visceral functions, affec-
tive and emotional processing, memory and learning [43, 44] and ultimately, the 
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informational content and values of the ventral and the dorsal pathways integrate 
[45]. The circuitry is such that the cells make synaptic connection with primary sen-
sory axons that run in the chorda tympani and greater superior petrosal branches 
of the facial nerve. The taste cells in fungiform papillae on the anterior tongue are 
innervated exclusively by the chorda tympani branch of the facial nerve. In circum-
vallate papillae, the taste cells are innervated entirely by the lingual branch of the 
glossopharyngeal nerve and in the palate they are innervated by the greater superior 
petrosal branch of the facial nerve [46]. The lingual branch of the glossopharyngeal 
nerve and the superior laryngeal branch of the vagus nerve project into the rostral 
portion of the nucleus of the NST. The central axons of these primary sensory 
neurons in the respective cranial nerve ganglia project to rostral and lateral regions 
of the medulla [47, 48]. Secondary cortical taste area in the orbitofrontal cortex, 
present in the frontal lobe of the brain is responsible for decision making [49]. Here, 
single neurons respond to combinations of chemosensory, somatic sensory, olfac-
tory, and gustatory stimuli and even visual information [34]. Information about the 
temperature and texture of food transmit from the mouth via the cranial nerves to 
the thalamus and somatic sensory cortices [50].

In the orbital cortex, feeding to satiety with one food reduces the responses 
of those neurons to that particular food only suggesting computation of sensory-
specific satiety in the orbitofrontal neurons [51]. Hypothalamic nuclei project 
to and receive input from other extra hypothalamic brain regions such as the 
nucleus of the solitary tract (NTS) to regulate food intake and energy expenditure 
[52–58]. Hunger, satiety and food consumption neural regulations are directly 
control by the genetic influence on human obesity [34]. High sweet tastes are 
attractive while high bitter tastes are aversive, even in decerebrate animals and 
anencephalic humans [59, 60]. The brain ascent from caudal to rostral by the 
afferent taste signals where the information start breaking between the ventral 
forebrain and more dorsal thalamo-cortical regions then later opercular, insular, 
orbitofrontal (primary and secondary gustatory cortices) bring the awareness to 
taste  sensation [32].

Taste pathways in the CNS are intimately connected with general viscero sensory 
sensory nerves from the cardiovascular, respiratory and, importantly, gastrointesti-
nal systems [61]. Circulating metabolic signals modulate neural responses in relays 
of the taste system, such as the NTS, and in areas that receive direct or indirect 
gustatory afferents like the hypothalamic homeostatic centers and reward-related 

Figure 1. 
A portion of the taste pathway in the human brain. Taste information from taste receptor cells on the tongue 
(peripheral organ) is relayed to the nucleus of the solitary tract (NTS) in the medulla. Gustatory neurons in the 
NTS send projections to the thalamus, which in turn directs gustatory information to taste cortex in the brain.
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areas in the midbrain [62]. Vagus in particular contain afferent neurons that trans-
fer mechanical and chemical sensory information from the gastrointestinal tract 
(GIT) to the brain. The neural transmission of chemical information could result 
from recognizing signalling peptides, such as CCK, produced by enteroendocrine 
epithelial cells with chemo-sensing properties [63].

Although a great deal of information has been generated but elucidation of 
how taste intensity is encoded in the insular cortex is necessary to address. It is still 
unknown whether taste qualities with similar valence project to common targets in 
the brain. Tracing the connectivity of each basic taste qualities to higher brain areas 
is still incomplete and will help decipher how these integrate with other modali-
ties and combine with internal and external state for the final behavioural output. 
Hopefully understanding taste circuits in simple invertebrate model systems like 
Drosophila can help addressing these mysteries of the central taste system in higher 
animals.

3. Drosophila gustatory system and circuits

In the olfactory system of the adult fruit fly, the structure and function of the 
neural circuits involved in detecting and processing olfactory information are well 
known. Approximately 50 different classes of olfactory receptors neurons express 
a particular type of olfactory receptor. The olfactory sensory neurons expressing 
the same receptor projects its axon to a single glomerulus in the antennal lobe of 
the fly where synaptic association with projection neurons and local interneurons 
occurs. The projection neurons transfer processed sensory information from the 
glomeruli to higher order brain centers including mushroom bodies (MB) and 
lateral horn (LH) which further process olfactory information for behavioural 
functions such as learning and memory or appetitive and inhibitory response 
control [64–66].

On the other hand, the identified central taste circuits of the gustatory sys-
tem of Drosophila involved in sensory processing i.e. from detection to behavior 
are very few. The gustatory system of Drosophila is a commendable system for 
learning taste perception, taste modulation and behavior due to its simple brain 
architecture of the fly, gustatory receptor neurons (GRNs), vigorous behavioural 
responses that are flexible to probe molecular genetics and electrophysiologi-
cal dissection [67]. Different aspects of feeding behavior include finding a food 
source, evaluating food for nutritional suitability, choosing between different 
food sources, and deciding to initiate or terminate feeding. Like mammals, taste 
helps Drosophila to detect the potential edible food sources and to decide whether 
to accept it or not. The fruit fly can detect and sense all the distinct taste modali-
ties that mammals can i.e., sweet, bitter, salts, water, sour and umami. Flies 
attract to sweet substances and show aversive behavior towards bitter making 
final feeding decisions [68]. The taste neurons house inside the hair like structures 
known as sensilla (Figure 2B) present on different peripheral organs of the fly 
body i.e., labellum, legs, wing margins, ovipositor and pharyngeal organs lining 
the esophagus (Figure 2A). The small sensory structures known as taste pegs are 
also present in the labellum [69]. Taste neurons of tarsal segments are the first that 
come in contact with food source and then on the labellum (Figure 2A) [70]. The 
GRN axons from various peripheral taste organs transmit the taste information to 
the higher brain area, the primary taste processing center called SEZ (Figure 2A) 
[71]. SEZ is the first relay for taste information in the fly brain just below the 
antennal lobe where axons of gustatory receptor neurons (GRNs) of peripheral 
organs terminate [67, 72, 73].
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4. Drosophila SEZ is the first relay of taste information

The adult Drosophila bears approximately 135,000 neurons in the central ner-
vous system and thousands of neurons in ventral nerve cord (alike mammalian 
spinal cord). Taste neurons transmit their input (Figure 2B) to SEZ in the CNS, 
where the inputs received from different organs and taste modalities are refined and 
united [74] (Figure 2C and D). The gustatory neuropil of the SEZ includes the sub 
esophageal zone, gnathal ganglia (GNG), and parts of the periesophageal neuropil 
[75], and is relatively disorganized compared to the olfactory and visual neuropils. 
Immunohistochemistry and microscopy visualization of axonal termini of distinct 

Figure 2. 
Drosophila taste system. (A) Adult fly accessing sugar drop with the tarsi. Proboscis, legs, wing margins, and 
genitalia are peripheral taste organs where taste receptor cells house in taste sensillae. The taste information 
from various taste organs goes to the brain. SEZ is a first relay of taste processing (shown in the magnified 
version of brain). Antennal lobe (AL) receive information about volatile chemicals from the periphery and 
mushroom bodies are learning and memory centers. (B) Taste sensillum containing gustatory receptor neurons, 
mechanosensory neurons and support cells. (C and D) Taste representation in the SEZ. Projection map in the 
SEZ in accordance with the taste modalities (C) and taste organs (D).
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categories of GRNs has exposed a spatial representation of taste quality within SEZ for 
example sweet taste neurons from proboscis terminate in discrete regions of the SEZ 
that do not overlap with axonal projections of bitter taste neurons (Figure 2C) [67, 72]. 
There is a distinct projection map in the SEZ in accordance with the taste modalities 
(Figure 2C and D) [67, 72] and taste organs i.e. gustatory axons of the mouth part ends 
in the dorsal anterior SEZ, axons from labellum ends in the medial SEZ, and axons 
from legs ends in dorsal posterior SEZ (Figure 2C and D) [67, 71]. Motor neurons and 
modulatory neurons that guide proboscis extension are also found in the SEZ [71, 76] 
indicating that the SEZ carry local circuits that connect sensory, motor, modulatory 
and command neurons that have processes in this region [71, 76–78] suggesting its 
role as a sensorimotor center for feeding. Taste information is also integrated with 
other internal and external sensory cues, but where this occurs is not known. Later the 
taste information get conveyed to higher brain centers, including the mushroom body, 
which contains neurons activated upon sucrose ingestion [79, 80]. Recently found 
various central neurons that may or may not synapse with taste sensory neurons and/
or play modulatory roles have been identified which are discussed in further sections.

5. Drosophila sweet taste feeding circuits in the brain

SEZ has been shown to play a key role in gustatory signal transduction and 
feeding responses in different insects. Drosophila larval neurons expressing neu-
ropeptide gene (referred as hugin neuron) are identified as probable interneurons 
that modulates taste mediated feeding behavior [77]. These are about 20 neurons 
in the SEZ. The connectivity pattern of hug neurons in larvae and adult flies is 
similar. Blocking hug neurons activity results in alteration of food intake initiation 
which depends on previous nutrient condition. The hug neurons send axons to three 
distinct targets - to the ring gland (central neuroendocrine organ), pharyngeal 
muscles, and higher brain center protocerebrum. The extension to the ring gland 
and the pharyngeal muscles depicts that hug neurons correlate sensory informa-
tion with growth, metabolism, and feeding. The axon tracts to the protocerebrum 
indicates a role of hug neurons in transducing sensory signals for higher brain 
processing. The connectivity pattern of hug neurons suggest a role of incorporating 
gustatory sensory signals with higher brain functions and feeding behavior [77].

Additionally, to understand the central taste circuits in the fly brain that are 
involved in feeding decisions and different aspects of feeding behavior few second 
order neurons have been identified in the past few years. The first set of sweet 
gustatory projection neurons (sGPNs) marked by NP1562 have been identified in a 
genetic screen (Figure 3A) [81]. Suppression of sGPNs activity results in decrease 
food intake and inhibition of PER responses. The sGPNs activation by applying 
sucrose and other sugars to the labellum suggested a functional link with Gr5a+ 
sweet taste neurons. These neurons relay sweet information from the SEZ to the 
antennal and mechanosensory motor center (AMMC) in the deutocerebrum of 
fly brain. Starvation and dopamine signaling increases the sucrose sensitivity of 
the sGPNs providing direct confirmation for state dependent alterations in sweet 
taste circuit activity [81]. The AMMC is known to receive input from sensory axons 
of the basal antennal segments involved in sensing gravity, sound and [82–85] 
olfactory inputs from a class of olfactory projection neurons [86]. It remains to 
determine if AMMC acts as a secondary center for sweet taste and receive inputs 
from other categories of taste neurons, such as water [87, 88], bitter [67, 72], and 
salty [89, 90], sour [91] and fat [92] and, if so, whether the representation of differ-
ent tastes remains distinct in AMMC. Little is understood about the wiring where 
information from the AMMC is transmitted, but single-cell tracing experiments in 
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flies reveal the caudal ventrolateral protocerebrum (CVLP) as a possible target [93] 
as some Gr32a+ GRNs involved in pheromone sensing appear to terminate directly 
in the VLP [94]. It is still undetermined whether AMMC conveys information from 
sGPNs to higher brain centers or back to the SEZ, where it can be transferred to 
motor neurons connecting to proboscis muscles.

Another genetic screen identified pair of 12 cholinergic local interneurons to 
characterize Drosophila ingestion circuit. These neurons namely IN1 (ingestion 
neurons, Figure 3B) controls the dynamics of ingestion in flies regulated by hunger 
state and sucrose concentration [95]. Upon sucrose ingestion, IN1 interneurons 
show persistent increase in activity in fasted flies. The activity drops in response to 
subsequent feeding bouts. Conversely IN1 interneurons in fed flies show smaller 
responses to sucrose which lacked persistent activity. In a satiated fly, insensitive 

Figure 3. 
Examples of few taste circuits in the Drosophila brain. (A) Sweet gustatory projection neurons (NP1562+ 
sGPNs). (B) IN1 Cholinergic Local Taste Interneurons (ingestion neurons). (C) PERin neurons. (D) TPN1, 
TPN2, TPN3 neurons. TPN2 and TPN3 neurons terminate in the SLP (superior lateral protocerebrum) and in 
and around lateral horn area. Both SLP and lateral horn are nearby structure.
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sucrose IN1 neurons show decrease drive to ingest and results in shorter ingestion 
episodes. IN1 SEZ second-order interneurons monitor ingestion by receiving pre-
synaptic input from sugar sensitive taste neurons in the pharynx [95]. Hence, the 
IN1 probably be the second- order neurons for a particular subprogram of feeding 
behavior i.e. ingestion that provides a fast feedback mechanism to regulate sucrose 
ingestion by integrating taste and hunger signals. The study proposes IN1 neurons 
as a key node in the circuit that governs rapid food intake decisions.

6. Bitter taste circuit in the brain

The bitter taste modality is conserved in insects and mammals. It plays a key role 
in evoking aversive behavior in animals [32, 66, 68, 96]. Bitter sensitive gustatory 
interneurons (VGN6341) in the adult SEZ are identified by performing a functional 
behavioural screen and shown to be involved in aversive gustatory responses [97]. 
These neurons receive direct synaptic input from Gr66a labelled bitter-sensitive 
GRNs. The VGN6341 neurons are single bilaterally symmetric pair of SEZ inter-
neurons responsible for the inhibition of the appetitive PER responses and gets 
activated by natural or transgenic stimulation of bitter GRNs [97]. Identified bitter 
gustatory local interneurons (bGLNs) play an important role in the aversive bitter-
sensitive gustatory circuitry of the adult fly and represent a significant step towards 
understanding how bitter taste modalities are processed by the gustatory circuitry 
in the brain. Identifying their postsynaptic targets in the bitter gustatory circuitry 
of the SEZ will reveal new players of the bitter higher order taste circuits. And 
whether they will receive excitatory or inhibitory input from these new player’s cells 
await further investigation [97].

Three classes of taste projection neurons (TPNs) have been identified based 
on their morphology and taste selectivity [98] named as TPN1, TPN2 and TPN3 
(Figure 3D). TPN1/TPN2 neurons respond to sweet taste and promotes PER 
(innate feeding behavior) while TPN3 is bitter responsive and inhibits PER. TPNs 
are long-range projection neurons that separately carry sweet (TPN1 and TPN2 
selectively relay sugar taste detection from the legs) or bitter information to higher 
brain demonstrating modality-specific relays. TPN3 responds to bitter taste on the 
legs and the proboscis, suggesting aversion to bitter compounds may not require 
specific location. Their data suggests that taste detection from different organs 
serves different functions, consistent with other studies where interneurons sense 
sweet taste from the mouthparts and drive ingestion [95]. The organ-specific and 
modality-specific connectivity of TPNs demonstrates a mechanism to encode both 
taste location and taste quality. As both TPN2 and TPN3 send axons to the superior 
lateral protocerebrum (SLP) (Figure 3D) suggesting that information from the 
higher brain feeds back onto sensorimotor circuits for PER. Functional link from 
TPNs to mushroom body (learning and memory centers) has been postulated based 
on the presence of their arbors in the SLP and lateral horn, which further excite or 
inhibit MB extrinsic neurons. Reciprocal and bidirectional interactions between 
SLP and MBs for learned associations have also been shown previously [99]. 
Conditional silencing of TPNs suggested that TPNs are not essential for proboscis 
extension and contribution from other neurons must contribute to this behavior but 
TPN2 and TPN3 are essential for conditioned taste aversion. Inhibition of synaptic 
transmission in sugar-sensing TPN2 during either training or testing decreased 
conditioned aversion, whereas inhibiting bitter TPN3 decreased aversion only if 
inhibition occurred during training. The modulatory role played by TPNs without 
being essential components of PER circuits require future investigation. These 
studies demonstrate modality-selective taste pathways to higher brain.
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In a separate study, a pair of interneurons (PERin neurons, Figure 3C) are identi-
fied that activate by stimulation of mechanosensory neurons inhibiting feeding 
initiation. Conversely, inhibition of activity promotes feeding initiation and inhibits 
locomotion suggesting such neurons suppress feeding while the fly is walking 
[100]. The dendrites of these neurons reside in the first leg neuromeres whereas 
axons are found in both SEZ and first leg neuromeres suggesting that they process 
information from the legs and convey to SEZ. These neurons do not make synaptic 
connections with known neurons that regulate proboscis extension. This study 
highlights that feeding initiation and locomotion are mutually exclusive behaviours 
and identified pair of interneurons influence this behavioural choice.

A receptor-to-neuron maps of pharyngeal taste organs reveals the presence 
of multiple classes of taste neurons [101], consistent with the knowledge that the 
pharynx may independently assess food quality. In this study use of Pox-neuro 
(Poxn) mutants (mutants in which all external taste bristles are transformed 
into mechanosensory bristles but all pharyngeal taste neurons retain) [101–104] 
suggests how pharyngeal taste input affects feeding behaviours. It is found that 
high salt inhibits sucrose-evoked activity of pharyngeal Gr43a+ sweet GRNs. 
Furthermore, feeding avoidance of denatonium, tartaric acid, or high salt elimi-
nates only when both inhibition of pharyngeal Gr43a sweet GRNs and activation 
of different combinations of aversive pharyngeal GRNs are absent. Tracing experi-
ments reveals that both appetitive and aversive pharyngeal GRNs convey inputs 
to two common brain areas (pars intercerebralis and lateral protocerebrum), 
suggesting that pharyngeal taste is represented across brain regions. This study 
demonstrates an important role of pharyngeal taste in controlling food choice and 
intake [105].

7. Central neurons controlling regurgitation

In another genetic screen to understand how sensory information is translated 
into behavior, a subset of higher order neurons labeled by VT041723-GAL4 trans-
genic line are identified that controls regurgitation after food ingestion [105]. The 
neurons labeled by VT041723-GAL4 receive sensory input from peripheral Ir76b+ 
taste neurons in the pharynx. Optogenetics activation of these neurons produce 
“proboscis holding” behavior (extrusion of the mouthpart without withdrawal). 
Flies pre-fed with either sugar or water before neuronal activation shows regur-
gitation indicative of an aversive response. However, motor circuits controlling 
regurgitation and if PER and regurgitation share common motor programs are not 
known. Identification of VT041723-GAL4 neurons provide a ground to address 
such questions [105].

8. Higher order taste circuits involved in taste learning and memory

In Drosophila, MBs are the central sites for experiential learning that are com-
posed of approx. 2,000 Kenyon cells (KCs) which have dendrites in a region known 
as calyx (Figure 4A) [106–108]. Pairing of sugar with a deterrent compound creates 
aversion to sugar in flies although for the short duration [109]. The conditioned 
taste aversion involves MBs [80, 109]. How the diversity of sensory information 
that the MB integrates is still undetermined. Anatomical studies have suggested that 
visual, tactile and gustatory cues are processed in different compartments of MB as 
conditional stimulus (CS) [110]. The MBs also receives multimodal inputs as they 
are required for courtship, taste conditioning and visual learning [109, 111].
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Based on their axonal arborizations in the α/β, α’/β’, and γ lobes, the KCs of the 
MB are divided into three main classes (Figure 4B). Evidences have identified that 
functional specializations among and within the classes, with different subsets 
playing different roles in the phase, type, and length of associative memory [112]. 
Evidence that the MB processes tastes as CS and US (unconditional stimulus) 
comes from behavioural taste conditioning experiments [109, 113]. A simple taste 
behavior is the proboscis extension response (PER): when leg gustatory neurons 
detect sucrose, the fly extends its proboscis to eat. Pairing sucrose stimulation to the 
leg (CS) with an aversive stimulus (US) causes short-term inhibition of proboscis 
extension. This learned behavior requires the MB, but the neural processing in the 
MB that underlies taste conditioning is unknown. To gain insight into sensory pro-
cessing, taste representation and role of these structures in aversive taste condition-
ing in the MB, behavioural and high end imaging studies reveal that the gustatory 
information in the main calyx are segregated and have unique representation by dif-
ferent taste modalities and different taste organs [80]. Such inputs get differentially 
and independently modified by learning. Selectively blocking the γ lobe neurons 

Figure 4. 
Adult Drosophila brain showing higher brain areas. (A) Learning and memory centers in adult fly brain 
includes mushroom body, calyx, Kenyon cells (KC) and lateral horn. (B) Structure of MB lobes. There are 
three different classes of neurons that make up the MB lobes (α/β, α’/β’ and γ).
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leads to complete elimination of conditioned aversion suggesting role γ lobe as the 
site for aversive taste memory formation in the MB. The study also demonstrates 
the requirement of MB neurons for taste conditioning and taste information relayed 
to the MB is via multiple pathways. Only taste stimulation (bitter compounds and 
sucrose) activates the dorsal accessory calyx which has been implicated in gusta-
tory processing in other insects earlier [114] providing evidences that gustatory 
MB representation is distinct from olfactory cues. These studies have extended the 
understanding of the neural coding underlying conditioned learning in the MB as a 
sensory integration center in the fly brain.

9. Motor neuron circuit

Interneurons are the local circuit neuron of CNS that relays impulses between 
sensory neuron and motor neuron while a neuron that passes from CNS or a 
ganglion towards a muscle and conducts a nerve impulse resulting in movement 
is known as motor neuron. The process by which brain process the sensory infor-
mation into motor actions is not well acknowledged. A major step in most of the 
sensory-motor transformations is to convert the coordinates of sensory system into 
a map of spatially directed motor actions.

Proboscis is the primary feeding organ of flies and also plays an important 
role for taste cue detection and food ingestion and show reliable PER by applying 
positive gustatory stimulus to GRNs [67, 109, 115, 116]. PER represents an innate, 
sequential behavior involving many movement steps [78]. PER sequence may 
require activation of different muscle groups at distinct time points, implying a 
defined temporal organization of upstream motor neuron (MN) activity. It has been 
proposed that the relay of gustatory sensory information from GRNs to MNs occurs 
mainly within the SEZ [67, 72, 117–119]. The motor neurons innervating proboscis 
musculature have been portrayed in fruit fly and blow fly [120, 121]. There are 
15 paired proboscis muscles found in blowfly and 17 in Drosophila, illustrating 13 
prime muscle groups. These muscles control action of 3 segments of the proboscis 
i.e. rostrum, haustellum and labellum with distinct muscles intricate in extension 
or retraction. The central and dorsal dilator muscle, forms the cibarial pump, which 
dilates the pharynx to coordinate fluid intake [122]. Twenty pairs of motor neurons 
innervate proboscis muscles [120, 121] and each proboscis muscle is innervated by 1 
to 3 motor neurons. On the basis of the nerve through which their axons depart the 
CNS, the proboscis motor neurons are categorized as labial, pharyngeal, or acces-
sory pharyngeal. The Cibarial muscles, forming the oral pump, are innervated by 
pharyngeal motor neurons, while the proboscis muscles required for the placement 
of proboscis during feeding are innervated by labial motor neurons.

A pair of neurons that generate feeding motor program and induces the entire 
feeding sequence when activated are identified in Drosophila [78]. The interneurons 
called feeding neurons (fdg) located in the SEZ are required for feeding as their sup-
pression eliminates the sugar-induced feeding behaviour (Figure 5B). Activation 
of a single Fdg-neuron leads to asymmetric feeding behavior. Fdg-neurons respond 
to food only in starved condition suggesting this response is dependent on the 
metabolic state of the animal. The asymmetric regulation of proboscis extension by 
the Fdg-neuron suggests that each Fdg-neuron may selectively regulate the strength 
of proboscis muscle contraction on the same side of the body. These results are 
consistent with the observation that presentation of food to gustatory receptors 
on one side of the body leads to proboscis extension on that side demonstrate that 
Fdg-neurons operate firmly within the sensori-motor watershed, downstream of 
sensory and metabolic cues and at the top of the feeding motor hierarchy to execute 
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the decision to feed. How the Fdg-neurons coordinate the various motor patterns 
involved in feeding remains to be determined.

One of a study revealed that the mouth mechano-reception can ease and end feed-
ing by two distinct central motor circuits and these two mechanosensory circuits merge 
with bitter taste in opposing manners to shape feeding behavior. Mechanosensory 
neurons (MSNs) were identified in taste pegs and taste bristles of the labella which rely 
on the same mechanoreceptor, NOMPC (No mechanoreceptor potential C) to trans-
duce mechanical drift. The optogenetic arousal of bristle MSNs induce labellar spread, 
while activation of peg MSNs induces proboscis  retraction [123].

Another pair of motor neurons involved in taste behavior has been identified to 
identify the components of the PER circuits. These neurons activate by sugar stimu-
lation and inhibit by bitter stimuli [76]. The bilateral pair of E49 motor neurons 
are both necessary and adequate to initiate proboscis extension reflex. Although 
these neurons synapse on proboscics musculature and show wide dendritic field 
in SEZ but otherwise are shown to make no direct connections with GRNs [76]. 

Figure 5. 
Examples of motor neurons in adult fly that are involved in proboscis extension. (A) Five motor neuron types 
that control the key steps of proboscis extension were identified, lifting of the rostrum (MN9), extension of the 
haustellum (MN2), extension of the labella (MN6), spreading of the labella (MN8) and proboscis retraction 
(MN1). (B) Fdg neurons.
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In Drosophila, feeding is achieved by a pump that draws fluid into the esophagus. It 
has been shown that the cibarial motor neurons play a key role in such a pumping 
behavior [124]. The inhibition of these motor neurons decrease the feeding and 
pump frequency, while activation induce arrhythmic pumping. The rate of pump-
ing is shown not to be affected by sucrose concentration or hunger but is changed 
by fluid viscosity. These neurons respond to taste stimuli and show prolonged 
prolonged to palatable substances. The open question is how cibarial pump motor 
neurons talk to rest of the feeding circuit in flies. How rhythmic motor activity is 
generated together with other feeding motor program such as proboscis extension 
and retraction and the neural circuits involved in such a behavior will provide 
insight in their role in the feeding circuit. There is a possibility that different chemo-
sensory inputs may trigger PER and pumping as stimulation of tarsal taste neurons 
elicit PER but not pumping [115, 125]. Further studies revealed four GABAergic 
interneurons in the fly brain that impose feeding restraint in Drosophila. Inactivation 
of these neurons results in excessive ingestion of all compounds regardless of taste 
quality or nutritional state while severe activation of these neurons decreases inges-
tion of water and nutrients. These neurons act upstream of motor neurons for mul-
tiple feeding subprograms such as meal initiation and ingestion. Hence, this study 
unfolds how central inhibitory control regulates feeding behaviors and is required to 
inhibit a latent state of uncontrolled and nonselective consumption [125].

In a separate study, analysis of sequential features of the motion pattern of PER 
provided morphological description of proboscis motor neurons and muscles [121]. 
By implying genetic manipulations along with artificial activation and silencing 
process, five motor neuron types that control the key steps of proboscis extension 
are identified, lifting of the rostrum (MN9), extension of the haustellum (MN2), 
extension of the labella (MN6), spreading of the labella (MN8) and proboscis 
retraction (MN1) (Figure 5A). The above-mentioned steps are independently 
controlled in a one-to-one manner with the majority of MNs both sufficient and 
required for the execution of one individual step of the forward reaching behavior.

Remarkable specificity has been observed for candidate higher-order neurons in 
terms of the sensory neurons that activate them (proboscis versus mouthparts) and 
the behavioural subprograms they generate i.e. proboscis extension versus inges-
tion. The identification of these neurons suggest taste information is processed by 
parallel labelled lines via several different neural streams that coordinate different 
aspects of feeding behavior. Another behavioural study of the function of different 
taste neurons on the legs found that some cause inhibition of locomotion whereas 
others promote proboscis extension [72]. This study highlights that sweet taste 
receptor neurons of legs are essential for sugar choice and highlighted a functional 
dissociation between and within taste organs of Drosophila.

10. Modulation of feeding behaviors via taste circuits

Taste preference and sensitivity are two most essential elements of food evalua-
tion. Such criteria are not always constant and often change depending on internal 
states such as hunger and satiety. Recent evidences reveal that starvation induces 
increased sweet taste preference and sensitivity at the periphery and in the CNS in 
various species from fruit flies to humans [81, 126, 127]. Electrical recordings of 
various neurons in central brain areas in mice and monkeys including amygdala, 
orbital frontal cortex, and hypothalamus have indicated the existence of neurons 
that can respond to taste stimuli in a state (hunger/satiety)-dependent manner 
[128–130]. However, the key neuronal pathway(s) responsible for hunger-induced 
taste modification are still unknown.
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Neuromodulators such as neurotransmitters, neuropeptides, and endocrine 
hormones, play an important role in changing the morphological and functional 
characteristics of neural circuits to achieve behavioural flexibility. The changes in 
taste preference could occur through variation in the peripheral taste receptor cells, 
or in higher order neural circuits controlling food intake in the brain. To understand 
how changes in the internal state influence behavioural decisions in flies, various 
neurons in the SEZ whose activity depends on starvation state have been identified. It 
has been suggested that Dopamine is a potent modulator of a variety of behaviors in 
mammals and flies. Tyrosine hydroxylase ventral unpaired medial (TH-VUM) dopa-
minergic neurons modulate feeding in response to nutritional needs (Figure 6A) 
[131] and feeding (Fdg) interneurons (Figure 5B) integrate gustatory input with the 
internal state to command a feeding behaviour routine [78]. Even in mice mutant for 
Tyrosine hydroxylase show failure in initiating feeding in spite of intact motor ability 
to consume [132]. It has been shown that TH-VUM neurons can drive proboscis 
extension and neuronal activity of TH-VUM corresponds with the starvation dura-
tion. Silencing TH-VUM neurons decrease PER in starved flies to sucrose whereas 
increasing the activity of TH-VUM elevates PER in both fed and starved flies [131].

Role of various neuromodulators in regulating feeding responses in starved adult 
Drosophila [125, 133–135] has shown that dNPF and sNPF, neuropeptides related 
to mammalian NPY, modulate multiple feeding related behaviours, including the 
formation and expression of food-associated memory, enhancement of food-related 
olfactory sensitivity, and control of food intake during starvation [136–140]. 
During energy deficit conditions, animals become less selective in their food choices 
by enhancing their sensitivity to nutritious resources, such as sugar [115, 141–145]. 
Hunger enhances behavioural sensitivity to sweet taste, at least in part, via 
increased dopamine (DA) release onto Gr5a-expressing sugar-sensing GRNs, which 
increases calcium responses to GR activation in flies [131, 144]. Starvation also 
reduces sensitivity to unpalatable and potentially toxic compounds, such as bitter 
tastants. In PER assay, sensitivity to bitter tastants reduce in fasting flies’, in part, 
independently of the increase in sugar sensitivity [126]. Both dopamine and dNPF+ 
modulates sugar and show enhanced sugar sensitivity during starvation. dNPF 
act upstream of dopamine to control sugar. This study also suggests that subsets 
of sNPF expressing neurons regulate bitter sensitivity under starvation and sNPF 
as well as dNPF-dopamine pathways independently regulate bitter- and sugar 
sensitivity at the neuronal circuit level suggesting neuromodulatory cascades serve 
as key mediators of state-dependent control [134, 146–148]. Separately it has been 
shown that starvation reduces Octopaminergic/tyraminergic OA-VL activity and 
results in depotentiation of bitter taste in flies (Figure 6B) [149].

Figure 6. 
Examples of few modulatory neurons in the adult fly brain. (A) TH-VUM neurons. (B) OA-VL1 and OA-LV2 
(B) neurons that send projections to SEZ.
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Recent identification of second-order sweet taste neurons [81] has enabled 
investigations into the interplay between sweet taste circuits and other sweet- and 
starvation responsive neurons to understand the neural basis of feeding behav-
ior. Both starvation state and an increase in dopamine signaling brings about an 
enhancement of sGPN sensitivity to sucrose. In both cases, increases in sucrose- 
induced calcium activity occurs in the absence of corresponding changes in periph-
eral sweet Gr5a+ neural activity. Other studies have detected that starvation leads 
to increases in sucrose-evoked electrophysiological [150, 151] or calcium activity in 
Gr5a+ taste neurons [144]. In most cases, the observed increases in GRN sensitivity 
was comparatively small in magnitude compared with the alterations in NP1562+ 
sGPN activity of starved flies.

There are several other neurons that have been identified as modulating sugar 
feeding. A pair of Fdg (feeding) neurons (Figure 5B) act as command neurons in 
the fly, is also required for normal feeding behavior as the ablation of the neurons 
distort the sugar prompt feeding behavior. These neurons activate by sugar taste but 
only in starved flies [78]. Moreover, twelve cholinergic interneurons, IN1 in the SEZ 
form synapse with sugar sensing neurons. The activity of these neurons is also regu-
lated by hunger state/starvation but unlike feeding neurons that respond to sweet 
taste, ingestion neuron is triggered by sucrose ingestion. Also, the activation of IN1 
neurons increases the chance of sugar ingestion upon presenting a drop of sucrose 
solution in close proximity instead of directly triggering the feeding behavior [95].

In another study, it has been shown that only sweet neurons express GABAB 
receptor (GABABR) [152]. GABABR mediates presynaptic inhibition of calcium 
responses in sweet GRNs, and both sweet and bitter stimuli evoke GABAergic 
neuron activity in the vicinity of GRN axon terminals. Blockage of GABABR both 
lead to increased sugar responses and decreased suppression of the sweet response 
by bitter compounds. This study propose a model in which GABA acts via GABABR 
to expand the dynamic range of sweet GRNs through presynaptic gain control and 
suppress the output of sweet GRNs in the presence of opposing bitter stimuli [152].

Further evidences [77] show that hug neurons function within a neural circuit 
that modulates taste mediated feeding behavior. Suppression of hug neurons 
activity, cause a change in particular feeding behavior response. As a result of this 
alteration the control flies when shifted to a new food medium, they hold back for 
a period of time before feeding, on contrary the experimental flies initiate feeding 
promptly. The size of the crop after a long feeding period does not change in both 
cases, implying that there is no difference in the termination phase of feeding. 
There is a possibility that the Drosophila link feeding with a familiar source of food 
and when they experience different food source, they first re-examine it before 
feeding. Hence, the hug neurons seem to regulate feeding initiation based on earlier 
food encounter.

It has also been shown that starvation of amino acid stimulates yeast feeding by 
regulating central brain circuits. Two dopaminergic neurons (DA-WED) in each 
hemisphere of the adult brain innervating the “Wedge” neuropil are suggested to 
encode protein hunger. The suppression of these neurons results in decrement of 
yeast intake but elevates the sucrose consumption, whereas if these neurons are 
triggered they enhances the yeast intake but minimizes the sucrose consumption. 
Thus, like overall hunger and thirst, nutrient specific hunger motive may also 
compete for behavioral expression [153].

Mating has also been shown to be responsible for modifying the feeding behav-
ior in female Drosophila, and the sex peptide is a key molecule involved in this 
modulation [154]. Mating improves female’s interest in valuable nutrient source 
(polyamines such as spermine and putrescine). The mated females attract more to 
the taste and smell of polyamines than virgin females. This modulation in behavior 
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is regulated through sex peptide receptor (SPR) and its conserved ligands MIPs 
(myoinhibitory peptides) that directly act on chemosensory neurons [155]. Another 
modulation in feeding was shown by Walker and colleagues that mating induces a 
salt appetite in Drosophila. Mating promote chances of salt appetite by increasing 
gustatory response to sodium. It is induced by male-derived Sex Peptide acting on 
the SPR (Sex peptide receptor) in female reproductive tract neuron [156]. In has 
been suggested that mating is a pivotal modulator of the decision-making process in 
female flies and depends on the action of the SPR in internal ppk+ sensory neurons 
along with a neuronal TOR /S6K act as an essential input to this decision. The SPR 
signaling in ppk+ neurons trigger a robust inclination for yeast in mated females 
while neuronal TOR/S6K signaling modulates food choices [157].

It has been studied and shown that mushroom body controls the responses of 
adult flies to learned odours as well as regulates their innate food seeking behavior 
elicit by food odours. A study depicted that 5 of the 21 types of MBONs (Mushroom 
body output neurons) are required for starved flies to seek food odours. Four other 
MBONs (MBON-a3, MBON-b2b02a, MBON-a02 and MBON-g2a01) and their 
corresponding dopaminergic neurons (DANs) also regulate innate food seeking 
behavior. Obstructing MBONs and DANs reduce innate food seeking behavior in 
starved flies, and activation of dopaminergic neurons is sufficient to evoke food 
seeking behavior in fed flies. The results from RNAi knock-down of different 
receptors for various hunger and satiety cues illustrates that the MB innervating 
dopaminergic neurons are modulated by many of these signals, making the MB an 
integrative center for hunger and satiety signals in the fly brain [158].

11. Influence of taste on food intake and obesity in humans

High calories (especially overconsumption of energy from high fat and sugar 
foods) and low nutrition density (poor nutrition) are associated with many chronic 
metabolic diseases including cardiovascular diseases, obesity, diabetes mellitus type 
2 and eating disorders in humans. It’s a great burden on healthcare system in any 
country and effective intervention strategies are yet to be found to control them. 
Past research has suggested that taste impacts the selection of food and its intake in 
animals as well as other factors like satiation and palatability. Obese and overweight 
individuals show a tendency of selecting energy-dense-food [159]. In humans, 
pleasure achieved by food can stimulate “non- homoeostatic” eating making it a 
prospective player contributing obesity [160]. Nonetheless, factors like previous 
food experiences, liking, wanting, taste sensitivities and depressed sense of taste 
cannot be ignored. Many pathways, neural circuits and neurohormones involved 
as discussed in Drosophila section, regulate food intake and decision to stop eating. 
Internal and external cues also trigger immediate desire to eat specific foods and can 
impact the final outcome of how much to eat. Similarly, in humans as well several 
conserved pathways and genes have been observed to play a significant role in 
controlling feeding behavior.

Although it has been seen that smell also plays a key role in modulating taste 
perception and influence food intake in individuals [161], but alteration in reward, 
dopamine signaling, homeostatic signals and affective circuits lead to hedonic 
eating causing obesity [162, 163]. Various neuroimaging methods have provided 
insights into central mechanisms underlying taste and hedonic eating highlighting 
the role of taste circuits in obesity. It has been found food stimuli causes different 
neural brain responses in obese individuals compared to normal weight people 
showing striking structural and functional brain circuitry alterations [164–170]. 
A recent review by [171] and others [172, 173] have beautifully described neural 
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correlates of sweet, fat, umami, bitter, salty, and sour tastes across brain areas 
implicated in obesity. Although more conclusive neuroimaging outcomes are 
required to confirm the role of various taste neural circuits but experimental data 
indicates different hedonic responses to taste information in obesity. Dysregulations 
in brain reward circuitry in response to fat and sugar has been associated with 
obesity [165, 168, 174–177] suggesting fat and sugar affect brain reward circuitry 
differently. Similarly, high salt consumption has been linked to obesity engaging 
different brain areas which modulate taste processing and reward [178, 179]. These 
brain circuits also encode salt taste intensity [178, 180]. Data showing convincing 
differences in higher salt sensitivities between obese and normal individuals is still 
insignificant [181, 182]. Studies on neural responses to salt taste in case of obesity 
are still limited.

Another taste studied in the context of obesity is Umami which contributes to 
a sense of satiety [183, 184]. Obese individuals show reduced sensitivity but higher 
preference for umami taste [185, 186] than healthy controls. Since, umami and salt 
taste both activate primary gustatory cortex circuits in case of umami high tasters 
compared to low tasters suggest that both tastes share common processing system 
and may contribute to feeding behaviors implicated in obesity in a similar man-
ner [179]. Bitter taste influence dietary fat consumption suggesting its relevance 
in obesity [187]. Bitter taste linked with appetite reduction affect many brain 
areas [188–190]. Conditioning to bitter taste modulates Hedonic evaluation [191]. 
Alterations in brain activation patters associated with bitter taste in individuals 
with obesity [190] compared to people without obesity have been observed but 
more consistent and reliable findings are needed to understand the interaction 
between brain responses and hedonic ratings of bitter taste [192, 193]. Sour taste 
is least explored in context of obesity but it plays major role in food selection and 
consumption and recruit brain regions in sex, age and internal state, condition 
dependent manner [194, 195]. Neural correlates of sour taste in obesity are limited 
and require further investigations. dysregulation of gut to brain neural connec-
tions and chemosensory pathways along this axis may also contribute to increased 
risk of obesity [196] suggesting gut could offer potential therapeutic targets in 
obesity [197]. Nutritional interventions to target neural pathways involved in taste 
behaviors and perception could offer solutions for prevention and treating obesity 
in humans.

Further detailed neuroimaging studies to understand taste response, taste 
physiology and dietary intake in humans and higher animal model systems are 
required to illustrate the neurobiological underpinnings of taste modalities and 
their relevance in obesity. Further research to characterize the influence of gut taste 
receptors and neural circuits on brain responses following food consumption and its 
modulation by smell in obese individuals that influence food intake are also needed. 
Collectively, research on invertebrate model system like Drosophila shows potential 
in understanding neurobiological basis of metabolic diseases like obesity at level of 
neural circuits that regulate feeding behaviors.

12. Conclusion

For the animal fitness, feeding is regulated by peripheral and central feeding 
circuits to help in acquiring a necessary and balanced dietary input for energy and 
nutrient homeostasis. It is subjected to intense regulation by multiple neuromodula-
tor systems. In this chapter, we have illustrated recent progress in understanding 
neural circuits and its modulation in the feeding behavior including local circuits 
and motor neurons of adult flies which links various internal energy and nutrient 
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needs to adaptive behaviors. This chapter has integrated information about the 
structure, function, and molecular regulation of fly taste and feeding circuits. 
The fruit fly Drosophila melanogaster, with many fewer neurons, is ideally suited 
to understand the complex interactions between neural circuits and genetics that 
ultimately control behavior. Countless studies have demonstrated the conservation 
of critical genes between flies and humans, and striking similarities in the organiza-
tion of the brain, particularly the circuits that process sensory information. A num-
ber of functionally distinct populations of neurons in the fly taste circuits have been 
identified recently in flies that regulate various aspects of feeding behavior. We 
emphasize on the set or individual neurons that directly or indirectly affects steps 
in feeding behavior which can be independently adjusted by neuromodulatory cues. 
How newly identified interneurons that regulate feeding motor program, suppress 
non- selective ingestion and regulate fluid ingestion connect taste sensory input 
to the motor output of ingestion as well as interpret top-down information about 
hunger state is not known. The fruit fly shares the basic metabolic regulation that is 
conserved throughout evolution. Therefore, simple genetic models like Drosophila 
can provide reliable insights to advance studies in more complex vertebrates, and 
enhance understanding of specific feeding-related neurological and metabolic 
disorders in humans. Tracing taste neural circuits in the fly brain, understanding 
the contribution of taste-independent calorie sensing to feeding, and uncovering 
novel regulators of neuronal remodeling in the taste system can help elucidate 
similar principals in higher animals including humans. Together, such studies may 
provide important clues to how feeding circuits may function in mammals, and lay 
the groundwork for understanding genetic factors that affect feeding control and 
body weight.

Humans live in a society very different from the ones that shaped the evolution 
of our brains. Easy access to cheap, calorie-rich foods has resulted in widespread 
obesity and an explosion of obesity-related diseases such as type 2 diabetes, hyper-
tension, and heart disease. A detailed understanding of how feeding behaviour is 
controlled at the level of neural circuits is an important step towards developing 
new ways to treat and prevent obesity. Humans consume more calories when their 
diets consist of processed foods [198]. It has been shown that reducing taste sensa-
tion at the periphery, a high sugar diet impairs the central Dopamine processing 
of sensory signals and weakens satiation [199]. Given the importance of sensory 
changes in initiating this cascade of circuit dysfunction, understanding how diet 
composition mechanistically affects taste is imperative to understand how the food 
environment directs feeding behavior and metabolic disease.
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