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Abstract

Metabolic stability of a compound is an important factor to be considered 
during the early stages of drug discovery. If the compound has poor metabolic 
stability, it never becomes a drug even though it has promising pharmacological 
characteristics. For example, a drug is quickly metabolized in the body; it does 
not have sufficient in vivo exposure levels and leads to the production of toxic, 
non-active or active metabolites. A drug is slowly metabolized in the body it 
could remain longer periods in the body and lead to unwanted adverse reactions, 
toxicity or may cause drug interactions. Metabolic stability assay is performed to 
understand the susceptibility of the compound to undergo biotransformation in 
the body. Intrinsic clearance of the compound is measured by metabolic stability 
assays. Different in vitro test systems including liver microsomes, hepatocytes, 
S9 fractions, cytosol, recombinant expressed enzymes, and cell lines are used to 
investigate the metabolic stability of drugs. Metabolite profiling is a vital part of 
the drug discovery process and LC–MS plays a vital role. The development of high-
resolution (HR) MS technologies with improved mass accuracy, in conjunction 
with novel data processing techniques, has significantly improved the metabolite 
detection and identification process. HR-MS based data acquisition (ion intensity-
dependent acquisition, accurate-mass inclusion list-dependent acquisition, isotope 
pattern-dependent acquisition, pseudo neutral loss-dependent acquisition, and 
mass defect-dependent acquisition) and data mining techniques (extracted ion 
chromatogram, product ion filter, mass defect filter, isotope pattern filter, neutral 
loss filter, background subtraction, and control sample comparison) facilitate the 
drug metabolite identification process.

Keywords: metabolic stability, in vitro test systems, LC–MS, data acquisition and 
data mining techniques

1. Introduction

Drug metabolism is a process by which xenobiotics such as drugs are easily 
removed from the body by converting them into more polar derivatives and phar-
macologically inactive. Nevertheless, sometimes metabolism makes the compound 
less soluble, toxic or pharmacologically active. Therefore, information on the 
metabolism of new drug candidate is important to know the possible toxicity and 
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to circumvent failures in drug development. Bioavailability, half-life and clearance 
of a drug molecule are dependent on the rate of drug metabolism; these parameters 
define the dose and dosing frequency. A drug is difficult to develop, or market if the 
dose or dosing frequency is too high.

Drug metabolic reactions are two types, phase I and phase II biotransformation 
reactions. Hydrolysis, reduction, and oxidation are the phase I reactions catalyzed 
by cytochrome P450 (CYP) and flavin-containing monooxygenases (FMO). Phase 
II reactions are also called conjugation reactions in which metabolites produced in 
the phase I reactions may undergo glucuronide conjugation, glutathione conjuga-
tion, sulfoconjugation, amino acid conjugation, acetylation, and methylation. 
These reactions are catalyzed by enzymes like Uridine 5′-diphospho (UDP)-
glucuronyl transferases (UGTs) or sulfotransferases (SULTs), glutathione S– trans-
ferases (GSTs), N–acetyltransferases (NATs), and methyltransferases [1–5]. In vivo 
pharmacokinetics are predicted by using in vitro metabolic stability studies in the 
early stages of drug discovery and development. Metabolic profile evaluation is also 
an important issue in this field [6–8].

Susceptibility of a chemical compound to biotransformation is known as meta-
bolic stability and is articulated as intrinsic clearance (CLint) and in vitro half-life 
(t1/2). Intrinsic clearance (CLint) is the ability of the liver to remove or metabolize 
the drug in the absence of flow restrictions and drug binding to cells, or proteins 
in the blood. t1/2 is defined as the time required for 50% elimination of the parent 
compound. Different models are used to predict additional indices like hepatic 
clearance (CLH), in vivo t1/2, and bioavailability. Hepatic clearance (CLH) is the most 
important parameter during drug development because most drugs are metabolized 
in the liver tissue [2, 9–13].

Metabolic stability of new drug molecule is assessed by in vitro techniques and 
then scaled to in vivo using scaling factors. When metabolic stability is performed 
with liver microsomes, in vitro half-life (t1/2) can be determined from the slope of 
the linear regression of the percentage of drug remaining against time. Microsomal 
intrinsic clearance (CLint, micr) can be determined using the equation ln2/t1/2 × [vol-
ume of incubation medium (μL)/microsomal protein in incubation (mg)] and the 
expressed units are μL min−1 mg−1. In vivo intrinsic(hepatic)clearance is estimated 
from liver microsomal data using the equation CLint = CLint,micr× (mg microsome 
g−1 liver) × [liver mass (g)/body mass (kg)] and is expressed in the units of mL 
min−1 kg−1. Scaling factors: 45 mg of microsomal protein per gram of liver tissue 
(humans, mice, rats, dogs, monkeys/value is applied to all species) and 26 g, 32 g, 
30 g, 40 g and 87 g of liver tissue per kilogram of body weight is used for humans, 
monkeys, dogs, rats, and mice, respectively [2, 14–21].

McNaney et al. classified compounds based on their CLint values, compounds with 
CLint value above 15 mL min−1 kg−1 are called low clearance compounds, compounds 
with CLint value between 15 and 45 mL min−1 kg−1 are called intermediate clearance 
compounds and compounds with CLint values above 45 mL min−1 kg−1 are called as 
high clearance compounds [12]. High CLint and low in vitro t1/2 values indicate that 
the compound is rapidly metabolized and in vivo bioavailability of compound will 
be low. Hence, in vitro t1/2 values can be used for the classification of compounds; for 
example in the case of human CYP3A4 supersomes, compounds with in vitro t1/2value 
less than 10 min are classified as short in vitro t1/2 compounds, compounds with in 
vitro t1/2 value between 10 to 30 min are classified as moderate t1/2 agents and long t1/2 
compounds are the compounds with in vitro t1/2 value greater than 30 min [22].

A new chemical entity, which is suitable as a drug candidate must maintain 
adequate concentration at the site of action and could be slowly removed from the 
body to make sure of its action. High metabolic stability, high clearance values, 
and active or toxic metabolites formation are the biggest challenges during the 
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drug discovery and development stages [23]. Compounds which have high clear-
ance values are quickly removed from the body and show short duration of action. 
Conversely, compounds with low clearance values will show prolonged half-life 
and long duration of action, and so dosing will be reduced [24–28]. An important 
step in the drug discovery process is the identification of compounds with suitable 
metabolic profiles [29–31]; hence, the study of the chemical structure of molecule 
and identification of “soft spots” liable for biotransformation is required. Metabolic 
properties of the compound are improved by modification, or removal of the soft 
spots in the molecule [32, 33].

It is very important to carry out the metabolic stability of new molecules dur-
ing the early stages of drug discovery to learn the metabolic characteristics. Even 
though some molecules pass in the in vitro level tests by showing promising results, 
they fail in the pharmacological and toxicological results at the in vivo level [24].

In vivo animal studies give important information regarding the metabolism 
of new chemical compounds, but these are costly, require more time, and are 
not suitable to test a large number of compounds. Hence, in vitro tests are used 
initially for the selection of compounds, and then a suitable animal model will be 
used in the drug development stages to determine the metabolic characteristics of 
selected compounds [23, 34–36]. During the drug discovery process, performance 
of metabolic stability by in vitro models is preferable compared with the animal 
models because the number of compounds to be tested is large and the amount of 
compound available for testing is small. Data from the in vitro metabolic studies will 
be useful for the targeted synthesis of compounds with required metabolic profiles 
and hence reduces the cost and time [2, 7, 37, 38].

2. In vitro test systems to conduct metabolic stability

Metabolic stability study can be conducted by incubating the test compound 
with the appropriate metabolic model (e.g., liver microsomes, hepatocytes, S9 
fractions) and analysis of incubation mixture by suitable analytical techniques like 
LC–MS/MS [39–41].

Microsomes and hepatocytes are the commonly used in vitro systems to conduct 
metabolic stability. Other systems used are S9 fractions, cytosol, recombinant 
expressed enzymes, and cell lines.

2.1 Liver microsomes

Microsomes obtained from different species (e.g., human liver microsomes, 
HLM; rat liver microsomes, RLM; mouse liver microsomes, MLM; dog liver 
microsomes, DLM, or monkey liver microsomes, MnLM) are used in the metabolic 
stability studies [42]. The most popular in vitro model is human liver microsomes. 
Alternatively, MLM is a good preliminary tool that the results obtained correlate 
well with the results obtained with HLM [43, 44]. Liver microsomes are sub-
cellular fractions derived from the smooth endoplasmic reticulum of liver cells. 
Homogenization of the liver and then differential centrifugation is performed to 
prepare the liver microsomes [9, 45]. Phase I oxidation is evaluated by the addi-
tion of a cofactor like nicotinamide adenine dinucleotide phosphate (NADP). 
Glucuronidation is also studied by liver microsomes with the addition of uridine 
diphosphate glucuronic acid (UDPGA). Various metabolizing enzymes like 
cytochrome P450s (CYP), flavin monooxygenases (FMO), epoxide hydrolase and 
carboxyl esterases, and UDP glucuronyl transferases are present in the HLM prepa-
ration. Hence, they are commonly used to study the metabolic fate of drugs [46].



Drug Metabolism

4

Metabolic stability assays are generally performed by incubating the compound 
with liver microsomes and depletion of a drug during incubation is measured by 
HPLC or LC–MS. In the metabolic stability assay, the incubation mixture consists of 
a test compound (which is dissolved in potassium phosphate buffer, if not soluble 
in phosphate buffer dissolved in acetonitrile, methanol, or DMSO and the final 
organic solvent concentration in the assay should always be ≤1% for acetonitrile and 
methanol or ≤ 0.2% for DMSO), NADPH (reduced form of nicotinamide adenine 
dinucleotide phosphate) or NADPH regenerating system, potassium phosphate 
buffer and liver microsomes. Protein concentration usually does not exceed 2 mg/ 
mL to prevent too much nonspecific binding. In the first step, the mixture contain-
ing the test compound, buffer, and microsomes is pre-incubated at 37°C for 15 min-
utes before the addition of NADPH. The obtained mixture is incubated at 37°C for 
several time intervals (e.g., 15, 30, and 60 min). Incubation time is generally not 
more than 60 min for optimal conditions for enzymatic activity. At the predeter-
mined time points, the reaction is quenched by the addition of ice-cold acetonitrile 
or methanol. The samples are vortexed and centrifuged; the supernatant is collected 
and analyzed by HPLC or LC–MS/MS. In the case of control samples, NADPH is 
replaced by potassium phosphate buffer [2, 24, 47–52].

The extent of metabolism (as substrate depletion) is calculated by using the 
following Equation [53].

 ( ) ( )
( )
C x 1000

rate of depletion pmol / min/ mg
B x T

∆
=  (1)

where ΔC = [concentration (or peak area) at 0 min] – [concentration (or peak 
area) at time T (nmol/mL or μM],

B is the microsome protein concentration (mg/mL),
T is the incubation time (min).
and 1000 is the conversion factor from nmol to pmol.

2.2 Hepatocytes

Phase I and Phase II drug metabolism is studied by using hepatocytes [9], which 
shows the heterogeneity of CYP expression in the human liver [54]. The metabolic 
profile of the number of drugs analyzed by cultured hepatocytes [55, 56] and 
suspensions of primary hepatocytes, and shown good in vitro– in vivo correlation 
[57–59]. A decrease in CYP expression is observed with cultured hepatocytes and 
thereby loss of liver specific functions. Phase I and Phase II enzyme activity is 
retained with cryopreserved hepatocytes. The disadvantage of hepatocytes may be 
an inter-individual variation that can be overcome by using mixtures of hepatocytes 
from different donors. HepatoPac is the new strategy used to create stable in vitro 
liver models that enable long-term hepatic metabolism and toxicity studies. It is 
a micropatterned hepatocyte-fibroblast co-culture system that can be used for 
continuous incubation of up to 7 days [2, 24, 28, 38, 60, 61].

The general procedure for a metabolic stability study is to prepare a hepatocyte 
suspension containing 106cells/mL and incubate for 10 min (37°C, 5% CO2). Test 
compound solution is added to the cells and again incubated. At the predetermined 
time points (e.g., 15, 30, 60, and 90 min) reactions are stopped by the addition 
of ice-cold methanol or acetonitrile. Control samples are also prepared without 
hepatocytes. Supernatants are collected and analyzed for parent molecule and its 
metabolites by HPLC or LC–MS [43, 44, 60, 62–65].



5

In vitro Metabolic Stability of Drugs and Applications of LC-MS in Metabolite Profiling
DOI: http://dx.doi.org/10.5772/intechopen.99762

2.3 Recombinant expressed enzymes

Recombinant expressed enzymes are the sources of specific P450 isoenzymes. 
The advantages are simplicity of the method and a single enzyme can be used for 
the study. In cases of low metabolism, recombinant enzymes can be used at high 
concentrations to increase metabolic activity for use in metabolic stability screening 
and in inhibitory potential evaluation. Recombinant enzymes can also be used in 
the confirmation of reaction phenotyping studies. Conversely, the absence of the 
remaining phase I and phase II enzymes can be considered as a disadvantage of this 
type of system [2, 66].

The assay procedure consists of a test compound solution, recombinant P450 
isoenzyme, potassium phosphate buffer, and magnesium chloride. The mixture 
is pre-incubated for 15 min at 37°C and then the metabolic reaction is started by 
the addition of NADPH. The incubation is continued for different time points. 
The reaction is ended at each timepoint by the addition of ice cold acetonitrile or 
methanol and centrifuge the samples. Supernatants are collected and analyzed by 
HPLC or LC–MS [67, 68].

2.4 Cytosol

Cytosolic fraction is an in vitro model that has not been used commonly for bio-
transformation studies. The cytosol is produced by differential centrifugation of whole 
liver homogenate. Soluble enzymes of phase II, such as N-acetyltransferases (NAT), 
sulfotransferases (SULT), glutathione S-transferase (GST), carboxylesterase, diamine 
oxidase, soluble epoxide hydrolase, alcohol dehydrogenase, and xanthine oxidase are 
expressed in the cytosolic fraction, but the aforementioned initial three enzymes are 
expressed at higher concentration. This in vitro model requires cofactors like acetyl 
CoA (acetyl coenzyme A), acetyl CoA-regenerating system and dithiothreitol for NAT, 
3′-phosphoadenosyl-5′-phosphosulfate (PAPS) for SULT, and glutathione for GST 
activity. The biotransformation by NAT, GST, or SULT can be studied separately or in 
combination depending on the cofactors added. The main disadvantage of this model 
is the lack of UGT and hence glucuronidation cannot be studied [69].

2.5 S9 fractions

S9 fraction preparations contain both cytosolic and microsomal fractions and 
as a result express a wide variety of metabolic enzymes-CYP, FMO, carboxyles-
terases, epoxide hydrolases, UGT, SULT, methyl transferases, acetyltransferases, 
GST, and others. This in vitro model can be used for metabolic, mutagenicity, and 
toxicity studies. The addition of co-factor is required for enzyme activity. The main 
advantage of S9 fraction over microsomes and cytosolic fraction is a more complete 
depiction of the metabolic profile due to the existence of phase I and phase II 
enzymes. In some cases, S9 fractions produce metabolites that are not formed by 
either microsomes or cytosol alone. However, the disadvantage of S9 fraction is 
overall lower enzyme activity compared with the microsomes and cytosol, thus it 
may leave some metabolites unnoticed [69, 70].

2.6 Cell lines

Cell lines are less popular than other described models due to de-differentiated 
cellular characteristics and absence of complete expression of all families of meta-
bolic enzymes. The sources of cell lines are primary tumors of liver parenchyma. 
Currently, available cell lines include Hep G2, Hep3B, BC2, C3A, etc. Among them, 
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the Hep G2 cell line is commonly used for biotransformation studies. Compared 
with the freshly isolated human hepatocytes, the metabolic activity of liver cell lines 
is generally low. Pretreatment of cell lines with various metabolic enzyme inducers 
partly reduces the problem of low activity. Even though, the induced activity is still 
below the enzymatic activity of freshly isolated human hepatocytes. An appropriate 
culture medium is required for the liver cell lines and the composition of the culture 
medium notably influences the metabolic activity. The described in vitro model is 
easy to culture and has steady enzyme concentration. Conversely, the lack or low 
expression of most important phase I and phase II drug metabolizing enzymes 
limits the application of this in vitro model. In addition, it is difficult to investigate 
individual enzymes due to their low expression level [70].

3. Metabolite profiling by LC-MS

Mass spectrometry plays an important role in the metabolite profiling of drugs 
during drug discovery and development. Quality and productivity of the metabolite 
identification process is improved by the availability of high-resolution (HR) MS 
instrumentation with superior accuracy and new data acquisition methods and 
data mining techniques. Hence, HPLC coupled with the high-resolution MS is the 
analytical tool of choice for metabolite profiling studies [71].

Drug metabolites can be categorized into expected metabolites and unexpected 
metabolites. Expected metabolites are those produced by common biotransforma-
tion reactions and are predictable, unexpected metabolites are those produced by 
uncommon reactions and are not easily predictable. Mass shift values from the 
parent drug can be used to calculate the molecular masses (m/z values) of expected 
metabolites. Acquisition of full-scan MS data using MS instrument, followed by 
extracted ion chromatography (EIC) of the ions can be used to accomplish the 
detection of expected metabolites by LC/MS [72, 73]. The most difficult task in 
drug metabolism studies is the detection and structural elucidation of very low 
levels of unexpected metabolites in the presence of endogenous interfering  
components [74–76].

Time-of-flight (TOF) and Fourier transform Orbitrap (Thermo Fisher 
Scientific) are the most commonly used high-resolution mass spectrometers in 
metabolite profiling of drugs. The principle involved in the TOF mass analyzers 
is ions of different m/z values having different velocities when accelerated by the 
same kinetic energy in the field-free flight tube. The time required for the ions to 
travel through the flight tube is proportional to the square root of their m/z val-
ues. The m/z value of each ion is determined by measuring the time taken for the 
ion to arrive at the detector. The resolution of the instrument is dependent on the 
capacity of the instrument to generate and maintain a focused ion beam through 
the ionization and acceleration region. The resolving power of the instrument is 
improved by utilizing reflectrons (reflecting ion mirrors), which decreases the 
spreading of kinetic energy among ions accelerated from the accelerator [77]. The 
ion saturation problem in the TOF instruments is effectively resolved by improve-
ments in the ion detection technologies, for example, the use of segmented 
multichannel plates or analog-to-digital converters in place of time-to-digital 
converters. Modern TOF instruments offer good accuracy (~2–5 ppm), required 
resolution (~30,000) at full-width half maximum [FWHM]), and fast scan speed 
(20–50 spectra/second) [78, 79].

The Orbitrap mass analyzer consists of two electrodes, one is an outer barrel-
like electrode and other is a coaxial inner spindle-like electrode. A static electric 
field is applied between the outer and inner electrodes. Around the central spindle 
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electrode, ions are radially trapped, rotate about the inner electrode, and harmoni-
cally oscillated along the central electrode with a frequency characteristic to its mass 
to charge ratio (m/z value). An image current is produced on split outer electrodes 
due to the axial motion of the ions around the inner electrode. The mass spectrum 
is generated by fast Fourier transformation of the image current to convert the 
time-domain signal into a frequency, and then into an m/z spectrum [80, 81]. The 
Orbitrap MS offers good resolving power (~30,000–240,000) and mass accuracy 
(<3 ppm). The resolution of the Orbitrap instrument depends upon the scan speed; 
to achieve higher resolution, longer total cycle times are required. This is a limiting 
factor for the Orbitrap device to couple with the UPLC instruments in which peak 
width is only a few seconds. The most popular HRMS instrument configurations 
used for metabolite profiling are Q-TOF (quadrupole – time of flight) and LTQ 
(linear trap quadrupole) -Orbitrap, because of their high resolution and mass 
accuracy characteristics. A Q-TOF instrument consists of quadrupole, collision cell, 
and TOF mass analyzer. Q-TOF is obtained by switching the last quadrupole in the 
TQMS (triple quadrupole mass spectrometer) with TOF mass analyzer. It provides 
fast data acquisition, high sensitivity and resolution, and accurate mass on both MS 
and MS/MS modes, thus proven to be a powerful tool in metabolite profiling studies. 
LTQ (linear trap quadrupole) -Orbitrap is a hybrid mass spectrometer that combines 
a linear ion trap with Orbitrap MS. Accurate mass measurements are possible on 
multiple stages of fragmentation for structural elucidation of metabolites and MSn 
(multi stage mass spectrometry) experiments can be performed simultaneously with 
ion trap detection while continuing mass measurements with Orbitrap. QExactive™ 
hybrid quadrupole - Orbitrap mass spectrometer combines quadrupole precursor 
ion selection with high resolution, accurate mass Orbitrap detection. It is compatible 
with fast chromatography techniques because of its high scan speed (~12 Hz) and 
spectral multiplexing capabilities; hence fit for high-throughput metabolite profil-
ing. Current progress in HRMS leads to the development of various new data acquisi-
tion and data mining techniques for the rapid identification of drug metabolites.

3.1 Data acquisition methods for HRMS drug metabolite identification

Data acquisition methods used for metabolite identification include: ion inten-
sity-dependent acquisition, accurate-mass inclusion list-dependent acquisition, 
isotope pattern-dependent acquisition, pseudo neutral loss-dependent acquisition, 
and mass defect-dependent acquisition [77].

3.1.1 Ion intensity-dependent acquisition

In this method, an ion intensity threshold is used to trigger the MS/MS acquisi-
tion of ions. Prior knowledge of the m/z values of the precursor ions is not required 
for this generic method. This method is very effective for in vitro metabolite profil-
ing. Fifteen metabolites of nefazodone were identified from human liver micro-
somal incubations by applying intensity-dependent MS/MS acquisition of the three 
most intense ions from a single LC–MS/MS run [82]. This method is not suitable for 
complex biological samples because of matrix interferences. It is very difficult to 
acquire MS/MS spectra of trace level metabolites using this method because high-
intensity endogenous ions are mainly selected for MS/MS or MSn acquisition.

3.1.2 Accurate-mass inclusion list-dependent acquisition

This method uses a list of accurate masses of predicted or expected metabolites 
to trigger MS/MS acquisition of preset metabolite ions. Data analysis is performed 
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by the software in real time to determine any mass in the list is detected in the full 
scan. If any ion is detected within a certain mass tolerance window and above a par-
ticular intensity threshold, the software will switch to MS/MS mode automatically 
and obtain the product ion (MS/MS) spectrum. This method increases the chance 
of getting MS/MS spectra for low level metabolites present in the complex biologi-
cal samples. Moreover, in a single LC–MS/MS run both full-scan MS and MS/MS 
spectra of predicted metabolites will be obtained [83]. By using this approach and 
different post-acquisition data mining techniques, a total of 58in vitro metabolites 
of carvedilol were detected from human liver microsomal incubations [84].

On the other hand, preparation of an accurate mass inclusion list for every 
compound is time intensive and not suitable for high-throughput metabolite profil-
ing during drug discovery. Besides, many of the major metabolites are generated by 
rearrangement, ring scission, or ring contraction and are hence difficult to predict.

3.1.3 Isotope pattern-dependent acquisition

Molecules containing elements like Cl and Br can be easily identified by their 
unique isotopic patterns in the mass spectra. Assume that during biotransformation 
these halogens remain intact and their unique isotopic pattern is used as a selective 
trigger for MS/MS acquisition of metabolite ions. It assists in the easy identification 
of metabolites and provides MS/MS spectra for structural analysis. The software 
is programmed such that any ion detected with a unique isotopic pattern (e.g., 
Cl-containing compounds: ion pairs with m/z difference of 1.99705 Da and an 
intensity ratio of 3:1; Br-containing compounds: ion pairs with m/z difference of 
1.99795 Da and intensity ratio of 1:1) in the full scan MS would be automatically 
followed by an MS/MS experiment for rapid identification of metabolites. This 
approach has demonstrated to be very effective in metabolite profiling of a rat 
bile sample collected following a single oral dose (30 mg/kg) of a 14C-bromine 
containing compound on a quadrupole time-of-flight mass spectrometer. Over 30 
metabolites were detected with their MS/MS spectra automatically obtained in the 
same LC–MS/MS run [41]. Isotope pattern-dependent acquisition is also applicable 
to compounds containing synthetically incorporated isotopes (e.g.,2H-, 13C-,15N-, 
18O-, etc.) or radiolabeled compound (14C-) with a distinct 12C/14C isotopic pattern. 
Glutathione (GSH) trapped reactive metabolites from microsomal incubations are 
detected by this approach with a linear ion trap mass spectrometer [85]. Lim et al. 
also applied this approach for simultaneous detection and structural elucidation 
of GSH conjugates generated from human liver microsomal incubations by using 
LTQ/Orbitrap in a single run [86]. This approach is compound dependent and not 
suitable for various metabolites.

3.1.4 Pseudo neutral loss-dependent acquisition

This approach is based on neutral loss, which is a trigger for MS/MS acquisi-
tion. It is useful for the detection of metabolites, which shows neutral losses due to 
collision-induced dissociation. This approach consists of two full scans, one scan is 
at low collision energy (i.e., 5 eV) followed by a second scan with higher collision 
energy ramping (i.e., 20–40 eV), and spectra will be monitored for characteristic 
m/z differences of ion-pairs (neutral loss) between successive low and high collision 
energy full-scan MS. When such neutral losses are detected within a certain mass 
tolerance window, precursor ions will be identified from the low collision energy 
data and the instrument switches to MS/MS mode automatically to get the product 
ion spectra of those specific ions [87]. This approach is mainly useful for the phase 
II metabolites detection and characterization (e.g., neutral losses of 79.9568 for 
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sulfate conjugates, 129.0426 for glutathione conjugates, and 176.0321 for glucuro-
nide conjugates, etc.). The limitation of this approach is that it is unable to record 
MS/MS spectrum of metabolites with unpredictable fragmentation.

3.1.5 Mass defect-dependent acquisition

This approach is useful for the detection of both common and uncommon drug 
metabolites by using a mass defect filter (MDF). Interference ions from matrices are 
easily filtered out by MDF, because their mass defects are outside the mass defect 
range of common drug metabolites [88]. MDF is commonly used as a post-acqui-
sition data processing technique and major instrument vendors are incorporating 
this in the metabolite identification software packages. In the TripleTOF® (Sciex) 
instrument, MDF is used as a selection factor to trigger MS/MS acquisition. Full-
scan HRMS data are analyzed by applying real time MDF and identifies precursor 
ions whose mass defects fall within a specific window of a MDF. These ions are 
automatically followed by MS/MS acquisition. A different class of metabolites 
is detected by using multiple MDFs. Multiple mass defects are calculated by the 
software based on the elemental compositions of the parent, phase II conjugates, 
dealkylation, and hydrolysis metabolites and simultaneously perform the multiple 
mass filtering. This approach is useful for the rapid identification of drug metabo-
lites in complex biological samples [89].

3.2 Data mining techniques for drug metabolite identification

Data interpretation is also an important step in drug metabolite identification 
and is a time-consuming process. Data mining techniques have been used to reduce 
the time required for data interpretation and to simplify the process of metabolite 
identification. Data mining involves software assisted post-acquisition data pro-
cessing of the acquired data to obtain more accurate and rapid results. Different 
data mining techniques used for metabolite identification are extracted ion chro-
matogram, mass defect filter, product ion filter, neutral loss filter, isotope pattern 
filter, background subtraction, and control sample comparison [90].

3.2.1 Extracted ion chromatogram

In the extracted ion chromatogram (EIC) technique, expected metabolites 
are determined based on the predicted molecular masses of the metabolites. This 
technique first involves the acquisition of full scan in LC–MS/MS instrument and 
then application of ion extraction window to the acquired full-scan MS data-sets 
for identification of desired metabolite ion chromatogram [71]. Application of the 
narrow ion extraction window to the acquired MS datasets improves the sensitivity 
and selectivity. A narrow ion extraction window also helps in reducing false posi-
tive signals by removing the interferences from the ions outside of ion extraction 
window [91]. The limitation of this technique is unsuitability for the detection of 
metabolites with an unpredictable molecular mass.

3.2.2 Mass defect filter

Mass defect filter (MDF) is a software-based data filter technique developed 
for the detection of metabolites using full-scan HR-MS data. In this approach, 
metabolite ions will be differentiated from matrix ions based on the mass defect 
value of metabolites from their parent drug. Mass defect is defined as the difference 
between the exact mass and nominal mass of an element (e.g., 1H and 14N have an 
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exact mass of 1.0078 and 14.00307 Da and nominal mass of 1 and 14 Da, therefore 
the calculated mass defect of 1H and 14N is +7.8 and + 3.07 mDa, respectively). It 
is based on the understanding that mass defect values of metabolites fall within a 
defined narrow window related to that of the parent drug. A narrow mass defect 
window (40–50 mDa) of MDF removes unwanted signals and causes enrichment of 
metabolites [91].

Phase I and Phase II metabolites are generally having mass defect values of less 
than 50 mDa relative to that of the structure of the parent drug. MDF has been 
applied for the identification of drug metabolites in plasma, urine, feces, bile, and 
in incubates of liver microsomes and hepatocytes [62, 92, 93]. All the metabolites 
generated are not structurally similar to the parent drug, some varies slightly (e.g., 
oxidation), and some show a significant variation (e.g., GSH adduct 68 mDa). If the 
MDF window is set at ±50 mDa, it excludes all the metabolites which have a mass 
defect value of more than 50 mDa and if the MDF window is broader, interference 
ions from the endogenous matrix will be included. So as to avoid it, multiple narrow 
MDF windows are developed and applied over a certain mass range. Drug filter, 
substructure filter, and conjugate filter are the commonly used MDF templates. 
Structures of metabolites that are generated by oxidation or reduction are slightly 
different from their parent drug structure for such type of metabolites, drug filter 
template is used. Metabolites that are generated by cleavage of the drug molecule 
are substructure metabolites of the parent drug compound, for such types of 
metabolites substructure filters are used. Metabolites that are generated due to 
conjugation reactions (phase II biotransformation reactions) are called conjugation 
metabolites, for this type of metabolites conjugate filter templates are used.

3.2.3 Product ion filter (PIF) and NL filter (NLF)

The mechanism for the identification of metabolites by PIF and NLF is based on 
the predicted product ion and predicted neutral loss fragmentation, respectively. 
Both known and unknown metabolites are determined by using these techniques. 
High-resolution product ion filter (PIF) and high-resolution neutral loss filter 
(NLF) are highly selective and sensitive techniques, and sometimes these are help-
ful to determine the trace amounts of unexpected metabolites that are not detected 
by MDF [94].

PIF is like a precursor ion filter scanning, a data acquisition technique, but 
PIF is a post-acquisition data mining technique, and metabolites are identified by 
applying multiple filters. On the other hand, multiple injections are required for 
the detection of multiple metabolites by precursor ion filter scanning. Likewise, 
NLF is like a neutral loss scanning; but the difference is avoiding the use of 
multiple injections because multiple filters are used to identify multiple desired 
metabolites [94, 95]. PIF and NLF are commonly used for the identification of 
Phase II metabolites (conjugated metabolites) [85, 96, 97].

3.2.4 Isotope pattern filtering (IPF)

This technique is useful for the identification of unexpected metabolites which 
have a distinct isotopic pattern. Metabolite ions that have a distinct isotopic pat-
tern are extracted by applying the filters to full MS scan data. Most of the back-
ground peaks are eliminated by isotope pattern filtering (IPF) because many of 
the endogenous components do not show isotopic patterns [71]. IPF is applicable 
to the compounds containing distinct natural isotopes (Cl or Br) or synthetically 
incorporated isotopes (2H,13C and 15N), or radiolabeled compound (14C) with a 
distinct isotopic pattern. IPF is a valuable data mining tool for the identification and 
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characterization of conjugated metabolites and reactive metabolites with improved 
selectivity and sensitivity [98–100].

3.2.5 Background subtraction

Background subtraction is an untargeted data mining technique in which 
the control and sample datasets are compared, and meticulously subtracted the 
background noise signals and matrix-related ion signals from the sample datasets. 
This technique finds the ions that are present in the test sample but not in a control 
sample. Control sample background subtraction algorithm is developed by Zhang et 
al. for complete removal of the matrix-related signals from the LC–MS/MS analyte 
dataset and isolation of the metabolite ions of interest. This algorithm is success-
fully applied for the identification of glutathione (GSH)-reactive metabolites [101].

Background signals from biological matrices and electrical noises were not 
efficiently removed by the background subtraction alone. To improve the efficiency, 
Zhu et al. developed a retention-time-shift-tolerant background subtraction and 
noise reduction algorithm (BgS-NoRA) for biological matrices [102]. The addition 
of noise reduction algorithm to background subtraction algorithm helps in the 
reduction of unwanted background signals (matrix-related ions) as well as electri-
cal noises in biological matrices.

The limitation of this technique is a requirement of a good control sample 
containing all the possible matrix signals, and the consistency of run to run chro-
matographic retention time [101, 103, 104].

3.2.6 Control sample comparison

Control sample comparison is also an untargeted data mining technique in 
which control is compared with the sample. Metabolite ion chromatographic 
peaks are checked for their absence in the control sample. This process is tedious 
and challenging as the drug related metabolites are identified by comparing each 
metabolite ion in the spectrum of the analyte sample to that of the control sample. 
This technique is suitable for the identification of all types of metabolites but 
compared with the background subtraction, this is a less sensitive and selective 
technique [71, 91, 105].

4. Conclusions

In vitro metabolic stability studies are very important during drug discovery 
and development to predict the in vivo clearance of compounds and to know the 
number and types of metabolites formed. These studies are also helpful to find out 
the pharmacological and toxicological profiles of new chemical entities. In vitro 
metabolic stability studies are commonly performed by using liver microsomes 
and hepatocytes. LC-HRMS has turn into an important tool for the detection and 
characterization of drug metabolites in vitro and in complex biological samples. 
LC-HRMS, along with data acquisition and post-acquisition data mining techniques 
facilitated the drug metabolite identification.
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