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Abstract

Density Functional Theory (DFT) is a powerful and commonly employed quan-
tum mechanical tool for investigating various aspects of matter. The research in this
field ranges from the development of novel analytical approaches focused on the
design of precise exchange-correlation functionals to the use of this technique to
predict the molecular and electronic configuration of atoms, molecules, complexes,
and solids in both gas and solution phases. The history to DFT’s success is the quest
for the exchange-correlation functional, which utilizes density to represent
advanced many-body phenomena inside one element formalism. If a precise
exchange-correlation functional is applied, it may correctly describe the quantum
nature of matter. The estimated character of the exchange-correlation functional is
the basis for DFT implementation success or failure. Hohenberg-Kohn established
that every characteristic of a system in ground state is a unique functional of its
density, laying the foundation for DFT, which is being utilized to explore the
novelty of materials. This chapter is aimed to present an overview of DFT by
explaining the theoretical background, commonly used approximations as well as
their recent developments and challenges faced along-with new horizons.

Keywords: DFT, Kohn-Sham equations, exchange-correlation functionals,
challenges

1. Introduction

Density functional theory (DFT) is a low-cost, time-saving quantum mechanical
(QM) theory, used to compute many physical characteristics of solids with high
precision. The research in this field ranges from the development of novel analytical
approaches focused on the design of precise exchange-correlation functionals to the
use of this technique to predict the molecular and electronic configuration of atoms,
molecules, complexes, and solids in both gas and solution phases. The history to
DFT’s success is the quest for the exchange-correlation functional, which utilizes
density to represent advanced many-body phenomena inside one element
formalism. If a precise exchange-correlation functional is applied, it may correctly
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describe the quantum nature of matter. The estimated character of the exchange-
correlation functional is the basis for DFT implementation success or failure. DFT’s
early breakthroughs concentrated on the most fundamental issues in chemistry,
such as the opportunity to generate functionals that could describe both molecular
geometries as well as dissociation energy. The fact that every feature of a system in
ground state is a unique ground state density functional was demonstrated by
Hohenberg-Kohn, laying the foundation for DFT, which is now used to explore
novelty of materials. This chapter is aimed to present an overview of DFT by
describing the theoretical foundations, widely used approximations, current
advances, and issues addressed, as well as future horizons.

2. Fundamentals of DFT

The Schrodinger Equation [1] for a many body systemmay be simplified to Kohn-
Sham equation, which is a single particle independent Schrodinger equation, and can
be numerically solved with density functional theory. This computational process
produces physical characteristics of solids; however, this hypothesis is based on
electron density rather than wave functions, for which scientist Walter Kohn was
given the Nobel Prize in 1998 [2]. Despite the fact that no exchange-correlation
effects had been documented at the time, Thomas and Fermi claimed in 1927 that
total density is the essential parameter in many body problems [3, 4]. The theorems
of Hohenberg, Kohn, and Sham laid the groundwork for DFT in 1964, stating that the
functional of a many-body problem’s (non-degenerated) ground state electron charge
density may completely characterize all properties in absence of magnetic field [5].

2.1 The Hohenberg - Kohn (HK) theorems

Hohenberg and Kohn [6] stated seemingly two simple theorems in 1964 that
enabled the implementation of DFT.

Theorem I: The external potential, Vextð r
!
Þ is a unique functional of electron

density ρ( r!), having a unique association among potential and electron density for
a many body system; Vext( r

!) ¼) ρ( r!), whereas this electron density can be used to
describe the entire information of the system.

In order to establish a mathematical relation, let us assume external potentials as
v rð Þ and v r0ð Þ, whereas the change between these potentials is always identical since
the ground state electron density is comparable at entire parts of the crystal, that is,
v(r0) - v(r) = constant. According to theory, electrons move in a field produced by
external potential Vext and interact with one-another in addition to their external
potential, and the corresponding Hamiltonian of energy can be written as;

H ¼ Tþ Vext þU (1)

Where T, U, and Vext represents the K.E of electrons, coulomb interaction, and
external potential respectively. Quantum mechanically the factors T, U, and Vext

can be expressed as;

T ¼
1
2

ð

∇ψ ∗ rð Þ∇ψ rð Þ½ �dr (2)

V ¼

ð

v rð Þψ ∗ rð Þψ rð Þ½ �dr (3)
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U ¼
1
2

ð

ψ ∗ r0ð Þψ ∗ rð Þψ r0ð Þψ rð Þ
1
r‐r0j j

� �

drdr0 (4)

The solution of Hamiltonian for Eq. (1) can be expressed as;

Hψ r1, r2, :… … … rNð Þ ¼ Eψ r1, r2, :… … … rNð Þ (5)

The ψ r1, r2, :… … … rNð Þ is a ground state N interacting particle’s wave-function.
Suppose an additional potential v0(r) with changed Hamiltonian H0 and wave-
function ψ0 rð Þ where the ground state density ρ(r) must remain the same for both
cases. The Hamiltonian for this many-body system can be written as; H0ψ0 ¼ E0ψ0.

Following a thorough exploration of the situation, established on v rð Þ‐v r0ð Þ ¼
constant, it can be concluded, that ψ(r) and ψ0(r) are different; as a result, they
both fulfill distinct Schrodinger wave equations. According to variational principle,
it is an irrefutable reality that no wave function may produce energy lower than that
of the ground stateψ (r) and this fact can be characterized as ψh jH ψj i< ψ0h jH ψ0j i
where E ¼ ψh jH ψj i.

Employing essential property of ground state:

ψ0h jH ψ0j i ¼ ψ0h jH0 ψ0j i þ

ð

v r!
� �

‐v0 r!
� �h i

ρ r!
� �

dr (6)

Alternatively, by swapping;

ψh jH0 ψj i ¼ ψh jH ψj i þ

ð

v0 r!
� �

‐v r!
� �h i

ρ r!
� �

dr (7)

By adding above equations we get;

Eþ E0
<E0 þ E (8)

The Eq. (8) confirms clear disagreement, and two unlike potentials, v(r) as well
as v0(r) will certainly provide different density ρ(r) and ρ0(r) respectively. As a
result, details relating density and external potential are needed to determine the

Hamiltonian information. Also, T and U are known for N-partials systems so ρ r!
� �

may be employed to find ground state H and E. The functional association of
minimum energy state and corresponding resulting density is;

E ρ rð Þ½ � ¼ T ρ rð Þ þ V ρ rð Þ½ � þ U ρ rð Þ½ �½ (9)

Theorem II: The true ground state density of an electron corresponds to
electron density that minimizes the overall energy of the functional.

Consider, ρ rð Þ is the density which corresponds to ground state while ρ0(r) to any
other state of a many-body system. The functional for total energy in this context is
given as; E ρ0½ �>E ρ½ �. Also, assume that F[ρ(r)] is a general functional that is valid for
fixed electrons at all external potentials. Mathematically this can be written as;

Fρ rð Þ� ¼ T ρ rð Þ½ � þU ρ rð Þ½ � (10)

Also,

E ρ rð Þ½ � ¼

ð

v rð Þρ rð Þ½ �drþ F ρ rð Þ½ (11)
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In order to have minimum energy functional, the corresponding density ρ rð Þ
must be essentially a ground state density.

E ψ0½ � ¼ ψ0, Vψ0ð Þ þ ψ0, Tþ Uð Þψ0 (12)

Assumingψ is ground state function associated to ρ(r) for external potential
v(r), the ρ0 rð Þ will correspond to higher energy in accordance with the variational
principle.

E ψ0½ � ¼

ð

v rð Þρ0 rð Þ½ �drþ F ρ0 rð Þ½ �>E ψ½ � ¼ v rð Þρ rð Þ½ �drþ F ρ rð Þ½ � (13)

As a result, provided the density functional is accurately described, one may
easily compute the ground state density as well as energy in an identified external
potential. Furthermore, it also demonstrates that ρ rð Þ minimize the energy
functional E ρ rð Þ½ �.

2.2 The Kohn-Sham (KH) equations

The theorems given by Hohenberg-Kohn are exact; however not very useful in
real calculations [6]. The equation given by Kohn-Sham [7] turned DFT into an
applied tool. They converted the difficult problem of electrons interacting together
in external effective potential (Vext) into the electrons that are non-interacting in
Vext, and the total energy for a ground state of interacting electrons in fixed
potential, v rð Þ is;

E ρ rð Þ½ � ¼ V ρ½ � þ U ρ½ � þG ρ½ � (14)

Where universal density functional G[ρ] holds exchange-correlation, and is
expressed as;

G ρ rð Þ½ � ¼ Ts ρ½ � þ Exc ρ½ � (15)

E ρ rð Þ½ � ¼ Ts ρ½ � þ V ρ½ � þU ρ½ � þ Exc ρ½ � (16)

The kinetic energy for a many body system having non-interacting electrons is
denoted by Ts ρ½ �, while V ρ½ � is the external potential produced by core having
positive charge, U ρ½ � is coulomb potential as a result of electron–electron
interactions, and Exc ρ½ � is the energy due to exchange-correlation effects.

Ts ρ rð Þ½ � ¼ ‐

ħ
2

2m

X

N

i

ð

φ ∗

i rð Þ∇2φi rð Þd3r ¼ T φi

X

ρð Þ
h i

(17)

and

U ρ½ � ¼
q2

2

ð

ρ rð Þρ r0ð Þ

r‐r0j j

� �

drdr0 (18)

V ρ½ � ¼

ð

v rð Þρ rð Þdr (19)

The exchange correlation energy Exc ρ½ � for a many-body system produced by
ρ(r) is given by;
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Exc ρ½ � ¼

ð

ρ rð Þεxcρ rð Þ½ �dr (20)

and

Exc ρ½ � ¼ Ex ρ½ �exchange þ Ec ρ½ �correlation (21)

The Ex term denotes the reduction in energy as an outcome of anti-
symmetrization, and it may be represented through a single particle orbital as;

Ex ¼

ð

ρ rð Þεxρ rð Þ½ �dr (22)

and

Ec ¼

ð

ρ rð Þεcρ rð Þ½ �dr (23)

and

εx φiρ rð Þ½ � ¼
‐q2

r

X

j, k

ð

d3r0 rð Þφ ∗

k rð Þ
φ ∗

j r0ð Þφ ∗

k r0ð Þφk rð Þ

r‐r0j j
(24)

Where the single term in the summation refers to the energy of a molecule ‘j’ at
site ‘r’ in relation to a molecule ‘k’ at ‘r0’. The system’s energy is further reduced
owing to mutual avoidance of the interacting particles, such as electrons that are
anti-parallel and lower their energy by evenly arranging their moments. Kohn-
Sham mapping of interacting and non-interacting system is shown in Figure 1.

εc ¼
X

j< k

q2

r‐r0j j
¼

q2

2

ð

d3r
ð

ρ rð Þρ r0ð Þ‐ρ rð Þδ r‐r0ð Þ

r‐r0j j

� �

d3r0 (25)

The energy of ground state may be obtained by differentiating Eq. (14) with
respect to ρ rð Þ

0 ¼
δE ρ½ �

δρ rð Þ
¼

δTs ρ½ �

δρ rð Þ
þ
δU ρ½ �

δρ rð Þ
þ
δV ρ½ �

δρ rð Þ
þ
δExc ρ½ �

δρ rð Þ
¼

δTs ρ½ �

δρ rð Þ
þ v rð Þ þ Vc rð Þ þ Exc rð Þ

(26)

By employing density ρs(r), the minimum state for a non-interacting
many-body system is;

Figure 1.
Kohn-Sham mapping of interacting and non-interacting system.
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0 ¼
δEs ρ½ �

δρs rð Þ
¼

δTs ρ½ �

δρs rð Þ
þ
δVs ρ½ �

δρs rð Þ
þ
δVs ρ½ �

δρs rð Þ
¼

δTs ρ½ �

δρs rð Þ
þ vs rð Þ (27)

Equating Eqs. (26) and (27), the potential Vs can be obtained as;

vs ¼ V rð Þ þ Vc rð Þ þ Vxc rð Þ (28)

The equation for a one-particle system that is non-interacting in potential vs(r)
can be derived from the equation of interacting electrons of the system in the
presence of v(r).

‐

ħ
2

2m
∇

2 þ vs rð Þ

" #

φk rð Þ ¼ Ekφk rð Þ (29)

The ρ(r) of an original system is replicated by orbitals, where fk is the k
th orbital

occupation, and can be expressed as;

ρ rð Þ ¼ ρs rð Þ ¼
X

N

k

f φk rð Þj j2 (30)

2.3 Exchange-correlation potential

The consequences of KS scheme revealed that the minimum energy state can be
established by limiting energy of the energy functional, and it can be done using an
agreeable solution of a set of single-particle equations. In the KS scheme, just one
critical difficulty is that Exc (exchange-correlation energy) cannot be found exactly. If
Exc is determined accurately, it is a precise solution for a many-body problem. There
is currently no such exact solution exists, hence approximations are employed to
estimate Exc with LDA and GGA being the most commonly used approximations.

3. Commonly used exchange-correlation approximations

In this part, we will go through some of the major advances that lead to contem-
porary DFT in order to lay a foundation that will help us to comprehend both the
theory’s foundations and limits. Bloch (1929) was the first to write about the
exchange contribution, and it has become well-known as a result of quantumMonte-
Carlo simulations of uniform gases [8], which are parameterized in simple formula-
tions [9, 10]. The Local Density Approximation (LDA) [11], proposed by Kohn and
Sham, asserts that the exchange-correlation functional at any point in space is simply
dependent on that location’s spin density. LDA is quite correct for geometries, but it
often over-binds atoms/molecules roughly by 1 eV per bond, rendering it ineffective
for thermo-chemistry [12]. The Generalized Gradient Approximation (GGA) [13, 14]
is an extension to the LDA component that includes terms that are dependent on
density derivatives. Perdew was the first to apply real-space cutoffs to make GGAs,
which led to the development of the PW86 functional model [13]. The PW91 func-
tional [15] was the pinnacle of this comprehensive development, and it produces
useful precision for binding energies, as proven in 1993 of around 6–10 kcal/mol [16].
PBE [17] is the most widely used GGA to investigate materials today, whereas BLYP
[18] and Lee-Yang-Parr correlation [19] is the most generally employed GGA in
chemistry. A hybrid GGA [20] is one that combines a normal GGA plus a Hartree-
Fock component, in which the kinetic energy density is also employed to define the
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GGA component. The GGA, Hartree-Fock, and kinetic energy density components
are all present in a meta-hybrid, while hybrid or meta-hybrid component of a double-
hybrid includes an involvement from second-order Moller-Plesset perturbation the-
ory [21]. The Density Functional (DF) consists of a part of GGA, LDA, Hartree-Fock
exchange or hybrids, and/or a meta-GGA, commonly known as the exchange-and-
correlation (XC) functional (meta-GGA or meta-hybrid). Furthermore, the addition
of an orbital-dependent correlation, it may also be reliant on virtual Kohn-Sham
orbitals (double-hybrids) [22]. A comparison of simplicity versus accuracy of existing
approximations in DFT is shown in Figure 2.

The functionals currently utilized in DFT simulations constitute a natural hier-
archy, and no systematic approach to the precise functional can be claimed. The
available functional form is clearly improving, resulting in a considerably more
accurate representation of ground state properties. The most important recent
advancements are those that include the non-local aspect of the exchange potential
in some way. Table 1, summarizes the present hierarchy.

Figure 2.
A comparison of simplicity versus accuracy of existing approximations in DFT [23].

Table 1.
Commonly used Exc functionals.
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4. Recent developments

This section focuses on the evolution of new functionals in DFT during the last
decades.

4.1 Random phase approximation (RPA-type Functionals)

The exchange correlation energy (Exc) can be calculated using DFT fluctuation
dissipation in the form of coupling constant and frequency [24–26]. The direct
random-phase approximation (RPA) [27, 28] or time dependent TD-Hartree, are
the results of ignoring the exchange kernel of TDFT. A fifth-rung approximation is
generated as a result of this methodology, and this can be expensive to examine,
although the relative burden is always reducing [29, 30]. It only examines bubble
diagrams in the many-body expansion of the energy, so direct RPA over-correlates
systems by ignoring extra contributions at higher levels that diminish correlation. It
also has issues with self-interaction since, even when just one electron is involved,
it yields low correlation energies, and the dissociation energies of molecules are
erroneous [23].

4.2 Meta-GGA’s

The meta-GGA [31] is a novel component that extends beyond density and
gradient, and is commonly used to indicate the KS orbitals’ kinetic energy density.
The objective of a successful meta-GGA is to achieve hybrid accuracy without
incurring the computational expense of the exact exchange contribution. The
incorporation of atom-centered basis functions, the cost of accurate exchange is
reasonable, however, it can be costly while using periodic boundary conditions in
addition of basis sets. Perdew and colleagues, and plenty of others, have worked on
meta-GGAs for decades, with multiple failed attempts [32]. SCAN (strongly
constrained and suitably normed semi-local density functional) [33], the most
current effort has undergone a number of conventional tests and looks to have a
good chance of becoming part of the pantheon of widely employed functionals. The
G3 data-set [34] is a common collection of chemical compounds that LDA over-
binds around 3 eV, while PBE reduces it to approximately 1 eV, and SCAN around
1/4 eV. On the S22 data-set [35] of weakly bonded systems, SCAN has 2–3 times less
errors than PBE does, while SCAN decreases miscalculations of lattice constant and
other parameters on the LC20 data [36] set around 0.05 Å, and to around 0.01 Å in
PBE. The PBE [37], on contrary to SCAN, only improves underestimation of chem-
ical barrier height by 30 percent, while hybrids on the other hand are frequently 2–3
times superior with conventional varieties. Therefore, one can conclude that SCAN
achieves accuracies comparable to hybrid functionals for several characteristics at a
fraction of the computing cost [38].

4.3 Range separated hybrids (RSH)

Andreas Savin was the first to create the range separation hypothesis, which is
quite precise [39, 40], through which coulomb repulsion may be easily expressed by
combining a short-ranged input with a long-ranged involvement that do not have
coulomb singularity at zero separation, and decays quicker than the inverse of the
separating distance. In KS equation generalizations, one contribution is treated as an
interaction, while the other is compensated by a redefined XC contribution. The
HSE06 functional [41] is a hybrid with a range separation that manages long-ranged
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exchanges with an approximation, short-ranged exchanges with accuracy in an
extended insulator [42], and this combination frequently yields exact gaps for
moderate-gap semiconductors and insulators [37].

4.4 Weak interactions

Over the last two decades, tremendous progress has been made in addressing the
challenges associated with weak van der Waals (vdW) interactions. Traditional
functionals do a good job at manipulation of covalent, ionic, and metallic interac-
tions due to their semi-local nature, but they fall short when it comes to longer,
weaker bonds, and cannot offer weak binding that drops off as a function of R6 (R is
the distance among two atoms) [38]. To account these impacts, modifications must
be applied to the conventional functionals and this can be accomplished in one of
three ways. There is a succession of approximations produced by Langreth and
Lundqvist and collaborators [43] for the evolution of explicit non-local functionals
of electron density, while these approximations are generated non-empirically,
notably beginning with contributions of correlation energy. Additionally, these
functionals may be useful for any materials, ranging from solids to molecules, and
have been designed by supposing systems that contain a gap [44]. RPA, which
incorporates approximations to the vdW forces by default, as well as the Becke and
Johnson technique [45], leverages the exchange hole’s dipole moment to approxi-
mate C6, as well as higher coefficients.

4.5 Gaps of solids

The inadequacy of traditional approximations to anticipate band gaps of semi-
conductors and insulators is a critical flaw. The LDA undervalues gap between bulk
Si and Ge by a factor of two, making Germanium a metal, whereas GGAs performs
a bit good but underestimate as well. The ability to give precise and dependable
gaps has always been a strong suit of the GW approach [46]. In the last two decades,
precise gap computation utilizing hybrid functionals such as HSE06 [41] has been a
huge success, and is accomplished through the use of a generalized KS scheme [47].
In this case, rather than using pure Kohn-Sham theory, the orbital reliant element of
the functional is considered as in Hartree-Fork approach to overcome flaws of other
Exc functionals [48].

5. Challenges for DFT

In principle, DFT is exact; however its effectiveness depends on the develop-
ment as well as advancement in exchange-correlation (Exc) functionals which may
be achieved by optimizing against larger data-sets and using improved functional
arrangements that are more flexible and contain more elements. Smoothness has
also been prioritized in recent enhancements, which helps to alleviate problems like
grid-size convergence and self-consistent field iterations. In this section, we will go
through some of DFT’s challenges that may differ from those that appears to be
“solved” to those that are still being explored. There are numerous more that are
less well-known, and yet crucial to DFT’s future growth as well as use.

5.1 Strong correlation

DFT’s inadequacy for strongly correlated systems utilizing typical approxima-
tions has been acknowledged since its inception, and this can be investigated as well
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as linked to standard approximation localization or delocalization inaccuracies
when integer or half-integer electron quantities are found in distinct locations [49].
In quantum computational physics and chemistry, the Kohn-Sham gap among two
states becomes too narrow, and the wave function of a many-body system is very
nearly equal to mixing of two slater determinants, which is referred to as static
correlation. The failure of approximations under these situations cause the chal-
lenges, not the KS scheme itself, as demonstrated by the two-site Hubbard model, in
which the precise KS system is simple to design, even when one deal with strongly
correlated systems [50]. This problem can be addressed by breaking the symmetry
of evenly spaced atomic chains into multiple solutions, and one of which will have
the least amount of energy [51]. This is such a significant issue; hence, a great deal
of research has been done on it, particularly by Weitao Yang’s group [52], but also
by Scuseria [53] and Becke [54].

5.2 Development of uniformly better and simple functionals

One of the biggest problems for DFT is to preserve some aspect of simplicity as
its foundations. When DFT functionals get as complicated as full configuration
interaction, one of the theory’s most significant properties, namely simplicity, is
lost, which is particularly true in terms of computational environment. This sim-
plicity, however, must not be at the expense of accuracy, nor should it become an
exclusively empirical approach. The precise representation of binding energies and
geometries of simple molecules was one of DFT’s first major hurdles in chemistry.
Becke, Perdew, Langreth, and Parr presented the density’s first derivative in the
form of generalized gradient approximation in the 1980s, which was the first step
towards chemists being able to correctly use DFT. In the early 1990s, Becke
described the proportion of Hartree-Fock exact exchange (HF) which is included in
the functionals, and as a result of this effort, B3LYP [55], the utmost extensively
utilized of all the functionals, was developed, and has demonstrated outstanding
performance in variety of systems. Despite the introduction of new concepts into
more current functionals of varying complication, it remains the prevalent, and
DFT will likely benefit from developing functionals that improves on B3LYP [56].

5.3 Dispersion and reaction barriers

To provide a comprehensive chemistry explanation, it is indispensable to go
beyond explaining a molecule in equilibrium geometry to similarly explain weakly
interacting atoms or molecules, and chemical reaction transition states. It’s chal-
lenging to describe reaction barriers with LDA or GGA functional since they con-
sistently underestimate the difficulty of transitioning from one condition to
another. Formerly the functionals may be utilized to represent potential energy
surfaces, and this systematic imperfection must be corrected. Transition states,
covalent bonding, and van der Waals attraction are all challenging to represent
precisely and effectively, though efforts are to be made to address these problems.
This is especially true when DFT becomes more widely applied to biologically
important regions, where all of these interactions might occur at the same time [57].

5.4 Static correlation and delocalization errors

The enactment of DFT, as evidenced by significant errors for one-electron
systems, is another important issue. In DFT, a single electron system has no excep-
tional role; in fact, one electron can interrelate with itself, as the self-interaction
error has long proved. Of course, there is no self-interaction in the accurate
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functional; the exchange energy precisely cancels the coulomb energy of single
electron. In increasingly complicated systems, they can be linked to systematic
flaws like static correlation and delocalization error, and despite most recent
advancements, even the simplest systems can contain mistakes in most recent
functionals [58]. Hence, these basic systems should not be overlooked since they
hold the vital knowledge of functionals that can lead to advancements [57].

6. New horizons

The applications of warm dense matter vary from modeling planetary interiors
to inertial confinement fusion [59], which is a completely new field for DFT, and
has been exploded in the last decade, with considerable temperatures on the elec-
tronic scale of roughly 105 K but not to the point that the Thomas- Fermi hypothesis
or classical performance takes precedence. This domain is so “new” that
temperature-dependent exchange-correlation energy of a uniform gas, which is the
input to thermal LDA, is just now being computed with remarkable precision [60].
Figure 3 summarizes some of the potential application areas of DFT.

7. Concluding remarks

Density Functional Theory is a powerful and commonly employed quantum
mechanical tool for investigating various aspects of matter. This field’s research
ranges from the development of novel analytical approaches focused on the design
of precise exchange-correlation functionals to the use of this technique to predict
the molecular and electronic configuration of atoms, molecules, and solids in both
gas and solution phases. Designing and evolution of more efficient density func-
tionals is a continuous endeavor since there are still challenges to be resolved, and
getting all of the attributes correct at a reasonable computing cost is a quantum
fantasy. The future research will focus on developing even more consistently

Figure 3.
Potential application areas of DFT [61].
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precise density functionals for specific applications, allowing researchers to take use
of DFT’s comparatively high accuracy at cheap processing cost, and the possibility
of even more improvements awaits.
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