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Chapter

Electromagnetic Compatibility
Issues in Medical Devices
Ting-Wei Wang and Ting-Tse Lin

Abstract

Electromagnetic compatibility (EMC) in biomedical applications is a significant
issue related to the user's life safety, especially in implantable medical devices.
Cardiovascular diseases and neurodegenerative disorders are the main chronic dis-
ease worldwide that rely on implantable treatment devices such as cardiac pace-
makers and vagus nerve stimulators. Both devices must have high EMC to avoid
electromagnetic interference-induced health risks, even death during the treatment.
Thus, it is important to understand how EMI can affect implantable devices and
proactively protect devices from electromagnetic interference, providing reliable
and safe implantable device therapy. To this end, this chapter comprehensively
introduces the clinical issues and provides EMC requirements for the implantable
device such as a cardiac pacemaker and vagus nerve stimulator. The significance of
this chapter is to present the EMC important issues in medical engineering that can
help to evolve reliable and secure implantable device development in the future.

Keywords: Cardiac pacemaker, Cardiovascular disease, Electromagnetic
compatibility, Implantable device, Medical device, Neuroscience, Vagus nerve
stimulator

1. Introduction - Physiological background for implantable medical
device

1.1 Cardiac pacemaker

Cardiovascular diseases (CVDs) are the major cause of death globally, which
takes an estimated 17.9 million lives per year based on the World Health Organiza-
tion (WHO) statistics. Especially, arrhythmia has a strong clinical correlation with
sudden cardiac death (SCD) [1]. The irregular heart rhythm called arrhythmia can
mainly be divided into two main types: tachycardia arrhythmia and bradycardia
arrhythmia. As shown in Figure 1, the tachycardia and bradycardia arrhythmia
represent the heart beats too fast and slow, respectively. The physical treatment for
tachycardia and bradycardia syndrome required a regulator to suppress the abnor-
mal heart rhythm. The implantable cardiac pacemaker is commonly applied in the
cardiac modulation that generates the electrical stimulation pulse to regulate the
heart’s sinoatrial node, thus obtaining the normal rhythm.

As shown in Figure 2, the cardiac pacemaker would be activated once the heart
detector measures the abnormal cardiac rhythm. Thus, the stable operation of a
cardiac pacemaker is important for adverse patients, thus providing prompt
treatment in arrhythmia.
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1.2 Vagus nerve stimulator

Epilepsy is a neurological disorder that can induce the brain activities abnormal,
causing seizures and further loss of awareness suddenly [2–4]. According to WHO
statistics, epilepsy is a chronic non-communicable brain disease that affects humans of
all ages, around 50 million globally, becoming one of the most common neurological
diseases worldwide. The risk in the death probability of epilepsy patients is up to three
times higher than healthy people. In epilepsy diagnosis, Electroencephalogram (EEG)
is the most common non-invasive approach to record the brain’s electrical activity and
identify the measured signals, whether it is epilepsy or not [5]. In addition, the
imaging-based diagnosis of computed tomography (CT) [6], positron emission
tomography (PET) [7], and MRI [8] can help further examining brain-tumor-induced
epilepsy. In epilepsy treatment, an vagus nerve stimulator is the common physical
approach implanted near the left chest area, as shown in Figure 3. The electrode is
attached around the vagus nerve in the neck to generates the electrical pulses to the
brain via the vagus nerve. The delay time more than 10 minutes from seizure onset
would increase mortality, which emphasizes the importance of timely treatment and
time and medical emergency [9]. Therefore, high reliability is crucial for vagus nerve
stimulation (VNS) during incidental neurological disease. Moreover, VNS is also
widely applied in significant disease treatment, including cardiac function [10],
depression [11], anxiety [12], Parkinson’s disease [13], and Alzheimer’s disease [14].

Figure 1.
Heart rhythm is divided into normal rhythm, tachycardia arrhythmia, and bradycardia arrhythmia.

Figure 2.
Schematic of the detection and treatment system for cardiac arrhythmia.
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2. Electromagnetic interference for implantable medical device

The electromagnetic interference (EMI) in the implantable medical device can
be produced by the external source with the combined electric and magnetic fields
[10, 15], as shown in Figure 4. EMI is due to radiation that can be through the air
from many possible sources (Table 1) in our daily life [17–20], including the

Figure 3.
Schematic of vagus nerve stimulation and its installations.

Figure 4.
EMI in medical devices from external sources with time-varying electrical and magnetic fields such as base
station, radar, mobile device, and microwave oven [16].
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common consumer device such as mobile phones, radio frequency identification
(RFID) based systems, and microwaves. Moreover, the medical procedure-induced
EMI is a critical concern. For example, dental equipment and magnetic resonance
imaging (MRI) can generate EMI. In particular, the MRI equipment can cause a
strong EMI that is very hard to guard against. The MRI machine can produce an
intense magnetic field of about two or three teslas that are dangerous to any
electronic device. The electromagnetic susceptibility (EMS) is frequently used to
define immunity for EMI, which implies the degree of electronic system
malfunctions under varying levels of EMI. Therefore, electromagnetic compatibility
(EMC) in implantable medical devices such as cardiac pacemakers and vagus nerve
stimulators is important to sustain the stable and normal function to treat accidental
cardiac issues because humans are always surrounded by electrical equipment
[21, 22].

3. Electromagnetic compatibility for implantable medical device

3.1 EMI shield

The EMI shield is designed to decrease the electromagnetic (EM) wave transmis-
sion using a shield to increase the reflection or absorption of EM wave incident at the
interfaces between different mediums. As shown in Figure 5, the electric and mag-
netic fields of EM waves are perpendicular to each component and the EM

Home environment

Mobile phone (RF)

Microwave oven (Microwave)

Remote controller (RF)

Refrigerator (ELF)

Electric razor (ELF)

Outdoor environment

Radar (Microwave)

Base station (Microwave)

High voltage power lines (ELF)

Medical environment

Magnetic resonance image machine (RF)

Radio-based therapy (RF)

Ionizing-based radiation therapy (X-ray)

Defibrillation (ELF)

Lithotripsy (ELF)

Industrial environment

Transformer (ELF)

High voltage power lines (ELF)

Electric motor (ELF)

Radiofrequency identification (RF)

Table 1.
EMI sources from home, outdoor, medical, and industrial environments.
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propagation direction, which can be expressed as phasor form [23], according to
Eqs. (1) and (2).Where γ, α, β are the propagation, attenuation, phase constants of the
medium, respectively; E0 and H0 are the amplitude of the electric and magnetic fields.

E ¼ âyE0e
�γz ¼ âyE0e

�αze�jβz (1)

H ¼ âyH0e
�γz ¼ âyH0e

�αze�jβz (2)

The EM wave propagates at the interface of two different mediums that induce
reflection due to impedance mismatching. The reflection coefficient (R12) and
transmission coefficient (T12) at the interface between two mediums can be deter-
mined, according to Eqs. (3) and (4). Ei, Er, η1, η2 represent incident, reflected
electric fields, impedances in Medium 1 and Medium 2, respectively. The imped-
ance in the medium can be defined by a ratio of electric field and magnetic field,
which is related to the permittivity (ε), permeability (μ), and conductivity (σ),
according to Eq. (5).

R12 ¼
Er

Ei
¼

η2 � η1
η2 þ η1

(3)

T12 ¼
Et

Ei
¼

2η2
η2 þ η1

(4)

η ¼
∣E∣

∣H∣
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jωμ

σþ jωε

s

(5)

The time-domain electric field can be rewritten as Eq. (6), according to Eq. (1).

E ¼ âyE0e
�γz ¼ âyE0e

�αz cos ωt� βzð Þ (6)

When the EM wave propagates in the conductive shield (loss medium) at a time
of zero, the expression between the distance and amplitude of the electric field can
be obtained, according to (7).

E ¼ âyE0e
�αz cos βzð Þ (7)

Figure 6 demonstrates the EM wave propagation in the conductive shield. The
skin depth (δ) can be defined as that penetration distance at which the intensity of

Figure 5.
Time-varying EM waves and the propagation, transmission, and reflection of the EM waves in different
mediums.
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the electric field attenuates to 1/e of the original incident wave intensity. According
to the Eqs. (8) and (9), the skin depth (δ) is the reciprocal of attenuation constant
(α), which is related to the EM operating frequency, permeability (μ), and conduc-
tivity (σ) in the medium [10].

E0

e
¼ E0e

�αδ (8)

δ ¼
1

α
¼

1
ffiffiffiffiffiffiffiffiffiffi

πfμσ
p (9)

Thus, conductivity and permeability in shielding design play an important role
in EM wave absorption enhancement, thus increasing the overall EMI shielding
effectiveness.

However, the implantable medical device is not a fully closed system that must
require the openings of the shield to interact with external equipment such as body
sensing devices for signal transmit or receive. In some cases, the external controlled
magnetic fields or electrical signals can be utilized to externally modulate the
stimulation protocol of implantable medical devices according to patients’ clinical
requirements. So, the selective filtering of EMI waves is important for implantable
medical devices to classify the noise and external signals. Thus, the EMI filter was
provided in the following subsection to promote the EMC applications in implant-
able medical devices.

3.2 EMI filter

The filter implementation is also a strategy for EMI elimination in medical
devices [24–27]. For example, the typical ranges of P, R, T waves in ECG are 20 to
40 Hz, 18 to 50 Hz, and 0 to 10 Hz [28], as shown in Table 2.

Filtering can be divided into active and passive modes. Active filters consist of
several operational amplifiers and passive elements such as capacitors and resistors.
[29–32]. The active filters are applied in wide applications owing to excellent filter
performance. However, the active filters need a power source to sustain the

Figure 6.
Schematic of skin depth of EM waves using the shield.
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operations. Moreover, the upper frequency of active filters may be limited. Thus,
the active filter is not suitable for EMI filtering in implantable medical devices. The
active filter can perform programmatical filtering for the received signals, thus
separating the signal from noise. However, programmatical computation requires a
high-cost and complex circuit with larger power consumption to sustain the
processing functions. Because the implantable devices aim to sustain life, such
devices are not expected to remove or insert frequently because of extremely high
costs for device failure.

Moreover, it is not easy to replace it if the devices fail due to the high risk of
surgery. The concern regarding the surgery risk, which makes battery life issues
more important. Owing to the battery requirements of implantable medical devices,
the minimization of filters’ power is crucial to prolong the implantable device
lifespan.

The capacitor-based passive filter is frequently used for most high-frequency
noise in the surrounding ambient for the filter design regarding implantable medi-
cal devices. Capacitors can filter EMI noise utilizing absorption and smoothing of
electromagnetic noise. The high-frequency noise attenuates as quickly as charging
and discharging the capacitor-based filter. Absorbing such EMI noise to the ground
will neutralize or prevent specific frequencies from passing through the circuit, as
shown in Figure 7.

The discoidal capacitor and feedthrough capacitor array were commonly utilized
in the practical applications of medical devices, which deliver high-density perfor-
mance with low-volume packaging [33–35], as shown in Figure 8.

The circular-shaped discoidal capacitor is one of the most common constructions
for feed-through-style EMI filters. Circular capacitors outside and inside diameters
serve as connection points for the case and the lead and serve as the capacitor poles.
Moreover, several discoidal capacitors can be assembled to integrate as a capacitor
array on a single piece of ceramic [36]. Such assembly offers the highest filter
performance within the limited physical dimension. Thus, the feedthrough

Frequency (Hz) Signal amplitude (mV)

T-waves 0–10 3.5

R-waves 18–50 30

P-waves 20–40 4.5

Muscle signals 30–200 3.5

Table 2.
Significant frequency bandwidth of ECG waveform [28].

Figure 7.
Filter implementation for removing the time-varying electric and magnetic fields.
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capacitor array provides the merits of the miniature dimension and lightweight
within a high-density implantable device [37].

However, a feedthrough filter will have a double impact on battery life. First, a
minimal amount of current always flows between the plates of the charging capac-
itor. Since one capacitor is processing the signal and the other capacitor is grounded,
the leakage current will drain the battery over time. A strong dielectric with an
appropriate thickness can resist this current flow, thereby significantly reducing
battery consumption. Besides, filter design in implantable medical devices is to
minimize the loss of expected signals. The filter’s insertion loss implies how much a
signal will be lost or reduced for each frequency. An excellent filter requires a lower
insertion loss for signal frequencies and a higher insertion loss for noise frequencies.
Some energy in the expected signal will attenuate in internal resistance and induc-
tance of the filter, which implies that the implantable battery needs optimize in the
power design. Thus, an optimized design can suppress the energy loss. The less
power dissipated in the battery, which extends battery life and improves
effectiveness.

4. Conclusion

This chapter has demonstrated the EMC methodology for implantable medical
devices. A common effective EMI removal approach was provided by EMI shielding
and filtering. Such EMC design in implantable medical devices can resist EMI day-
to-day exposure to ensure the stable and reliable operation in implantable medical
devices such as cardiac pacemakers and vagus nerve stimulators.

Figure 8.
The feedthrough capacitor array and discoidal capacitor for the implantable medical device.

8

Recent Topics in Electromagnetic Compatibility



Author details

Ting-Wei Wang1,2 and Ting-Tse Lin3,4,5*

1 Department of Electrical Engineering, California Institute of Technology,
Pasadena, CA, USA

2 Department of Medical Engineering, California Institute of Technology,
Pasadena, CA, USA

3 Division of Cardiology, Department of Internal Medicine, National Taiwan
University Hospital Hsinchu Branch, Hsinchu, Taiwan

4 Cardiovascular Center, National Taiwan University Hospital Hsinchu Branch,
Hsinchu, Taiwan

5 College of Medicine, National Taiwan University, Taipei, Taiwan

*Address all correspondence to: ttlin111@gmail.com

©2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

9

Electromagnetic Compatibility Issues in Medical Devices
DOI: http://dx.doi.org/10.5772/intechopen.99694



References

[1]N. T. Srinivasan and R. J. Schilling,
"Sudden Cardiac Death and
Arrhythmias," (in eng), Arrhythmia &
Electrophysiology Review, vol. 7, no. 2,
pp. 111-117, 2018.

[2]O. Devinsky et al., "Epilepsy," Nature
Reviews Disease Primers, vol. 4, no. 1,
p. 18024, 2018/05/03 2018.

[3] P. J. Karoly et al., "Cycles in
epilepsy," Nature Reviews Neurology, vol.
17, no. 5, pp. 267-284, 2021/05/01 2021.

[4] C. E. Stafstrom and L. Carmant,
"Seizures and epilepsy: an overview for
neuroscientists," (in eng), Cold Spring
Harbor Perspectives in Medicine, vol. 5,
no. 6, p. a022426, 2015.

[5] A. Sohrabpour, Z. Cai, S. Ye, B.
Brinkmann, G. Worrell, and B. He,
"Noninvasive electromagnetic source
imaging of spatiotemporally distributed
epileptogenic brain sources," Nature
Communications, vol. 11, no. 1, p. 1946,
2020/04/23 2020.

[6] J. S. Chopra, I. M. S. Sawhney, N.
Suresh, S. Prabhakar, U. K. Dhand, and
S. Suri, "Vanishing CT lesions in
epilepsy," Journal of the Neurological
Sciences, vol. 107, no. 1, pp. 40-49, 1992/
01/01/ 1992.

[7] I. Sarikaya, "PET studies in epilepsy,"
(in eng), American Journal of Nuclear
Medicine and Molecular Imaging, vol. 5,
no. 5, pp. 416-430, 2015.

[8]H. Wood, "Ultra-high-field MRI
improves detection of epileptic lesions,"
Nature Reviews Neurology, vol. 16, no. 12,
pp. 654-654, 2020/12/01 2020.

[9] A. Verrotti and C. Mazzocchetti,
"Timely treatment of refractory
convulsive status epilepticus," Nature
Reviews Neurology, vol. 14, no. 5,
pp. 256-258, 2018/05/01 2018.

[10] T. W. Wang, Y. L. Sung, and S. F.
Lin, "Cardiac Influence of Repetitive
Transcranial Magnetic Stimulation in
Small Animals," IEEE Journal of
Electromagnetics, RF and Microwaves in
Medicine and Biology, vol. 4, no. 4,
pp. 279-285, 2020.

[11] R. L. Johnson and C. G. Wilson, "A
review of vagus nerve stimulation as a
therapeutic intervention," (in eng),
Journal of Inflammation Research, vol. 11,
pp. 203-213, 2018.

[12]M. S. George et al., "A pilot study of
vagus nerve stimulation (VNS) for
treatment-resistant anxiety disorders,"
(in eng), Brain Stimul, vol. 1, no. 2,
pp. 112-21, Apr 2008.

[13] B. Mondal et al., "Non-invasive
vagus nerve stimulation improves
clinical and molecular biomarkers of
Parkinson’s disease in patients with
freezing of gait," NPJ Parkinson's
Disease, vol. 7, no. 1, p. 46, 2021/05/
27 2021.

[14] P. Boon, I. Moors, V. De Herdt, and
K. Vonck, "Vagus nerve stimulation and
cognition," Seizure, vol. 15, no. 4,
pp. 259-263, 2006/06/01/ 2006.

[15] R. Beinart and S. Nazarian, "Effects
of external electrical and magnetic fields
on pacemakers and defibrillators: from
engineering principles to clinical
practice," (in eng), Circulation, vol. 128,
no. 25, pp. 2799-2809, 2013.

[16] J. B. Marion, "14 -
ELECTROMAGNETIC RADIATION,"
in Physics in the Modern World (Second
Edition), J. B. Marion, Ed.: Academic
Press, 1981, pp. 377-397.

[17] L. Santini, G. B. Forleo, and M.
Santini, "Implantable devices in the
electromagnetic environment," Journal
of Arrhythmia, vol. 29, no. 6,
pp. 325-333, 2013/12/01/ 2013.

10

Recent Topics in Electromagnetic Compatibility



[18]M. Tiikkaja, Environmental
electromagnetic fields: interference with
cardiac pacemakers and implantable
cardioverter-defibrillators.
Työterveyslaitos, 2014.

[19]N. Mizutani, I. Kato, and T.
Kobayashi, "A survey of the effect of
electromagnetic interference on
currently marketed pacemakers,"
Journal of Artificial Organs, vol. 3, no. 1,
pp. 47-52, 2000/03/01 2000.

[20] J. L. N. Violette, D. R. J. White, and
M. F. Violette, "Sources of
Electromagnetic Interference," in
Electromagnetic Compatibility Handbook,
J. L. N. Violette, D. R. J. White, and M.
F. Violette, Eds. Dordrecht: Springer
Netherlands, 1987, pp. 13-62.

[21]O. Erdogan, "Electromagnetic
interference on pacemakers," (in eng),
Indian Pacing and Electrophysiology
Journal, vol. 2, no. 3, pp. 74-78, 2002.

[22]H. W. Roberts, "The effect of
electrical dental equipment on a vagus
nerve stimulator's function," The Journal
of the American Dental Association, vol.
133, no. 12, pp. 1657-1664, 2002/12/01/
2002.

[23] K. L. Kaiser, Electromagnetic
shielding. CRC Press, 2005.

[24] T.-W. Wang, Y.-L. Sung, H.-W.
Chu, and S.-F. Lin, "IPG-based field
potential measurement of cultured
cardiomyocytes for optogenetic
applications," Biosensors and
Bioelectronics, vol. 179, p. 113060, 2021/
05/01/ 2021.

[25] T.-W. Wang et al., "Bio-Impedance
Measurement Optimization for High-
Resolution Carotid Pulse Sensing,"
Sensors, vol. 21, no. 5, 2021.

[26] T. W. Wang and S. F. Lin, "Negative
Impedance Capacitive Electrode for
ECG Sensing Through Fabric Layer,"

IEEE Transactions on Instrumentation
and Measurement, vol. 70, pp. 1-8, 2021.

[27] T.-W. Wang and S.-F. Lin, "Non-
contact capacitive sensing for ECG
recording in small animals,"
Measurement Science and Technology, vol.
31, no. 12, p. 125703, 2020/10/17 2020.

[28]M. W. Sweesy, J. L. Holland, and K.
W. Smith, "Electromagnetic
interference in cardiac rhythm
management devices," (in eng), AACN
Clin Issues, vol. 15, no. 3, pp. 391-403,
Jul-Sep 2004.

[29] T.-W. Wang and S.-F. Lin,
"Wearable Piezoelectric-Based System
for Continuous Beat-to-Beat Blood
Pressure Measurement," Sensors, vol. 20,
no. 3, 2020.

[30] T. W. Wang, W. X. Chen, H. W.
Chu, and S. F. Lin, "Single-Channel
Bioimpedance Measurement for
Wearable Continuous Blood Pressure
Monitoring," IEEE Transactions on
Instrumentation and Measurement, vol.
70, pp. 1-9, 2021.

[31] T. W. Wang et al., "Single-Channel
Impedance Plethysmography Neck
Patch Device for Unobtrusive Wearable
Cardiovascular Monitoring," IEEE
Access, vol. 8, pp. 184909-184919, 2020.

[32] T. W. Wang, H. Zhang, and S. F.
Lin, "Influence of Capacitive Coupling
on High-Fidelity Non-Contact ECG
Measurement," IEEE Sensors Journal,
vol. 20, no. 16, pp. 9265-9273, 2020.

[33] R. A. Stevenson and D. N. Pruett,
"Feedthrough filter capacitor assembly
for human implant," ed: Google Patents,
1994.

[34] J. H. Coleman, "Discoidal
monolithic ceramic capacitor," ed:
Google Patents, 1981.

[35]H. V. Trinh, D. F. Devoe, A. D.
Devoe, M. L. Trinh, and M. Petkova,

11

Electromagnetic Compatibility Issues in Medical Devices
DOI: http://dx.doi.org/10.5772/intechopen.99694



"MLC Discoidal Capacitors for EMI-RFI
Filters Employing Non-Overlapping
Electrodes Yield Substantial
Performance Improvements," ed:
CARTS USA Palm Springs, CA, USA,
2005.

[36] S. Grob, P. A. Tass, and C.
Hauptmann, "Capacitive Feedthroughs
for Medical Implants," (in eng),
Frontiers in Neuroscience, vol. 10,
pp. 404-404, 2016.

[37] P. J. Barry and D. J. Boettger,
"Feedthrough assembly for an
implantable device," ed: Google Patents,
2013.

12

Recent Topics in Electromagnetic Compatibility


