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Chapter

New Analytical Model for
Swellable Materials
Sayyad Zahid Qamar, Maaz Akhtar and Tasneem Pervez

The history of science shows that theories are perishable. With every new truth that

is revealed we get a better understanding of Nature, and our conceptions and views

are modified.

Nikola Tesla

Abstract

As discussed in Chapter 6, numerical prediction of swelling can be attempted
using existing hyperelastic material models available in commercial finite element
(FE) packages. However, none of these models can accurately represent the behav-
ior of swelling elastomers. The major shortcoming of currently available swelling
models is that they consider Gaussian statistics for mechanical contribution of
configuration entropy, which is based on chains having limited extensibility. Some
later models (not yet incorporated into commercial FE packages) can give a rea-
sonable account of certain behavior patterns in swelling elastomers, but do not
explain other aspects well. One of the new approaches is to treat swelling elastomers
as gels. As described earlier, gels are mostly liquid, yet they behave like solids due to
a three-dimensional cross-linked network within the liquid. Many authors consider
gel as poro-elastic or porous and use Darcy’s law to model the amount of fluid
influx. However, a swollen elastomer mostly consists of the solvent. When an
external load is applied, maximum resistance comes from the solvent molecules as
in diffusion. Also, most of the new models are quite complex in concept and
formulation, and there is a serious need for a scientifically simpler model.

Keywords: swelling elastomer, new material model, continuum mechanics,
non-Gaussian statistics

1. Introduction

As discussed in Chapter 6, numerical prediction of swelling can be attempted using
existing hyperelastic material models available in commercial finite element (FE)
packages. However, none of these models can accurately represent the behavior of
swelling elastomers [1]. The major shortcoming of currently available swelling models
is that they consider Gaussian statistics for mechanical contribution of configuration
entropy, which is based on chains having limited extensibility [2]. These models
assume small stretch of elastomer chains, while swelling elastomers experience much
larger stretches. That is why they show onlymodest agreement with experimental data.

Some later models (not yet incorporated into commercial FE packages) can give
a reasonable account of certain behavior patterns in swelling elastomers, but do not
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explain other aspects well [3]. One of the new approaches is to treat swelling
elastomers as gels. As described earlier, gels are mostly liquid, yet they behave like
solids due to a three-dimensional cross-linked network within the liquid. Many
authors consider gel as poro-elastic or porous and use Darcy’s law to model the
amount of fluid influx. However, a swollen elastomer mostly consists of the solvent.
When an external load is applied, maximum resistance comes from the solvent
molecules as in diffusion. Also, most of the new models are quite complex in
concept and formulation, and there is a serious need for a scientifically simpler
model.

2. Proposed model: salient features

Presented below is the development of a new material model for the prediction
of swelling in elastomeric materials, using a continuum mechanics approach. To
account for the changes in configuration entropy of the elastomer chains due to
swelling, almost all available models [4–7] use classical Gaussian-statistics in which
chains are considered to have limited extensibility [8]. Swelling elastomers undergo
large deformations as the chain network stretches more. More realistic non-
Gaussian statistics is therefore used for model development here, to account for
large mechanical stretches, in terms of mechanical contribution of configuration
entropy.

It was concluded in Chapter 6 that Ogden model gives the closest predictions for
swelling elastomers [1]. The hyperelastic portion of the new model is therefore
based on the phenomenological stretch-based Ogden model. This second-order
non-Gaussian strain energy function is used to define changes due to configuration
entropy [9]. Rather than treating swelling as an osmosis problem, diffusion is
considered to be the mechanism responsible for fluid influx. Flory-Huggins theory
is used for incorporating the thermodynamics of mixing of polymer and solvent
(absorption of fluid into the elastomer). Unlike other models, which consider only
some of the pertinent parameters, proposed model includes most of the relevant
material and structural properties of the elastomer, and environmental conditions
(temperature, water salinity, coefficient of diffusion, polymer-solvent interaction
parameter, etc).

The formulation is based on thermodynamically consistent diffusion-
deformation theory for elastomer gels considering the interaction and mixing of
polymer and solvent. Solid and liquid like chemical species are considered as a single
homogenized continuum [7, 10]. It is assumed that Helmholtz free energy can be
divided into network stretching and Fluid-polymer mixing [11]. Flory-Huggins
theory is used to describe the changes in entropy due to solid–fluid mixing.

Fluid imbibition in swelling elastomers follows the mechanism of diffusion
[4, 12]. Diffusion equations are formulated through suitable balance laws for fluid
content. Coefficient of diffusion (D) for fluid molecules is assumed to be isotropic
and independent of deformation gradient. As fluid molecules form a majority por-
tion of the swollen elastomer, this simplification seems quite realistic. Deformation
due to swelling may occur in two ways, short range or long range, as shown in
Figure 1. Initially, the solvent molecules diffuse and re-arrange so that shape
changes but volume remains constant. In long-range motion, gel changes shape as
well as volume. It is assumed in developing the model that amount of solvent only
transports when change of volume occurs, and it remains constant when elastomer
undergoes only change of shape.

Swelling elastomers are assumed to be incompressible because they possesses
high bulk modulus and low shear modulus [13]. Change in volume is negligible as
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compared to shape change. Gels are soft materials that can deform easily and can
undergo volume changes equal to several times its initial volume. This change in
volume occurs only as a result of imbibition of solvent molecules. It should be noted
that volume of swollen elastomer is the state bounded by material points that
deform with the elastomer chains. Swelling of gel actually means deformation of the
elastomer network. When a swellable elastomer is placed in a solvent, it absorbs it,
resulting in stretching of chains with increase in volume; Figure 2. This unique
feature necessitates the consideration of large deformation and helps in developing
the mathematical basis for mechanics of swelling. Mathematical structure used to

Figure 1.
Deformation under long and short range motion of gel.

Figure 2.
Imbibition of solvent and stretching of chain.

3

New Analytical Model for Swellable Materials
DOI: http://dx.doi.org/10.5772/intechopen.94732



derive deformation of elastomer network due to swelling is similar to the approach
used in rubber elasticity. Rubber can be treated as a special case of swelling elasto-
mer with no fluid. Succeeding sections describe the continuum mechanics theory
for swelling elastomers.

3. Proposed model: mathematical formulation

The new model for swelling in elastomers is developed in this section, describing
the relevant contributions of kinematics, force equilibrium, solvent equilibrium,
system free energy, kinematic constraint for network incompressibility, kinetics,
and thermodynamics of mixing.

3.1 Kinematics

Polymer-fluid mixture is considered to be a single homogenized continuum
body permitting diffusion of solvent. Reference configuration is a three dimensional
dry state of elastomer represented by Ω0 contained within a surface denoted by S0.
Current configuration represents the deformed swollen state of elastomer network.
Intermediate or auxiliary state is the local distortion of elastomer because of volume
increase only. Later rotation and stretching of swollen elastomer gives the mechan-
ical elastic deformation in final configuration.

Consider a particle A labeled by its position X in the reference state. Deforma-
tion of entire material is described by motion and solvent concentration with
smooth mapping of all material particles to the final state. After deformation,
particle A attains a new position x in current configuration as shown in Figure 3.
Similarly, each particle is deformed and attains a new position in the final sate.

Analytical description of the deformation of a continuum can follow either
Eulerian (spatial) or Lagrangian (material) descriptions. In Eulerian approach,
deformation is referred to the current state, while in Lagrangian description defor-
mation is referred to reference configuration [14]. In continuum mechanics of solid
bodies, spatial description is less beneficial since current configuration is not
known. Consider particles A and B in Ref. configuration represented by positions
XA and XB, respectively. Elemental vector is given by

dX ¼ XB �XA: (1)

Figure 3.
Schematic of the reference (dry), intermediate (swollen), and current (deformed) configurations.
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After deformation at time (t), particles occupy spatial positions xA and xB in
current configuration, having elemental vector given by

dx ¼ xB � xA: (2)

Displacement of the particles A and B is given by

uA ¼ xA �XA, uB ¼ xB �XB: (3)

Displacement attained by material in the current configuration can be written as

u X, tð Þ ¼ x�X: (4)

Relationship between current and reference state (before and after deformation)
is expressed by the deformation gradient tensor F Xð Þ, expressed as [14].

dx ¼ F � dX ¼ dX � FT

F ¼
∂x

∂X

� �

or Fij ¼
∂xi X, tð Þ

∂X j
:

(5)

A crucial kinematic constituent of the current model is the multiplicative
decomposition of the deformation gradient into swelling and mechanical elastic
parts as suggested by Flory [11]. Local distortion of the material at X due to swelling
is given by Fs Xð Þ, while rotation and stretching of swollen network is specified by
Fe Xð Þ. Hence, deformation gradient can be written as

F ¼ FeFs: (6)

Jacobian J is the determinant of deformation gradient such that

J ¼ detF>0:

Je ¼ detFe and Js ¼ detFs (7)

Using Eq. (6) and definition of Jacobin from Eq. (7), we can write

J ¼ JeJs: (8)

3.2 Force equilibrium

The principle of virtual work is considered to be a fundamental law in continuum
mechanics [15]. It states that the magnitude of virtual work for the forces acting on a
particle in equilibrium is zero for any arbitrary virtual motion. The balance of body
forces (b) per unit volume at equilibrium in reference configuration is given by

divsþ b ¼ 0, (9)

where s is a statically admissible stress field that holds true for any test function ξ.
Multiplying Eq. (9) by this test function and integrating with respect to volume gives

ð

V
divsþ bð ÞξdV ¼ 0

)

ð

V

ξ divsdV þ

ð

V

b ξdV ¼ 0:

(10)
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We know that

div Aεð Þ ¼ ε divAT þ tr A gradεð Þ, and tr ATB
� �

¼ A∶B:

Eq. (10) thus becomes

ð

V
div sξð Þ � s : grad ξð Þ þ b � ξf gdV ¼ 0: (11)

Applying Gauss divergence theorem to first term of Eq. (11) transforms the
behavior from inside the body to the vector field (n) through the surface,

ð

V
div sξð ÞdV ¼

ð

S
snξ dA:: (12)

Cauchy’s law states that a stress tensor exists which maps the normal to a surface
into traction vector acting on the surface. When applied on Eq. (12) traction
boundary loads (t) per unit area are added to the equation. Rearranging the terms
gives the statement for principle of virtual work:

ð

V
sij

∂ξi

∂Xj
dV ¼

ð

V
biξi dVþ

ð

S
tiξi dA ¼ 0: (13)

3.3 Solvent equilibrium

Changes in solvent concentration for any material are typically explained
through diffusion across the boundary. Let C X, tð Þ denote the concentration of
solvent molecules absorbed by the polymer per unit volume of reference configu-
ration, with the assumption that no chemical reactions occur. Solvent flux (ϕ) per
unit area represents the amount of solvent particles entering through the boundary
per unit time. For all the particles, conservation of solvent molecules takes the
following form [10].

ð

V

_CdV ¼ �

ð

S
ϕ �m dA: (14)

Applying the divergence theorem to Eq. (14), and rearranging the terms, yields
the following balance law for solvent content

ð

V

_Cþ divϕ
� �

dV ¼ 0: (15)

For this equation to hold, we must have

_C ¼ �divϕ

or
∂C X, tð Þ

∂t
þ

∂ϕj X, tð Þ

∂Xj
¼ 0:

(16)

The equation for solvent diffusion at the rate (ψÞ across the boundary at flux (ϕ)
is formulated through the law of balance law [5] given by

ψ ¼ �ϕ �m

) �ϕ j X, tð Þm j X, tð Þ ¼ ψ X, tð Þ:
(17)
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Multiplying Eq. (16) with an arbitrary test function ζ and integraing with
respect to volume gives

ð

V

∂C

∂t
ζdV þ

ð

V

∂ϕ j

∂X j
ζdV ¼ 0: (18)

Similarly, multiplying Eq. (17) with the same arbitrary test function (ζ), and
integrating with respect to area, we get

�

ð

S
ϕ jm jζdA ¼

ð

S
ψζdA: (19)

Applying divergence theorem on Eq. (18), putting Eq. (19) in the resultant, and
on simplification we get

ð

V

∂C

∂t
ζdV ¼

ð

V
ϕ j

∂ζ

∂X j
dV þ

ð

S
ψζdA: (20)

Chemical potential gradient is required to induce swelling in the polymer. Solvent
molecules in dilute phase have higher chemical potential than those in concentrated
phase. This difference in potential causes solvent flow from solution to polymer.
Chemical potential μð Þ is characterized by the energy flow Θð Þ due to solvent trans-
port across the boundary as discussed by Gurtin et al. [16], and is given by

Θ ¼ �

ð

S
μϕ �mdA

) Θ ¼ �

ð

S
μψdA:

(21)

3.4 Free energy of the system

Free energy density is a function of concentration and deformation gradient. For
an element of volume dV, Helmholtz free energy of the swelling elastomer in the
current configuration is denoted by WdV. When equilibrium is attained between
the fluid and the swollen elastomer, chemical potential becomes homogenous both
inside the elastomer and in the surrounding solvent. Small changes δC in the fluid
concentration and δF in the deformation gradient of the elastomer causes changes in
the free-energy density δW.

δW ¼
∂W F,Cð Þ

∂F
δFþ

∂W F,Cð Þ

∂C
δC: (22)

At equilibrium, free energy of the system is the amount of work done by all the
loads and due to solvent transport. For small changes, rate of change of free energy
of the system (Λ) is given by

δΛ

δt
¼

ð

V

δW

δt
dV �

ð

V
b
δx

δt
dV �

ð

S
t
δx

δt
dA�

ð

S
μψdA: (23)

Replacing test function with δx=δtð Þ in Eq. (13), we get

ð

V
b
δx

δt
dV þ

ð

S
t
δx

δt
dA ¼

ð

V
s

∂

∂X

δx

δt

� �

dV ¼

ð

V
s

δF

δt

� �

dV: (24)
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Dividing Eq. (22) by δt and placing in Eq. (20), we get the following equation:

δW

δt
¼

∂W

∂F

δF

δt

� �

þ
∂W

∂C

ð

V
ϕ

∂

∂X
dV þ

ð

S
ψdA

� �

: (25)

Substituting Eqs. (24) and (25) in Eq. (23) and rearranging the terms, we get

δΛ

δt
¼

ð

V

∂W

∂F
� s

� �

δF

δt
dV þ

ð

S

∂W

∂C
� μ

� �

ψdAþ

ð

V
ϕ

∂

∂X

∂W

∂C

� �

dV: (26)

According to Clausius-Duhem inequality [17], free energy of a system that is
thermodynamically consistent should always decrease or be equal to zero (δΛ=δt≤0).
This condition must apply to any random value of ϕ, ψ and δx=δtð Þ. Accordingly, all
of the above terms should be less than or equal to zero. Short-range motion is much
faster than long-range transport of the solvent. Relocations occurring locally in short-
range motion are assumed to be instantaneous, hence first integrand in Eq. (26)
should be zero. This gives

sij ¼
∂W F, Cð Þ

∂Fij
: (27)

When equilibrium in the elastomer is reached between fluid transport
and mechanical loads, chemical potential becomes uniform. This can be
achieved by equating the second integrand of Eq. (26) to zero, giving the
following relation

μ ¼
∂W F, Cð Þ

∂C
: (28)

When free energy density W F, Cð Þ for a system is known, and assumption of
local equilibrium is applied, (27) and (28) become the equations of state for the
system. At equilibrium, stress (sij) is a derivative of free-energy function with
respect to deformation gradient, and chemical potential (μ) is defined as a deriva-
tive of free-energy with respect to concentration. Extended motion of polymer
when volume change occurs due to fluid transport can be explained through kinet-
ics, laying the foundation to develop an expression for flux due to gradient of
chemical potential.

3.5 Kinematic constraint for network incompressibility

As explained earlier, elastomeric materials have larger values of bulk modulus as
compared to shear modulus. They can therefore be considered as almost incom-
pressible. Fluid transporting through the elastomer is assumed to be incompressible
as well. Hence, overall response of swollen elastomer can be considered as incom-
pressible. Jacobian can be defined as [6]:

J ¼

λ1

λ2

λ3

2

6

6

4

3

7

7

5

J � det Fð Þ ¼ λ1λ2λ3 ¼
VS

Vo
:

(29)
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Stretch is the ratio of initial and final linear dimensions that change due to
deformation (λ ¼ l f=l0 ¼ t f=t0 ¼ h f=h0). This definition in terms of stretches is

based on invariants. Total volume is the sum of volume of dry polymer and volume
of solvent molecules absorbed in the gel. Multiplying and dividing the resulting
equation by number of solvent molecules, constraint for incompressibility can be
determined as follows [18]:

det Fð Þ ¼ 1þ
VS

Vo
¼ 1þ

VS

NS

NS

Vo
,

where det Fð Þ ¼ 1þ υC: (30)

In order to embed incompressibility, an integral should be added to the free-
energy density function. Using Lagrange multiplier (p) to optimize the functions,
applying the constraint [5] of Eq. (30), we get

κ ¼

ð

V
p 1þ υC� det Fð Þf gdV: (31)

Differentiating Eq. (31) with respect to F and C, and using the identity

∂det Fð Þ=∂F ¼ F�Tdet Fð Þ [14], equations of state can be rewritten as follows:

∂κ

∂F
¼ �pF�Tdet Fð Þ

∂κ

∂C
¼ pυ:

(32)

Stress and chemical potential can now be defined as

s ¼
∂W F, Cð Þ

∂F
� pF�Tdet Fð Þ

and μ ¼
∂W F, Cð Þ

∂C
þ pυ:

(33)

3.6 Kinetics

The only driving force causing swelling of the elastomer is the amount of fluid
transport into the network, resulting in swelling and stretching of networks. This is
the reason that kinetics needs to describe the fluid motion in terms of flux and
gradient of chemical potential. Some authors consider gel as poro-elastic or porous
and use Darcy’s law to model the amount of fluid influx [10, 19]. In porous media, a
body is considered to be made up of pores such that permeability is related to the
square of pore size. But in a swollen elastomer, major portion of the body is
comprised of solvent and when load is applied on it, maximum resistance comes
from the solvent molecules as in diffusion. Kinetic theory has also been developed
by Tanaka and Fillmore [20] by considering friction with rate-dependent swelling.
This theory has limited applicability as it does not consider large deformations.
Other authors define a kinetic law based on diffusion mechanism for solvent
migrations in elastic material [4–6]. Mobility tensor should be dependent on defor-
mation gradient and solvent concentration. For defining mobility tensor, we use the
relations similar to Chester and Anand [10] and Hong et al. [5]:

ϕk ¼ �MKM
∂μ

∂XM
: (34)
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Mobility tensor is positive definite and symmetric. Feynman et al. [21] derived
an expression for diffusion in which flux is proportional to gradient of chemical
potential. It explains the interrelationship of flux, fluid concentration, diffusion,
and gradient of chemical potential in terms of true quantities:

ϕi ¼ �
cD

kT

∂μ

∂xi
: (35)

In engineering applications, a property based on its original or initial value is
termed as nominal quantity. On the other hand, true quantities are based on instan-
taneous properties. For example, a structural member under the influence of load
deforms, resulting in reduction of cross-sectional area. In nominal stresses, the cross-
sectional area is assumed constant during the deformation and stress is determined,
known as nominal or engineering stress. While in true stress, force is divided by the
instantaneous area. True concentration and flux can be converted to nominal values
through the relationships c ¼ C=det Fð Þ and ϕ ¼ Fϕ=det Fð Þ, respectively. Also, using
partial derivative chain rule, we can express gradient of chemical potential as

∂μ

∂XM
¼

∂μ

∂xi
FiM: (36)

Replacing true concentration and true flux in Eq. (5) by their nominal values,
we get

FiK

det Fð Þ
ϕ ¼ �

C

det Fð Þ

D

kT

∂μ

∂xi
: (37)

Substituting Eqs. (34) and (36), along with the incompressibility condition from
Eq. (30), into Eq. (37), relation for mobility tensor can be obtained:

FiK

det Fð Þ
MKM

∂μ

∂XM
¼

C

det Fð Þ

D

kT

∂μ

∂xi

) MKM ¼
D

υkT
F�T
iK F�T

iM det Fð Þ � 1f g:

(38)

3.7 Thermodynamics of mixing

Thermodynamics involved in polymer and solvent mixing is very important in
the development of an analytical model for polymer swelling. The theoretical basis
for understanding the behavior of polymer solutions was established independently
by Huggins [22] and Flory [23]. Flory-Huggins theory gives the energy of mixing
for a pure polymer with a pure solvent in terms of enthalpy and entropy of mixing.
Figure 4 presents the lattice model for mixing of polymer and solvent.

Statistical explanation of entropy is used to determine the number of probable
positions that the polymer can attain in the solution. Before mixing, both polymer
and solvent have no unique state. After mixing, many probable states can be
attained, given by

Ω ¼
N!

Ns!NP!
: (39)

Entropy for free energy of mixing can be specified according to Boltzmann
expression as follows:
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ΔS ¼ k ln Ω, (40)

where k is the Boltzmann constant. Using logarithmic principles and Sterling’s
approximation, Eq. (40) can be rewritten in terms of volume fraction of polymer
(ΦP) and solvent (ΦS) as follows:

ΔS ¼ �k NslnΦS þNP lnΦPð Þ: (41)

Enthalpy of mixing is defined in terms of a dimensionless entity known as
polymer-solvent interaction parameter (χ). It measures the degree of interaction
between polymer and solvent as well as polymer and polymer:

ΔH ¼ χkTNsΦP: (42)

For a closed system at constant pressure and temperature, Gibbs free energy can
be defined as

ΔG ¼ ΔH� TΔS: (43)

Putting Eqs. (41) and (42) in Eq. (43), we get the expression

ΔG ¼ kT NslnΦS þNP lnΦP þ χNsΦPð Þ: (44)

Noting that ΦS þΦP ¼ 1ð Þ, and using Eq. (30), we get

ΦS ¼ 1�ΦP ¼ 1�
1

J

) ΦS ¼
υC

1þ υC
:

(45)

Substituting Eqs. (45) into Eq. (44), and neglecting the middle term as it is very
small compared to the remaining terms, the strain energy density function for
mixing (Wm ¼ ΔG=Vo) can be expressed as:

Wm ¼
kT

Vo
Ns ln

υC

1þ υC
þ χNs

1

1þ υC

� �

) Wm ¼
kT

υ
υC ln

υC

1þ υC
þ χ

υC

1þ υC

� �

:

(46)

A similar expression has also been used by Chester and Anand [10] Duda et al.
[24] and Kang and Huang [6]. Equation developed by Hong et al. [5] for strain
energy density of mixing is different by only a constant value as compared to the

Figure 4.
Lattice model for mixing of polymer and solvent.
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above expression, which is negligible in deformation due to swelling. Flory and
Rehner [25] postulated that for gels, free energy density is a combination of strain
energy density function due to thermodynamics of mixing and stretching of poly-
mer networks:

W F, Cð Þ ¼ Wm Cð Þ þWS Fð Þ: (47)

Strain energy density function for stretching deformation can be based on either
Gaussian or non-Gaussian theory. As described earlier, Gaussian theory mainly deals
with the scenarios where short stretching of polymer chains is considered, so these
models work well only for small deformations and are unable to match the deforma-
tion patterns at large strains. Most of the swelling models currently available use
Gaussian statistics [8], and are therefore unable to give reasonable predictions for
large swelling. Proposed analytical model is based on non-Gaussian theory, while
Ogden strain energy function [9] is used to account for the limited extensibility.
Ogden model is given by the following relation in terms of principal stretches:

WS ¼
X

Q

n¼1

μn

αn
λ
αn
1 þ λ

αn
2 þ λ

αn
3 � 3

� �

: (48)

Here, μn and αn are material constants that are determined by fitting the
experimental data, and Q is a positive definite integer. These material constants are
related to shear modulus (G):

X

Q

n¼1

μnαn ¼ 2G: (49)

For the proposed model, second degree Ogden strain energy function is used as
it gives the closest prediction (as explained in Chapter 6). Expand Eq. (48) for
second degree, and simplifying, we get the following relation:

WS ¼
μ1

α1
λ
α1
1 þ λ

α1
2 þ λ

α1
3 � 3

� �

þ
μ2

α2
λ
α2
1 þ λ

α2
2 þ λ

α2
3 � 3

� �

) μ1α1 þ μ2α2 ¼ 2G:
(50)

Putting Eqs. (46) and (50) into (47), we get the following strain energy density
function:

W F, Cð Þ ¼
μ1

α1
λ
α1
1 þ λ

α1
2 þ λ

α1
3 � 3

� �

þ
μ2

α2
λ
α2
1 þ λ

α2
2 þ λ

α2
3 � 3

� �

þ
kT

υ
υC ln

υC

1þ υC
þ χ

υC

1þ υC

� � (51)

Knowing that deformation gradient can be represented as F ¼ λI [13, 7], and
differentiating Eq. (51) with respect to λ, we get

∂W

∂F
¼

∂W

∂λi
¼ μ1λ

α1�1
i þ μ2λ

α2�1
i : (52)

Differentiation of Eq. (50) with respect to fluid concentration results in the
following expression:

∂W

∂C
¼ kT ln

υC

1þ υC
þ

1

1þ υC
þ χ

1

1þ υCð Þ2

" #

: (53)
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Substituting the expressions for ∂W=∂F from Eq. (52), and ∂W=∂C from
Eq. (53), into Eq. (33), and using (29), equations of state can be converted into the
following form:

si ¼ μ1λ
α1�1
i þ μ2λ

α2�1
i � pλ�1

i λ1λ2λ3

and μ ¼ kT ln
υC

1þ υC
þ

1

1þ υC
þ χ

1

1þ υCð Þ2

" #

þ pυ:
(54)

Eq. (54) can be expanded for the three nominal stresses as follows:

s1 ¼ μ1λ
α1�1
1 þ μ2λ

α2�1
1 � pλ2λ3

s2 ¼ μ1λ
α1�1
2 þ μ2λ

α2�1
2 � pλ1λ3

s3 ¼ μ1λ
α1�1
3 þ μ2λ

α2�1
3 � pλ1λ2:

(55)

On the other hand, the two equations in (54) can be combined to obtain a
constitutive relationship for modeling of swelling phenomenon:

si ¼ μ1λ
α1�1
i þ μ2λ

α2�1
i �

λ�1
i λ1λ2λ3

υ
μ� kT ln

υC

1þ υC
þ

1

1þ υC
þ χ

1

1þ υCð Þ2

( )" #

(56)

Eq. (56) provides a non-linear model for the phenomenon of swelling in elasto-
meric materials, considering non-Gaussian theory of polymer network stretching.
This model takes mechanical as well as solvent properties as input, along with
environmental conditions such as temperature, water salinity, swelling medium’s
coefficient of diffusion, polymer-solvent interaction parameter, etc.

In order to solve the equations of state, a case of free equilibrium swelling is
considered. It is assumed that when dry elastomer is immersed in a solvent, it
swells, and equilibrium is achieved after some time. At equilibrium between elasto-
mer and diffusing solvent, chemical potential is negligible. Swelling is considered to
be homogenous throughout the elastomer, making stretches equal in all directions.
Replacing principal stretches with equivalent swelling stretch (λS), and setting up
chemical potential equal to zero in Eq. (56), we get

si ¼ μ1λ
α1�1
S þ μ2λ

α2�1
S þ

λ2S
υ
kT ln

υC

1þ υC
þ

1

1þ υC
þ χ

1

1þ υCð Þ2

" #

: (57)

Using the identity of Eq. (30), we can write 1þ υC ¼ λ3S and υC ¼ λ3S � 1.
Replacing in Eq. (57), and simplifying,

si ¼ μ1λ
α1�1
S þ μ2λ

α2�1
S þ

λ2S
υ
kT ln 1�

1

λ3S

 !

þ
1

λ3S
þ χ

1

λ6S

" #

: (58)

The elastomer is considered to be under no constraint. Application of this no-
constraint condition on the elastomer results in no stress. Hence Eq. (58) can be
transformed by embedding stress value equals to zero:

μ1λ
α1�3
S þ μ2λ

α2�3
S þ

kT

υ
ln 1�

1

λ3S

 !

þ
1

λ3S
þ χ

1

λ6S

" #

¼ 0: (59)
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4. Model validation

Validation of the model developed above requires the comparison of model pre-
dictions against experimental results. For this purpose, a series of experiments were
performed under specific conditions. Some experimental results are used as input to
the model (for evaluation of parameters), while other results are used for model
validation. Logical flow of activities for model validation is shown in Figure 5.
Swelling related experiments are discussed in detail in Chapters 3 and 7. Experi-
mental work required to determine diffusion coefficients and the polymer-solvent
interaction parameter and is explained below.

4.1 Experimental investigation

Experiments were conducted (already described in Chapter 7) on disc samples
of two different water swelling elastomers, in salt solutions of low and high salin-
ities (0.6% and 12%), at room temperature and 50°C. During the one-month swell-
ing period, readings (volume, thickness, mass, and hardness) were taken before
swelling and after 1, 2, 4, 7, 10, 16, 23, and 30 days of swelling. Stres-strain relations
from compression and bulk tests were used to determine values of bulk modulus,
and different structural properties. Evaluation of other solvent and polymer prop-
erties (diffusion coefficient, polymer-solvent interaction parameter, and molar vol-
ume of swelling solvent) is discussed below.

Figure 5.
Flow diagram of activities required for model validation.
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4.1.1 Diffusion coefficient

When a dry polymer is immersed into water of a specific salinity, solvent starts
diffusing into the polymer due to chemical potential gradient. Diffusion coefficients
for low and high salinity solutions should be known in order to correctly predict the
amount of swelling. Stokes-Einstein formula [26] is used here to evaluate the
diffusion coefficients for low and high salinity solutions.

For a fluid with no flow separation, the drag force is given by

FD ¼
24 ρv2

2

� �

A

Re
: (60)

We know that Reynold’s number and cross-sectional area are given by
Re = Dvρ/η and A = πD2/4 respectively. Therefore,

FD ¼ 6πRηv: (61)

It is known that drag force can also be represented as

FD ¼ ζv, (62)

where ζ is Stoke’s friction factor, and can be written as

ζ ¼ 6πRη: (63)

The diffusion coefficient (D) is given by Einstein’s equation as

D ¼
kT

ζ
: (64)

Using Stoke’s friction factor, this becomes

D ¼
kT

6πRη
: (65)

Here, k is the Boltzmann constant,T is the absolute temperature, R is the radius
of solvent particle, and η is the viscosity.

In order to determine diffusion coefficient, viscosity and density of water at low
and high salinities are required for all test conditions. To determine the viscosity,
Cannon-Fenske [27] apparatus (Figure 6) of size 50 is used. Liquid (whose viscos-
ity is to be determined) is filled in the apparatus slightly above the top-bulb. Fluid is
then allowed to flow downwards, pass through the tube, and collect at the bigger
bulb at the bottom. Time is recorded for fluid to cross two marks at the top and
bottom of the second bulb. Readings are taken at the same temperature at which all
swelling related experiments are conducted.

Density of elastomer samples is calculated by determining their mass and vol-
ume after each swelling period, for both salinities and at both temperatures. Mass of
the elastomer is increased by inflow of salt water into the material. At the same
time, volume is increased through swelling. As both mass and volume increase
almost proportionally, density does not change too much. Calculated density values
are 0.967 g/cm3 and 1.016 g/cm3 for low salinity water at room temperature and 50°C,
and 1.05 g/cm3 and 1.0898 g/cm3 for high salinity water at the two temperatures
respectively.
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Mean time for low and high salinity water to pass from the first to the second
mark in Cannon-Fenske apparatus was recorded as 157 and 170 sec for 50°C, and
219 and 260 sec at room temperature, respectively. Multiplying by the apparatus
factor of 0.004, we get viscosity (centistokes) values of 0.628 and 0.68 at 50°C, and
0.876 and 0.1.04 at room temperature, for low and high salinities respectively.
Multiplying this dynamic viscosity with density yields the kinematic viscosity in
Pascal-second units. Substituting these values into Eq. (65) gives the required value
of diffusion coefficient for each condition. These experimentally determined values
of viscosity and diffusion coefficient are summarized in Table 1.

It can be seen that the diffusion coefficient has higher value in low salinity water
as compared to high salinity water, for both room and 50°C temperatures. This
higher diffusion amount causes faster swelling rate when the elastomer is kept in
low salinity solutions. For same salinity, diffusion coefficient has higher values for

Figure 6.
Cannon-Fenske apparatus used for viscosity measurement.

Viscosity (Pa-s x10�3) Temperature

Low (room) High (50 °C)

Salinity Low (0.6%) 0.89 0.607

High (12%) 1.1334 0.714

Diffusion coefficient(m2/s x10�10) Temperature

Low (room) High (50 °C)

Salinity Low (0.6%) 8.22 11.65

High (12%) 6.46 9.9

Table 1.
Viscosity and diffusion coefficient at two salinities and two temperatures.

16

Swelling Elastomers in Petroleum Drilling and Development - Applications, Performance…



higher temperatures, again matching the observed trend for higher amount of
elastomer swelling at higher temperature.

Though the mechanism of swelling has been discussed earlier (Chapters 3 and
7), let us revisit the issue in the context of diffusion. When sodium chloride dis-
solves in water, crystalline structure of sodium and chlorine transform into positive
and negative ions surrounded by water molecules. Water molecules close to the ions
have strong attraction. When polymer is exposed to brine solution, water molecules
diffuse into the empty spaces and begin to fill the voids, resulting in swelling. Ions
surrounded by water molecules also enter the polymer but somewhat slowly due to
stronger attraction. Ultimately, the polymer is filled by water molecules and ions.
Low salinity solution has less number of ions, hence water fills the spaces more
quickly as compared to high salinity solution. That is why diffusion takes place at a
slower rate in high salinity salt solution.

4.1.2 Polymer-solvent interaction parameter

Polymer-solvent interaction parameter (χ), also known as Flory-Huggins interac-
tion parameter, is an important dimensionless temperature-based property of a poly-
mer which controls the amount of swelling. If χ increases, liquid seepage takes place
leading to de-swelling or contraction of the elastomer. A decrease in χ-value leads to
swelling of the elastomer (volume increase). Different experimental studies are
available in published literature which discuss methods of determining χ. Orwoll and
Arnold [28] use inverse gas chromatography. Papageorgiou et al. [29] apply differ-
ential scanning calorimetry. Silva et al. [30] use measurement of melting temperature
of the polymer blend. Clarke et al. [31] use micelle spacings with secondary ion mass
spectroscopy, contact angle of blend droplet, and neutron reflectometry. In all
experimental methods, the polymer needs to dissociate in order to determine χ for a
particular polymer-solvent mixture. Both elastomer materials used in swelling exper-
iments were found to be insoluble in all solvents available (polar as well non-polar
solvents). An in-depth search was carried out to find a method for determination of χ
that does not require elastomer dissociation. Treloar [8] gives a relationship between
molecular mass and volume swelling ratio, density of polymer, molar volume of
swelling liquid, and polymer-solvent interaction parameter:

ρV1

Mc
vs

1=3 �
ν

2

� �

þ ln 1� vsð Þ þ vs þ χvs
2

� 	

¼ 0

) χ ¼ �
1

vs2
ρV1

Mc
vs

1=3 �
vs
2

� �

þ ln 1� vsð Þ þ vs


 �

:

(66)

The above Eq. (66) is used in this work to determine the value of χ for each data
set. Molecular mass (Mc) is already determined using experiments described in
Chapter 7. This unique method for the determination of the interaction parameter
(χ), using mechanical and structural properties of a polymer, has not been used in
any of the published works. Molar volume (V1) of water is 0.00018 m3. Values of
density of elastomer after different swelling periods are given above. Table 2 lists
the experimentally determined values of volume swelling ratio (vs), which is the
ratio of initial to swelled volume.

Figure 7 shows the variation of χ against swelling time (days) for both materials
in low and high salinity brine. For all the cases, χ values tend to decrease with
swelling time, following the default trend [13]. It can also be seen that χ values drop
more in low salinity brine, in line with the earlier observation that these elastomers
swell more in brines of lower concentration. Initially faster and then more gradual
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decrease in χ also matches the behavior of these quick-swelling elastomers. Slight
fluctuation of χ variation for material-B is also consistent with earlier observations
about swelling behavior.

4.2 Computational code

For the solution of the final Eq. (59) of the developed model, and to extract
different values required for analysis, a MATLAB code is written. This requires inputs
such as material coefficients, temperature, volume per solvent molecule, interaction
parameter, etc. Logical sequence of different steps involved are shown in Figure 8.
Using all the input values, and going through the various steps of the iterative scheme,
the code estimates the magnitudes of swelling stretches after each swelling period
(days) and for each material and each salinity (low and high). Comparison of differ-
ent outcomes of the model with experimental results is discussed in next section.

5. Analysis of results

New model starts with Ogden-2 as its basis, but is changed into a totally new
relationship (Eq. 59) by the introduction of terms for diffusion and

Days of Swelling Volume Swelling Ratio (vsÞ

Material-A Material-B

Low-Salinity High-Salinity Low-Salinity High-Salinity

1 0.455 0.543 0.494 0.646

3 0.392 0.505 0.403 0.525

6 0.323 0.465 0.318 0.474

9 0.291 0.431 0.292 0.442

15 0.245 0.365 0.264 0.438

22 0.234 0.347 0.249 0.389

30 0.234 0.338 0.232 0.376

Table 2.
Volume swelling ratio for materials A and B.

Figure 7.
Variation of polymer-solvent interaction parameter (χ) against swelling time; materials A and B; low and high
salinity.
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thermodynamics of mixing. Material coefficients for Ogden model (μ1, μ12, α1, α2)
are determined from experimental stress–strain curves and Poisson’s ratio (υ).
Polymer-solvent interaction parameter (χ) is determined from mechanical, struc-
tural, and chemical properties: density (ρ) and chain molecular mass (Mc) of the
elastomer, molar volume of water (V1), and volume swelling ratio (vs). Other input
parameters needed are temperature (T), Boltzmann constant (k), and swelled vol-
ume per solvent molecule (υ). Through an iterative solution, major output from the
new model is the value of swelling stretch (λ) at each stage of swelling, from which
the amount of volume and thickness change and the shear modulus (G) are
calculated.

Figure 8.
Logical sequence of steps involved in the MATLAB code.
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5.1 Elastomer stretch

Figure 9 gives the variation of stretch for materials A and B under both salin-
ities. Results show an increase in stretch throughout the swelling period for both the
materials, sharply in the beginning, then more slowly. This result is in good agree-
ment with the fact that swelling leads to volume increase, which is represented by
an increase in the stretch value. Higher stretch values are observed in low salinity
solvent, in line with the actual behavior of swelling elastomers which swell more in
low salinity due to higher chemical potential gradient and higher diffusion coeffi-
cient. Minor fluctuations in the variation of amount of stretch are also similar to
the fluctuations in volume and thickness swelling reported and analyzed in
Chapters 3 and 7.

5.2 Volume swelling

Volume after swelling can be calculated from the amount of stretch determined
from the model:

VModel ¼ λS
3
∗Vo: (67)

Figures 10 and 11 show the comparison between experimental and model-
predicted volume at various stages of swelling for materials A and B under the two

Figure 9.
Amount of stretch vs. swelling time for materials A and B; both salinities.

Figure 10.
Model-predicted and experimental results for volume swelling; material-A; both salinities.
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salinities. Following the pattern of experimental results, predicted amount of elas-
tomer volume increases with swelling time (days). Slight fluctuations in volume
swelling are also in line with experimental results, and due to reasons explained
earlier. There is a small difference between experimental and model results, the
model consistently underestimating the value of volume swelling. This underesti-
mation gives a more conservative estimate of swelling amount, which is better and
safer in terms of seal design and development.

5.3 Thickness swelling

Final thickness after each swelling stage can be calculated using swelling stretch
as follows:

tModel ¼ λS ∗ to: (68)

Comparison between experimental and predicted values of thickness at various
stages of swelling is shown in Figures 12 and 13 for materials A and B in both
salinities. There is a gradual increase in the amount of thickness with more days of
swelling, with a reasonably good agreement between predicted values and experi-
mental results. As observed earlier, there is more thickness swelling under lower
salinity brine.

Figure 11.
Model-predicted and experimental results for volume swelling; material-B; both salinities.

Figure 12.
Model-predicted and experimental results for thickness swelling; material-A; both salinities.
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5.4 Shear modulus

Amount of stretch predicted from the model can be used to determine the value
of shear modulus using the following relationship:

GModel ¼ �
Ncυ μ1λ

α1�3
S þ μ2λ

α2�3
S

� �

ln 1� 1
λ3S

� �

þ 1
λ3S
þ χ 1

λ6S

h i : (69)

Predicted and experimental values of shear modulus are plotted against swelling
time in Figures 14 and 15 for the two materials and salinities. For further compar-
ison, variation of shear modulus through numerical simulation (Chapter 7) using
the best available hyperelastic material model (Ogden-2) is also shown. It is
reassuring to observe that there is a very good agreement between values predicted
by the new model and experimental results, even in portions where there are major
fluctuations. Also, predictions from the new model are much closer than numerical
simulations using the best hyperelastic material model. Even though hyperelastic
material models are based on the theory of shear, simulated values of G using the
current best model (Ogden-2) show notable variations from the experimental
values. As discussed at the end of Chapter 6, hyperelastic models can be used to
predict the behavior of swelling elastomers only as a last resort, with some errors.

Figure 13.
Model-predicted and experimental results for thickness swelling; material-B; both salinities.

Figure 14.
Variation of shear modulus against swelling time from new model, experiments, and FE simulation (Ogden-2);
material-A; both salinities.
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This is mainly because these models do not include the effect of diffusion and
thermodynamics of mixing. As the new model includes all these effects, its pre-
dictions are much closer to the actual values.

This new model is not material-specific, and can be applied to any situation
where swelling is taking place. As the use of swelling elastomers in the petroleum
industry is a major category of such applications, these results are used here to
validate the model predictions. However, the same model can be used to predict the
behavior of other soft materials under swelling such as tissue, cartilage, and other
biological materials.

6. Conclusions

A new analytical model has been developed for predicting the behavior of
swelling elastomers, based on nonlinear and non-Gaussian continuum mechanics,
different balance laws for forces and solvent (including diffusion), and the ther-
modynamics of mixing. Including energy, diffusion, and hyperelastic terms, this
new model can be used for both constrained and free swelling. Boundary conditions
for free swelling are incorporated into the model. A MATLAB code is then devel-
oped for model solution. New experiments have been performed to determine input
values such as viscosity of swelling medium and polymer-solvent interaction
parameter. Stretch values predicted by the model are used to determine volume and
thickness swelling, and variation of shear modulus. Model predictions have good
agreement with experimental results, much closer than numerical simulation based
on best existing hyperelastic material model.

Figure 15.
Variation of shear modulus against swelling time from new model, experiments, and FE simulation (Ogden-2);
material-B; both salinities.
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