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Chapter

Swelling Elastomers: Comparison
of Material Models
Sayyad Zahid Qamar, Maaz Akhtar and Tasneem Pervez

I think all literature should be read as comparative literature.

And I think we should write out of what we know, but in the expectation that

we can be changed at any moment by something we have yet to discover.

Margo Jefferson

Abstract

Little data is available about the material properties and swelling response of the
elsatomers used in swell packers. This information is necessary for modeling and
simulation of these elastomers in different petroleum applications. An experimental
setup was therefore designed and implemented at Sultan Qaboos University (SQU)
to investigate the material behavior of these elastomers under tension and com-
pression, so that these properties could be used for different simulations. Before
developing a finite element model (FEM) of elastomer seal performance, it was felt
that a thorough evaluation needs to be carried out to decide which of the currently
available material models is most suitable for swelling elastomers. This comparison
translates into the selection of the correct strain energy function for accurate deter-
mination of material coefficients. Different hyperelastic material models are com-
pared here. Experimental investigations under tensile and compressive loads, along
with their numerical analysis are presented in detail in this chapter.

Keywords: Swelling elastomer, finite element simulation, material model,
model comparison

1. Introduction

Metallic and rubber seals have been used for quite some time in oilfield devel-
opment. However, the advent of swelling elastomer seals has revolutionized the
technology. Deployment of swelling elastomers in a variety of petroleum applica-
tions are discussed in detail in Chapter 2. Before using swelling elastomers for any
application, behavior under different fluids and environmental conditions should
be known to predict the actual response. It can be done experimentally, analytically,
or through numerical simulations. Though it would be most efficient time-wise, no
analytical work is available that entirely explains the behavior of these materials. On
the other hand, it is difficult, costly, and time-consuming (and at times even
impossible) to perform experiments for all the possible conditions. Hence, a robust
numerical simulation strategy, validated against experimental results, can be used
to predict the behavior of swelling elastomers.

Little data is available (about their material properties and swelling response),
which is needed for modeling and simulation of these elastomers in different

1



petroleum applications. An experimental setup was therefore designed and
implemented at Sultan Qaboos University (SQU) to investigate the material
behavior of these elastomers under tension and compression, so that these proper-
ties could be used for different simulations. Before developing a finite element
model (FEM) of elastomer seal performance, it was felt that a thorough evaluation
needs to be carried out to decide which of the currently available material models is
most suitable for swelling elastomers. This comparison translates into the selection
of the correct strain energy function for accurate determination of material coeffi-
cients. Different hyperelastic material models are compared here. Experimental
investigations under tensile and compressive loads, along with their numerical
analysis are presented in detail in this chapter.

2. Models for rubberlike materials

Rubber elasticity theory explains the mechanical properties of a rubber in terms
of its molecular constitution. This approach involves two essentially separate issues.
First is the treatment of the statistical properties of a single long-chain molecule in
terms of its geometrical structure. Second comes the application of this treatment to
the problem of the network of long-chain molecules corresponding to a cross-linked
or vulcanized rubber.

First statistical mechanics approach to describe the force on a deforming elasto-
mer network was based on Gaussian statistics. The basic assumption in this theory is
that a chain never approaches its fully extended length. The problem was initially
attempted by Kuhn and Grun [1] who derived a relation between elastic modulus
and molecular weight. More precise treatment leading to explicit forms of stress–
strain curves valid for large strains were developed by Wall [2], Flory and Rehner
[3, 4], and, James and Guth [5]. Results show that these models fail to capture large
and even moderate stretches. Hence many constitutive models were developed in
an attempt to predict the behavior not only for small stretch levels but also for
medium and large stretches.

Other researchers followed non-Gaussian statistics. These are physical models
based on an explanation of a molecular chain network, phenomenological invariant-
based and stretch-based continuum mechanics approach. The distinctive feature of
non-Gaussian approach is that it presumes that a chain can attain its fully extended
length. Phenomenological approach is used to relate empirical findings of certain
phenomena in such a way that it is consistent with fundamental theory, but is not
directly derived from theory. This approach is further divided into stretch-based and
invariant-based models. Invariants are basically defined by principal stretches.
Models in which stretches can be written in terms of invariants are classified as
invariant-based models, while models that cannot be converted into invariants are
known as stretch-based models. Micromechanical models describe a material as a
three-dimensional network and consider statistical mechanics arguments on net-
works of cross-linked long-chain molecules. A hyperelastic material model is a type of
constitutive relation for rubberlike materials in which the stress–strain relationship is
developed from a function. Most continuummechanics treatment of rubber elasticity
begins with assuming rubbers to be hyperelastic and isotropic in nature. Figure 1
gives a broad classification of different types of hyperelastic material models.

2.1 Micromechanical models

These models assume a unit cell which deforms in a principal-stretch space to
relate individual chain stretch to applied deformation. Wang and Guth [6] proposed
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a three-chain model in which chains are located along the axes of cube. The chains
deform affinely with the cell, and stretch of each chain corresponds to the principal
stretch value. The strain energy function is given by

W3�Chain ¼
NkT

3

ffiffiffi

n
p

λ1β1 þ
ffiffiffi

n
p

ln
β1

sinh β1

� �

þ λ2β2 þ
ffiffiffi

n
p

ln
β2

sinh β2

� �

þ λ3β3 þ
ffiffiffi

n
p

ln
β3

sinh β3

� �� �

βi ¼ L�1 λi
ffiffiffi

n
p
� �

; i ¼ 1, 2, 3: (1)

Here, L�1 is the inverse Langevin, N is the chain density, k is the Boltzman
constant,T is the absolute temperature, n is the length of chain, and λi are the
principal stretches. Three-chain model closely follows experimental data only for
uniaxial case, and only for small deformations under shear. Flory and Rehner [3, 4]
developed a four-chain tetrahedral model. Later, Treloar [7] attempted to deter-
mine the entropy of deformation using numerical method of computation, in which
four chains are linked together at the center of a regular tetrahedron. Tetrahedron
deforms according to the applied deformation and chains deform in un-affine
manner. Four chain (tetrahedral) model gives good match with experimental data
for uniaxial and shear cases, but extrapolates beyond the actual stretch region. For
biaxial data, three-chain and four-chain models do not yield convincing results.
Relationship between the stretches of individual chain to the applied stretch for the
four-chain model is determined by an iterative method, hence expression for strain
energy function is not provided here.

Figure 1.
General classification of different hyperelastic material models.
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Arruda and Boyce [8] proposed an eight-chain model in which chains align along
diagonals of a unit cell. Due to the symmetry of chain structure, the interior junc-
tion point remains at the center throughout the deformation. Strain energy function
is given by

W8�Chain ¼
NkT

3

ffiffiffi

n
p

λChainβChain þ
ffiffiffi

n
p

ln
βChain

sinh βChain

� �� �

βchain ¼ L�1 λchain
ffiffiffi

n
p

� �

λchain ¼
1

3
λ21 þ λ22 þ λ23
� �

� �1=2

(2)

where, and, λchain is the chain stretch. Eight-chain model makes good predictions
for large strain behavior under different states of deformation, but diverges beyond
the actual stretch region for biaxial and shear cases.

Wu and Giessen [9] suggested a full network chain model in which chains are
randomly distributed and deform in an affine manner. Strain energy response is
determined by overall integration which is computationally intensive; expression
for strain energy is therefore reproduced here. To develop constitutive relations,
work done by the stresses is established in terms of strain energy function. Strain
energy function must depend on the amount of stretch via invariants of the stretch
tensor. The coefficients in these functions should be determined by uniaxial, biax-
ial, and shear test data. The essential problem is to determine the strain energy
function for providing good fit with a number of sets of experimental data.

2.2 Phenomenological invariant-based models

One of the first attempts at a hyperelastic material model based on the phenom-
enological invariant-based approach was made independently by the two scientists
Mooney [10] and Rivlin [11]. Due to the assumption of incompressibility, the third
invariant is not considered, yielding the following expression for strain energy
function:

WRivlin ¼
X

∞

iþj¼1

Cij I1 � 3ð Þi I2 � 3ð Þ j (3)

By keeping only the second term of this expression, we get the famous Mooney-
Rivlin model for elastomer deformation

WMooney�Rivlin ¼ C1 I1 � 3ð Þ þ C2 I2 � 3ð Þ (4)

Mooney-Rivlin model makes passable predictions for uniaxial and shear cases in
the low-stretch region, but does not yield good predictions for equibiaxial case and
uniaxial and shear cases in the large-stretch region. As reported by Treloar [12] and
Boyce and Arruda [13], when only the first term of Mooney-Rivlin strain energy
function is retained, it becomes the neo-Hookean model:

Wneo�Hookean ¼ C10 I1 � 3ð Þ (5)

Kilian [14] explains that van der Waal hyperelastic material model gives the
mathematical relation in terms of the initial shear stress ‘μs’, global interaction
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parameter ‘a’, effective invariant �I ¼ 1� βvð ÞI1 þ βvI2 and the parameter ηv ¼
ffiffiffiffiffiffiffiffi

�I�3
λ2m�3

q

; βv is known as the invariant mixture parameter:

W ¼ μs � λ2m � 3
� �

ln 1� ηvð Þ þ ηv½ � � 2

3
a

�I � 3

2

� �

3
2

( )

(6)

Gent [15] proposed a new constitutive relation for strain energy function which
is given by the expression

W ¼ �E

6
Jm ln 1� J1

Jm

� �� �

(7)

where J1 ¼ I1 � 3ð Þ, and Jm is the maximum value for J1.
The Yeoh model [16] is derived from Rivlin strain energy function by expanding

only the first three terms, and neglecting the second invariant, yielding:

WYeoh ¼ C10 I1 � 3ð Þ þ C20 I1 � 3ð Þ2 þ C30 I1 � 3ð Þ3 (8)

The Marlow hyperelastic material model [17] is another variation of this
approach:

W ¼ C λ21 þ λ22 þ λ23
� �

¼ C I1ð Þ (9)

Here, C is a material parameter, and λ is the principal stretch.

2.3 Phenomenological stretch-based models

Ogden model [18] proposes a strain energy function based on the principal
stretches for incompressible materials. Principal stretches are directly measurable
quantities and it is one obvious advantage of using them. Ogden strain energy
function is given by

W ¼
X

Q

n¼1

μn

αn
λ
αn
1 þ λ

αn
2 þ λ

αn
3 � 3

� �

(10)

where μn and αn are material constants. Nonlinear least square optimization
technique is used by Twizell and Ogden [19] to determine the stable constants for
the above strain energy function and to find an improve fit to the data when ‘n’
increases. This model can be more accurate if data from multiple experiments are
available.

There are various other forms of strain energy potentials (Figure 1) for model-
ing hyperelastic isotropic elastomers, such as the ones reported by Ali et al. [20],
Hossain and Steinmann [21], and Steinmann et al. [22]. However, these functions
seldom describe the complete behavior of these swellable materials, especially for
different loading conditions.

2.4 Other models

Some researchers have attempted to develop material models which explain the
stress-stretch behavior of an elastomer after swelling to a particular level. As
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described by Treloar [23], Gauss model follows a molecular approach and involves
swelling ratio ‘vs’:

W ¼ NkT

2
vs

1
3 λ1

2 þ λ2
2 þ λ3

2 � 3
� �

(11)

Increasing discrepancies between Gaussian theory and experiments have been
recognized when moving from small to large stretch levels. This discrepancy is
amplified when the effect of swelling is included. Flory and Erman [24] model
predicts the swelling behavior reasonably well only for small to moderate stretches.
Arruda-Boyce model (for stress-stretch behavior coupled with elastomer swelling)
is based on a simplified representation of eight chains lying along the diagonal of a
cubic cell. The Cauchy stress for Arruda-Boyce model [25] is given by the following
relation:

σ ¼ vs
2
3
NkT

3

ffiffiffi

n
p

λc
L�1 vs

�1
3λc
ffiffiffi

n
p

 !

λ2 � 1

λ

� �

" #

(12)

This model, when used for predicting swelling behavior of elastomers, gives
close results only for large stretch. They later attempted to combine their model
with Flory-Erman model. This hybrid model is supposed to take into account the
actual effect of swelling for small to large stretches. However, even this hybrid
model fails to replicate the actual behavior of swelling elastomers.

A few models have been proposed by authors such as Wagner [26]. These are
basically hyperelastic models that also include swelling ratio, but fail to give rea-
sonable predictions. There is hence a need for a model that predicts the actual
behavior, and includes factors such as energy of mixing, and effect of diffusion,
together with hyperelastic effect.

2.5 Energy-diffusion models

Other authors have suggested more realistic constitutive models for
elastomers subjected to swelling, in which changes due to configuration entropy
are considered along with energy of mixing and diffusion. According to
Flory-Rehner theory [3, 4], free energy density can be written as the sum of strain
energy density function due to thermodynamics of mixing and configuration
entropy of polymer network. A number of authors use this concept to develop a
relation for the prediction of swelling, such as Han et al. [27], Cai and Suo [28],
Chester and Anand [29], Drozdov and Christiansen [30], Hong et al. [31], and
Lucantonio et al. [32].

Flory-Huggins theory, proposed by Flory [33] and Huggins [34], considers the
changes in entropy due to mixing. Changes due to configuration entropy are added
by considering different available hyperelastic material models as discussed above.
As explained by Lucantonio [32], Hong et al. [35], and Kang and Huang [36],
solvent influx in swelling elastomer follows the diffusion phenomenon. A few
authors, such as Biot [37], Cai et al. [38], Lucantonio and Nardinocchi [39], and
Tomari and Doi [40], use the concept of porous media and assume swelling
elastomer or gel to be poro-elastic. A porous material is made up of pores and its
permeability is related to the pore size. Major portion of a swollen elastomer con-
tains solvent which resists when under the influence of force. That is why models
based on poro-elastic concept do not predict good swelling results in general as
discussed by Hong et al. [31].
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Most of the chemo-mechanical models use Gaussian-chain model for mechanical
configuration changes that consider small stretching of chains, and use Fick’s law to
define fluid influx. Again, they give reasonable results only at small swelling levels.
Material models for predicting swelling in polymer networks are discussed below.

2.5.1 Poroelastic models

Biot [37] used Darcy’s law along with thermodynamics of mixing to model fluid
influx into a porous medium (soil), the approach being known as poro-elasticity
theory. This theory is used in a variety of applications to study porous materials
from soils to tissues. Tomari and Doi [40] used the concept of poro-elasticity to
develop a model for swelling dynamics. They assumed swelling time to be propor-
tional to gel size, frictional constant, and changes in stresses. Barrière and Leibler
[41] proposed a swelling model that is based on a porous media concept and
includes frictional effect between elastomer and fluid. To describe fluid influx they
use the dependence of coefficient of diffusion on concentration, and do not use
Fick’s law (as according to them it does not predict good behavior at large swelling).
Cai et al. [38] performed experiments on swollen gel that is compressed between
two plates. They developed a model using linear poro-elasticity for the experiments
performed. Variational approach is employed by Baek and Pence [42] to investigate
gels in equilibrium, subjected to loading on surface. They do not take into account
the relationship for dynamical processes (like diffusion) prior to equilibrium.
Lucantonio and Nardinocchi [39] describe bending due to swelling in a gel consid-
ering poro-elastic linear theory. Lucantonio et al. [32] investigated the stability
between linear poro-elastic and nonlinear theory approaches assuming Gaussian
statistics and homogenous configuration. Instead of considering dry state as refer-
ence configuration (like other models), they assume initially swollen elastomer as a
reference state. Constitutive relations are derived using weak-form variational for-
mulation. Bouklas and Huang [43] present a comparison of linear poro-elasticity
and nonlinear Gaussian based (chemo-mechanical) theories. Both theories give
similar results at small swelling ratios, but for higher swelling ratios linear theory
fails and gives large errors as compared to nonlinear theory.

2.5.2 Chemo-mechanical models

Durning and Morman [44] use phantom network model along with Bastide’s
scaling model for taking into account the entropy changes due to configuration.
Fick’s law is used for describing fluid influx. Inconsistencies are present due to the
use of Fick’s law, as it does not provide a solution for nonlocal effects. Chemo-
mechanical theory for hydrogels was developed by Dolbow et al. [45] and extended
finite element method was implemented to study swelling. Continuum based sharp
interface model and swelling kinetics for temperature sensitive stimulus responsive
hydrogels was developed by Ji et al. [46]. Hong et al. [31] assume short and long
range migration of solvent inside the polymer. Developed theory is based on non-
equilibrium thermodynamics and considers free energy and kinetics to be material
specific. They use Flory-Huggins theory to describe changes in free energy, while
Gaussian approach is used for defining changes in entropy due to network configu-
ration. They use the diffusion equation for fluid inflow of Feynman et al. [47], in
which flux is proportional to gradient of chemical potential. Hong et al. [35] devel-
oped an equilibrium theory using Gibb’s approach. Legendre transformation is used
to represent the field in gel, analogous to compressible hyperelastic solid. Developed
model is used on kinetics of fluid influx and Gaussian approach. User-defined
subroutine (UHYPER) in ABAQUS is also developed for the model. Duda et al. [48]
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follow Gibb’s idea of multi-component solid for the development of an expression
for swelling equilibrium. Theory is based on mechanics (macro) and chemistry
(micro) of mixing of solid and fluid. They consider Gaussian neo-Hookean model
for changes in configuration entropy of the elastomer. Development of the model
assumes that the body is not fully immersed into the fluid. Kang and Huang [36]
formulated a model based on variational approach to set governing equations com-
bining chemical and mechanical conditions. They used similar approach as Hong
et al. [31], following Gaussian-chain model for configuration entropy and Flory-
Huggins equation for energy of mixing. They also develop an explicit formulation
for tangent modulus and true stress. User-defined subroutine (UMAT) in ABAQUS
is also developed for numerical investigation and comparison is done with user
subroutine developed by Hong et al. [35].

A continuum mechanical theory along with fluid imbibition was developed by
Chester and Anand [29]. They first use Gaussian approach to develop a model for
swelling phenomenon. Fluid influx is taken into account using Darcy’s law. Then
they use micro mechanical non-Gaussian based approach for model improvement.
As a further extension to their work, they include thermal effect and develop
coupled equation for stretching, fluid influx, and heat transfer. Cai and Suo [28] use
Flory-Rehner model to describe the changes in entropy due to stretching, but ignore
the changes in entropy due to mixing of fluid and polymer. They develop an
equation of state based on Gaussian-chain model considering stretching only. Yan
and Jin [49] take into account the entanglements of chains, by using hybrid free
energy function based on Edwards-Vilgis slip-link model and Flory-Huggins theory.
Drozdov and Christiansen [30] propose a swelling model based on viscoelasticity
and viscoplasticity. They study hydrogels, under both tensile and compressive
loads, to investigate the effect of strain rate on elastic properties. Constitutive
relations are based on viscoelasticity of gels.

All of the above models generally give reasonable results only for small swelling.
For large swelling (as in the case of swelling elastomers), most of these models do
not give close approximation to actual data.

3. Material models for swelling elastomers

None of the existing material models accurately represent the behavior of swell-
ing elastomers. Different types of models for rubberlike materials were briefly
described above. Major material models that can be used to represent stretchable
elastomers, though not very accurately, are discussed in more detail in this section.
As mentioned above, a swelling elastomer can be treated as a hyperelastic material,
commonly modeled as an incompressible, homogeneous, isotropic, and nonlinear
elastic solid. Due to its long and flexible structure, an elastomer has the ability to
stretch to several times its initial length. Elastomers at small strains (up to 10%)
have linear stress strain relation, and behave like other elastic materials [15]. In case
of applications where large deformations exist, theory of large elastic deformation
should be considered. Several theories for large elastic deformation have been
developed for hyperelastic materials based on strain energy density functions.
These models are based on phenomenological based continuum mechanics
approach and micromechanically motivated network approach [20, 21]. Phenome-
nological models contain invariant-based or principal stretch-based approach usu-
ally containing polynomial functions. Micromechanical models typically have terms
for cross-linked long-chain molecules [3, 4, 6, 8, 50]. Selection of appropriate strain
energy potentials and correct determination of material coefficients are the main
factors for modeling and simulation.
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3.1 Gaussian Hyperelastic material models

One major approach used to define the deformations in elastomer chains follows
Gaussian statistics, Neo-Hookean model being a good example. In Gaussian
statistics, a chain never approaches the maximum stretch; rather, it is limited to
small-to-moderate stretches. For a three dimensional polymer, due to its large chain
density, probability distribution for any event x approaches a Gaussian distribution,
given by

p xð Þ ¼ 1
ffiffiffiffiffi

2π
p

σx
exp � x2

2σx2

� �

: (13)

Standard deviation in terms of chain density (N) and distance between the chain
ends (r) is given by Treloar [23] as

σ2 ¼ Nr2

3
: (14)

Probabilities in x, y and z-directions are given by p xð Þ, p yð Þ and p zð Þ, repectively.
Knowing that

p vð Þ ¼ p xð Þp yð Þp zð Þ,

and assigning b2 ¼ 3
2Nr2

� �

, we get the following relation

p vð Þ ¼ b3

π3=2
exp �b2 x2 þ y2 þ z2

� �	 


¼ b3

π3=2
exp �b2r2

� �

: (15)

Here, (x0, y0, z0) is the initial (unstretched) location, while (x,y, z) are the final

coordinates in the stretched condition, and (obviously), x2 þ y2 þ z2 ¼ r2.
According to Boltzmann general principle of thermodynamics, entropy is propor-
tional to the logarithm of the possible configurations corresponding to a specified
state. For small volume (dxdydz), probability can be used to define entropy (s) as
follows:

s ¼ k ln
b3

π3=2
exp �b2r2

� �

dxdydz

) s ¼ k ln
b3

π3=2
� b2r2 þ ln dxdydzð Þ

" #

) , s ¼ constant� kb2r2 (16)

where k is the Boltzmann constant. Taking change in unstretched end-to-end
distance of chain (xo2 þ yo

2 þ zo
2 ¼ ro

2), and on simplification we get the change in
entropy

∆s ¼ kb2 xo
2 λ1

2 � 1
� �

þ yo
2 λ2

2 � 1
� �

þ zo
2 λ3

2 � 1
� �	 


: (17)

Taking summation for all chains, substituting
P

xo
2 ¼P yo

2 ¼P zo
2 ¼P ro

2=3
into Eq. (17), and on simplification we get

∆s ¼ kb2 xo
2λ1

2 � xo
2 þ yo

2λ2
2 � yo

2 þ zo
2λ3

2 � zo
2
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) ∆s ¼ �kb2
ro

2

3
λ1

2 þ λ2
2 þ λ3

2 � 3
	 


) :
X

∆s ¼ � kN

2
λ1

2 þ λ2
2 þ λ3

2 � 3
� �

(18)

Shear modulus for rubbers and elastomers is given by G=NkT. Helmholtz free
energy is given by W ¼ �T∆s, hence Eq. (18) can be written as

W ¼ G

2
I1 � 3ð Þ, (19)

where I1 is the first invariant of stretch. Eq. (19) gives the strain energy function
for neo-Hookean model [13, 23]. As it is derived using Gaussian statistics, it gives
linear response for material where elastomer chain undergoes only small to
moderate stretches.

3.2 Non-Gaussian Hyperelastic material models

Hyperelastic material models that follow non-Gaussian statistics consider that
chains can stretch to reach maximum extensibility. Many models are formulated
based on this approach, such as Mooney-Rivlin [10], Yeoh [16], Arruda-Boyce [8],
Ogden [18], Gent [15], etc. Mooney-Rivlin model follows Valanis and Landel theory
[51] according to which strain energy function for an isotropic material in finite
deformation is of the form

W ¼ f λ1ð Þ þ f λ2ð Þ þ f λ3ð Þ: (20)

Invariants based on principal stretches are given by

I1 ¼ λ1
2 þ λ2

2 þ λ3
2,

I2 ¼ λ1
2λ2

2 þ λ2
2λ3

2 þ λ1
2λ3

2,

and

I3 ¼ λ1
2λ2

2λ3
2: (21)

For an incompressible isotropic material, third invariant vanishes and strain
energy becomes a function of I1 and I2 only:

W λ1, λ2, λ3ð Þ ¼ C1 λ1
2 þ λ2

2 þ λ3
2 � 3

� �

þ C2
1

λ1
2 þ

1

λ1
2 þ

1

λ1
2 � 3

� �

W ¼ C1 I1 � 3ð Þ þ C2 I2 � 3ð Þ: (22)

Eq. (22) gives the strain energy function for Mooney-Rivlin model, where C1

and C2 are material constants. According to this theory, stress–strain behavior

depends upon the partial derivatives ∂W
∂I1

, ∂W
∂I2

� �

. Characterization of elastic

properties of a polymer consists of determining these partial differentials
through experimental measurements. These partial differentials cannot be deter-
mined from experiments with only one deformation mode. Preferred methods are
generally biaxial extension where stretches in both directions vary independently.
Yeoh assumed that ∂W=∂I1 is much larger than ∂W=∂I2, so the second partial
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derivative can be neglected. Strain energy function for Rivlin [11] can then be
written as

W ¼
X

∞

iþj¼1

Cij I1 � 3ð Þi I2 � 3ð Þ j

) ,W ¼
X

∞

i¼1

Cij I1 � 3ð Þi (23)

where index ‘j’will always be zero. If the series is truncated after three terms, we
get the expression for strain energy function for Yeoh model [16]:

W ¼ C10 I1 � 3ð Þ þ C20 I1 � 3ð Þ2 þ C30 I1 � 3ð Þ3 (24)

where C10, C20 and C30 are material coefficients determined by fitting experi-
mental data. If Eq. (23) is expanded only for ‘i ¼ 1’, we get the Neo-Hookean strain
energy function, in which C10 ¼ G=2.

Another stretch based non-Gaussian phenomenological strain energy function
for hyperelastic materials was proposed by Ogden [18]. This model is given by the
following relation in terms of principal stretches:

W ¼
X

Q

n¼1

μn

αn
λ
αn
1 þ λ

αn
2 þ λ

αn
3 � 3

� �

: (25)

Here, ‘μn’ and ‘αn’ are material constants that are determined by fitting the
experimental data, and ‘Q ’ is a positive definite integer. Material constants are
related to shear modulus (G) by the following relation:

X

Q

n¼1

μnαn ¼ 2G: (26)

Second degree Ogden strain energy function is given by expanding Eq. (24) for
‘Q ¼ 2’:

W ¼ μ1

α1
λ
α1
1 þ λ

α1
2 þ λ

α1
3 � 3

� �

þ μ2

α2
λ
α2
1 þ λ

α2
2 þ λ

α2
3 � 3

� �

,

μ1α1 þ μ2α2 ¼ 2G: (27)

It is interesting to note that if Ogden model Eq. (24) is expanded for ‘Q ¼ 2’ and
for α1 ¼ 2, α2 ¼ �2, it gives an expression similar to the Mooney-Rivlin model:

W ¼ μ1

2
λ21 þ λ22 þ λ23 � 3
� �

� μ2

2
λ�2
1 þ λ�2

2 þ λ�2
3 � 3

� �

) :W ¼ μ1

2
I1 � 3ð Þ � μ2

2
I2 � 3ð Þ (28)

Also, if Ogden model is expanded for ‘Q ¼ 1’ with α1 ¼ 2, α2 ¼ 0, it reduces to
the neo-Hooken model:

W ¼ μ1

2
λ21 þ λ22 þ λ23 � 3
� �

¼ μ1

2
I1 � 3ð Þ: (29)

Arruda-Boyce model [8] uses the statistical mechanics approach followed by
many researchers [3, 4, 6, 50]. Instead of the 3-chain [6] and 4-chain models [3, 4]
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of earlier researchers, Arruda-Boyce proposed a more accurate 8-chain approach,
yielding the following strain energy function:

W ¼ NkT
ffiffiffi

n
p

βchainλchain þ
ffiffiffi

n
p

ln
βchain

sinh βchain

� �� �

: (30)

Here, βchain ¼ L�1 λchain
ffiffiffiffi

n
p
� �

is the inverse Langevin, N is the chain density, k is the

Boltzman constant, T is the temperature, n is the chain length, and λchain is the chain
stretch. Also, G ¼ NkT is the effective shear modulus.

Since L xð Þ ¼ coth xð Þ � 1
x, and coth xð Þ ¼ 1

x þ 1
3 x� 1

45 x
3 þ 2

945 x
5
⋯, we can get

L xð Þ ¼ 1

3
x� 1

45
x3 þ 2

945
x5⋯

Also,

L�1 xð Þ ¼ 3x� 9

5
x3 þ 297

175
x5⋯

and

sinh xð Þ ¼ xþ 1

6
x3 þ 1

20
x5 � 1

5040
x7⋯ (31)

By showing that the expression for chain stretch reduces to a function of the first

stretch invariant, λchain ¼
ffiffiffiffiffiffiffiffiffi

I1=3
p

, and using Eqs. 4.30 and 4.31, the final expression
for Arruda-Boyce strain energy function becomes

W ¼ G
1

2
I1 � 3ð Þ þ 1

20N
I1

2 � 9
� �

þ 11

1050N2 I1
3 � 27

� �

þ 19

7000N3 I1
4 � 81

� �

þ⋯

� �

:

(32)

Gent [15] proposed an empirical constitutive relation using only two constants
for the entire range of strains for hyperelastic materials. In statistical mechanics
approach, when a chain reaches the fully stretched state, it is known as locking
stretch. Gent describes this stretch as a maximum value of J1 denoted by Jm, so that
the strain energy function is given by the following relation:

W ¼ �E

6
Jm ln 1� J1

Jm

� �� �

: (33)

Boyce [52] performed a comparison between Gent and Arruda-Boyce eight

chain models. As J1 ¼ I1 � 3ð Þ and I1 ¼ λ21 þ λ22 þ λ23, Gent model can be expanded
using natural logarithm.

W ¼ E

6
Jm

J1
Jm

þ 1

2

J1
Jm

� �2

þ 1

3

J1
Jm

� �3

þ⋯þ 1

nþ 1

J1
Jm

� �nþ1
" #

) W ¼ E

6
I1 � 3ð Þ þ 1

2Jm
I1 � 3ð Þ2 þ 1

3Jm
2 I1 � 3ð Þ3 þ⋯

� �

) :W ¼
X

∞

i¼1

Ci I1 � 3ð Þi (34)
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Similarly, Arruda-Boyce model can be re-written in terms of general invariant
based form as follows

W ¼
X

∞

i¼1

Ci I
i
1 � 3i

� �

: (35)

Eqs. 4.34 and 4.35 can be used to predict large stretch deformations.
There are many hyperelastic material models available. Some of them are

presented in this section, while others were discussed in the previous section.
Models such as Van der Waal and Marlow models have not been presented here
because they do not show good convergence for swelling elastomers. Next section
gives the comparison of different hyperelastic material models against experimental
results from uniaxial tensile tests.

4. Comparison of material models under tensile loading

As none of the available material models accurately represents swelling
elastomers, modeling of these elastomers based on current models can yield only
approximate results. Before this, no evaluation of material models for prediction of
swelling elastomer behavior could be found in published literature. This study was
therefore conducted to have a comparative assessment of current hyperelastic
material models; how closely they predict the actual behavior under tension. Two
water swelling elastomers are used for experimental and numerical investigation
under tension (material-TA and material-TB). Tests are carried out in accordance
with ASTM-D412 standard test method [53]. Tensile tests are also simulated, using
the commercial finite element package ABAQUS [54]. Simulations are done using
different hyperelastic material models available in the ABAQUS materials library.
Material coefficients for each model are determined from experimental results
using the curve fitting procedure of ABAQUS.

4.1 Experimental work

The main objective of the experimental work is to provide actual tensile test data
to extract parameters for the material models, and then to compare predicted
behavior from each model against the actual tensile behavior. A large number of
samples of two different water-swelling elastomers were allowed to swell for 8 days
in saline water of 40,000 ppm (4%) concentration at a temperature of 60°C (actual
field conditions in a regional oil-well). Tensile tests were carried out on ring samples
before and after swelling, reported values being average of readings from three
samples. As expected, the material expands due to swelling. Dimensions of the ring
samples before and after swelling are shown in Figure 2.

Figure 2.
Samples before and after swelling: (a) before swelling, (b) material TA after swelling, (c) material TB after
swelling.
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4.1.1 Sample preparation

Ring samples were cut in line with ASTM-D412, using a die-and-punch set;
outside diameter (do) 19 mm, inside diameter (di) 16 mm, radial width (w) 1.5 mm,
and thickness (t) 1.8 mm. Actual identification numbers of the two swelling-
elastomer materials are not mentioned here due to reasons of confidentiality; they
are simply referred to as material TA and material TB.

4.1.2 Test procedure

Width, thickness, and flattened length of all ring samples (before and after
swelling) are recorded prior to conducting the tensile test, to be used later for stress
and strain measurements. Specially fabricated (in-house) hook-type fixtures (in
accordance with ASTM D412) are used to grip the ring samples. A small pre-tension
is applied on each sample to get the flattened length as shown in Figure 3. A loading
rate of 500 mm/min is used until the sample ruptures. Force-elongation and stress–
strain readings are automatically recorded by the machine.

4.2 Numerical Modeling and simulation

Tensile tests are modeled and simulated using the commercial finite element
package ABAQUS. Standard dumbbell shaped tensile specimen is used for simula-
tion because of its symmetric nature, allowing modeling of only one-quarter of the
sample; Figure 4. Load application is also simplified because of this sample geom-
etry, yielding proper uni-axial tension. Swelling elastomer specimen is modeled as a
hyperelastic body using 8-noded linear brick element with reduced integration
(C3D8R). Deformed specimen is also shown in Figure 4. Minor inconsistencies
between experimental and simulated results can be expected, as the sample
geometries (ring-type and dumbbell-type) are different.

Four well-known material models (Ogden, Yeoh, Arruda-Boyce, and neo-
Hookean) are selected from the pool of hyperelastic models available in ABAQUS.
These are known to show convergence and good agreement with experimental data for
elastomeric materials under tension. Coefficients for each model are extracted from
the uniaxial tensile test data (experimental) using curve fitting techniques. Poisson’s
ratio for these elastomers has been taken as υ = 0.495, while density values (from
actual experiments) for un-swelled (US) and swelled (S) specimens of materials TA
and TB are ρUS�TA ¼ 1170 kg=m3, ρUS�TB ¼ 1187 kg=m3, ρS�TA ¼ 1282 kg=m3, and

ρS�TB ¼ 1293 kg=m3, respectively.

Figure 3.
Tensile test setup using elastomer ring samples; different stages of testing.
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4.3 Results and discussion

For both materials, finite element simulation of uni-axial tensile test is done
using the four most popular material models for the un-swelled and 8-day swelled
conditions. Stress–strain curves from simulations, using the selected material
models, are compared with experimental results. Results are plotted separately for
materials TA and TB. During the tensile tests, elastomer TB exhibited more stiff-
ness, fracturing at much lower strains than elastomer TA.

Figure 5 shows comparison of stress–strain curves for experimental and FE
simulation data for un-swelled and swelled (8 days) conditions for material TA. In
the unswelled condition, at small deformations, all models predict almost the same
behavior, Ogden model giving minimum error. For small to medium deformation,
Arruda-Boyce model gives minimum error. For large deformations, Ogden model
gives minimum error. After 8 days of swelling, for small deformations, all the
models again predict almost the same behavior, Arruda-Boyce and neo-Hookean
models yielding minimum error. For small to medium deformations, Neo-Hookean
model gives the closest results. For large deformations, Ogden model again yields
minimum error, Neo-Hookean model giving much larger error.

For material TB, experimental and simulated stress–strain curves for un-swelled
and 8-day-swelled samples are shown in Figure 6. Before swelling, and at small

Figure 4.
Finite element model, and deformed shape, of dumbbell type test specimen.

Figure 5.
Stress–strain curves for experimental and FE simulation results for material TA; before swelling (left); after
8 days of swelling (right).
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deformations, all models are very close to each other, Arruda-Boyce giving the best
fit. The trend remains the same for small to medium deformations. For large
deformations, Yeoh model gives the closest results. After swelling for 8 days,
Arruda-Boyce model shows the closest fit to actual data for small deformations, the
other models giving slightly higher error. The trend continues for small to medium
deformations. For large deformations, Arruda-Boyce curve starts to diverge away
from experimental results while Ogden and Yeoh models show converging
tendency, Ogden model yielding the minimum error.

Based on results of the current study, the neo-Hookean model appears to be the
best suited for both un-swelled and swelled (small to medium stretch) conditions
under tensile loads, but it starts diverging away from experimental results for very
large strains. For large strains (which is the case in real-world use of swelling elasto-
mer seals), Ogden model is consistently better than the others. However, it can be
seen that no material model predicts results close to the experimental values. The
reason might be that energy and diffusion effects are not considered in these models.

5. Comparison of material models under compressive loading

Petroleum industry uses swelling elastomers in a variety of applications as
discussed in detail in Chapter 2. Being primarily used as a sealing element, swelling
elastomers generally experience compressive loads. Hence, investigation of such
elastomers under compression is very important. A comparison of currently avail-
able hyperelastic material models is presented in this section against experimental
results for two swelling elastomers (A and B) under compressive loading, before
and after different stages of swelling. Just as for tensile loading, such an evaluation
of material models for swelling elastomers under compression was not available in
published literature before this study. Tests are carried out using disc samples in
accordance with ASTM-D575 standard test method [55]. Compression tests are also
simulated using the different material models available in the commercial finite
element package ABAQUS [54]. Material coefficients for each model are deter-
mined from experimental stress–strain data using the curve fitting procedure of
ABAQUS.

5.1 Experimental work

To replicate actual field conditions in many regional oil wells, Qamar et al.
[56, 57] used samples of two types of water-swelling elastomers in various

Figure 6.
Stress–strain curves for experimental and FE simulation results for material TB; before swelling (left); after
8 days of swelling (right).
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petroleum development applications were subjected to swelling in saline water of
0.6% (6,000 ppm) and 12% (120,000 ppm) concentrations maintained at a tem-
perature of 50°C. To investigate the effect of swelling, samples were taken out for
mechanical testing after 1, 2, 4, 7, 10, 16, 23, and 30 days of swelling. The elastomers
were of a fast-swell type, so readings were initially taken after almost each day, and
on a weekly basis later on.

5.1.1 Sample preparation

Disc samples were cut using a die-and-punch set, with some surface grinding
needed for final trimming. As prescribed by ASTM-D575, disc dimensions for
compression testing are 28.5 mm diameter and 12.5 mm thickness. Due to reasons of
confidentiality, actual identification number of swelling-elastomer materials is not
mentioned here.

5.1.2 Test procedure

Compression tests are performed on a Tinius Olsen universal testing machine in
the compression mode, using a 50-kN load cell; Figure 7. Disc specimen is placed on
a fixed bottom plate while the top plate applies a compressive load on the specimen.
Elastomer sample is free to expand in the radial direction. Top surface of the disc
moves downward with the compression load, while bottom surface is not allowed to
move in the axial direction. Load is applied at a rate of 12 mm/min (ASTM-D575)
until the specimen thickness is compressed to 10 mm. Force-deformation and
stress–strain data are recorded. A small barreling effect can be observed in the
compressed sample.

5.2 Numerical Modeling and simulation

Finite element analysis for predicting the deformation behavior of swelling
elastomers under compression for both the materials in two salinities solutions are
performed using commercial finite element analysis package ABAQUS [54]. Swell-
ing elastomer specimen is modeled using 8-noded linear brick element with reduced
integration (C3D8R). Stress–strain data obtained from experiments are used to
extract coefficients that define the constitutive relation in finite element analysis.
Material parameters such as Poisson’s ratio and density at each condition with
swelling for different days are also determined experimentally. ASTM standard disc

Figure 7.
Setup for compression testing, using disc samples.
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geometry is modeled for simulation of compression tests. Compressive loads and
boundary conditions are in line with experimental values. Simulations are
conducted before swelling and after each swelling period for a total of one month
period under both salinities. Figure 8 shows the deformed and undeformed
specimens.

5.3 Results and discussion

Finite element simulations of compression experiments are carried out for com-
parison of the five most suitable hyperelastic material models, including Ogden
model with both first and second strain energy functions. Stress–strain curves
obtained through simulations (for both the materials) are compared against exper-
imental results after each swelling period.

Experimental and numerical stress–strain curves are compared in Figure 9, for
material A in high salinity solution after 23 days of swelling. Apart from the five
models shown in the figure, other material models failed to converge. For small
deformations (10–15%), all models give quite good prediction. However, for
medium to large deformations, none of the models is even remotely close to exper-
imental results. Compared to the others, Yeoh and Ogden model with second strain
energy function (N = 2) are relatively closer to the experimental curve, Ogden being
the better one.

Experimental stress–strain curves for material B are compared with simulation
results in Figure 10 for low salinity solution after 30 days of swelling. Arruda-Boyce
model failed to converge. Neo-Hookean and Ogden (with first strain energy poten-
tial) models are nowhere close to the experimental results. Yeoh and Ogden (strain
energy potential of second degree) models give somewhat better results for small to
moderate deformations. None of the models is good at large strains.

Experimental investigation of performance of swelling elastomer seals (such as
sealing pressure at various stages of swelling) is highly difficult and very costly.
Numerical simulations, if yielding reasonable predictions, can be a much better
alternative. If we want to conduct numerical studies of elastomer seal performance,
Ogden model with second-degree strain energy function will have to be used as it
gives overall best results both under tensile and compressive loads. This best avail-
able current hyperelastic model (Ogden-2) has been later used to study the
mechanical and structural behavior of swelling elastomers under compressive

Figure 8.
Specimen (FE simulation) before and after deformation.
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loading in Chapter 7, and to evaluate the performance of swelling elastomer seals in
Chapter 8.

To more accurately predict the behavior of swelling elastomers, thermodynam-
ics of mixing and the phenomenon of diffusion should also be considered. Starting
with the Ogden model, this approach for mechanics of swelling is followed in
Chapter-6 to develop a new material model for swelling elastomers.

6. Conclusions

Simulations have been carried out to compare different hyperelastic material
models against experimental results for swelling elastomers subjected to tensile and
compressive loading, including Arruda-Boyce, Ogden (N = 1), Ogden (N = 2),
Yeoh, and neo-Hookean models. Following ASTM standards, experiments were
conducted on ring samples (for tensile tests) and disc samples (for compression
tests), before swelling, and after 8 days of swelling, using two swelling elastomer

Figure 9.
Comparison of experimental and simulated (different hyperelastic material models) stress–strain behavior
under compression for material A in high salinity after 23 days of swelling.

Figure 10.
Comparison of experimental and simulated (different hyperelastic material models) stress–strain behavior
under compression for material B in low salinity after 30 days of swelling.
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materials. Simulations were performed using the FEA package ABAQUS. For tensile
loads, most of the models give reasonable predictions for small deformations. For
medium to large deformations, Ogden model with second strain energy function
(Ogden-2) gives best results. For simulations under compression, many models do
not give good predictions even for small loads. Ogden-2 again yields overall mini-
mum error. Hyperelastic models can be used for FE analysis of swellables, giving
reasonably acceptable approximations. However, a new material model is definitely
needed to capture the material behavior of swelling elastomers more accurately.
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