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Abstract

Intelligent traffic control at signalized intersections in urban areas is vital for 
mitigating congestion and ensuring sustainable traffic operations. Poor traffic 
management at road intersections may lead to numerous issues such as increased 
fuel consumption, high emissions, low travel speeds, excessive delays, and vehicular 
stops. The methods employed for traffic signal control play a crucial role in evaluat-
ing the quality of traffic operations. Existing literature is abundant, with studies 
focusing on applying regression and probability-based methods for traffic light 
control. However, these methods have several shortcomings and can not be relied 
on for heterogeneous traffic conditions in complex urban networks. With rapid 
advances in communication and information technologies in recent years, various 
metaheuristics-based techniques have emerged on the horizon of signal control opti-
mization for real-time intelligent traffic management. This study critically reviews 
the latest advancements in swarm intelligence and evolutionary techniques applied 
to traffic control and optimization in urban networks. The surveyed literature is 
classified according to the nature of the metaheuristic used, considered optimization 
objectives, and signal control parameters. The pros and cons of each method are 
also highlighted. The study provides current challenges, prospects, and outlook for 
future research based on gaps identified through a comprehensive literature review.

Keywords: metaheuristics, intelligent traffic control, signal optimization,  
swarm intelligence, evolutionary computation, transport networks

1. Introduction

1.1 Traffic congestion: a challenging front

Recent decades have witnessed a rapid surge in population growth. Consequently, 
a high concentration of social and economic activities in urban metropolitans has 
led to the emergence of various transportation modes and services. Urban traffic 
congestion has become a daunting challenge in cities around the world. Excessive 
delay, low traveling speeds, increased travel costs, elevated drivers’ anxiety and frus-
trations, high fuel consumption, and vehicular emissions are the few consequences 
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of traffic congestion. It also poses a threat to a stable urban economy [1, 2]. Traffic 
demands fluctuate significantly during the day (TOD), especially during rush hours, 
which is one of the main causes of congestion buildup. Congestion may be recurrent, 
arising from routine cyclic fluctuations in traffic volumes, or it may be non-recurrent 
produced due to unforeseen events such as traffic incidents, unpredictable weather 
conditions. Existing transport infrastructure cannot withstand the ever-growing 
traffic demands, while the inappropriate allocation of temporal and spatial resources 
further exacerbates the problems [3, 4]. An effective solution to mitigate traffic 
congestion is to embed intelligent transportation system (ITS) technologies in exist-
ing transport infrastructure for efficient and sustainable operations. Researchers and 
practitioners have proposed various strategies such as signal control optimization 
and dynamic lane grouping to address the issue in recent years.

1.2 Traffic signal control (TSC)

Signalized intersections are a vital component of urban traffic networks and 
play a pivotal role in traffic control and management strategies. Over the years, they 
have been the primary focus of traffic improvement efforts since they are repre-
sentative of frequent and restrictive bottlenecks. Poor traffic management at urban 
intersections leads to traffic jams and unsustainable travel patterns network-wide. 
Alternatively, intelligent traffic control and better management at these critical 
locations could result in smooth, safe, cheap, and sustainable operations. Traffic 
Signal Control (TSC) is an integral part of ITS. TSC is an important operation that 
can tackle various urban traffic issues such as congestion, fuel consumption and 
exhaust emission, and inefficient resource utilization. TSC involves determining 
appropriate signal timings parameters to improve various traffic performance mea-
sures like average vehicle delay, travel time, maximizing throughput, and reducing 
queue lengths and vehicular emissions. One of the main objectives of traffic signal 
control is to facilitate the safe and efficient movement of people through a road 
network. Achieving this goal warrant establishment of an accommodation plan that 
ensures appropriate assignment of right-of-way (ROW) to different users.

1.3 Classical methods for TSC

Over the years, different strategies have been proposed to address the TSC 
problem. A fixed-time signal control scheme has been widely used for managing 
traffic lights in urban areas. This strategy requires the determination of optimum 
TOD breakpoints for establishing TOD intervals, which are subsequently used for 
obtaining the predefined green splits for each split (green times) using Webster’s 
formula or some other optimization tools [5]. However, the fixed-time signal 
control strategy is suitable for stable and nearly homogenous traffic patterns. 
Alternatively, studies have focused on actuated and traffic responsive TSC schemes 
for dynamic traffic control and management. In such traffic control schemes, 
signal cycle length and green splits are adjusted according to real-time traffic data 
collected from sensors installed on each approach. Though actuated TSC strategies 
overcome some limitations of the former methods, they do not work well under all 
traffic and adverse conditions. TSC problem was initially addressed using various 
probability and regression-based methods [6, 7]. However, for oversaturated and 
undersaturated traffic conditions, such methods do not provide reliable solutions. 
Few notable classic TSC strategies proposed during the last few decades include: 
SCOOT [8], SCAT [9], MAXBAND [10], CRONOS, PRODYN [11], TRANSYT [12], 
RHODES [13], OPAC [14], and FUZZY LOGIC [15]. Few other methods recently 
used for traffic light setting are ARRB [16], TRRL [8], and HCM [17]. In addition, 
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to signal control strategies, traffic light design could be isolated intersection based 
or coordinated. Isolated intersections signal schemes have limited benefits com-
pared to coordinated strategies that consider the network of intersections.

1.4 Limitations of classical TSC strategies

The timing of traffic signals significantly influences the performance of the 
transportation system. Obtaining the optimal signal timing plan for a network in 
its entirety is challenging due to the stochastic and non-linear characteristics of the 
traffic system. From a computational perspective, the signal control optimization 
problem under the influence of several constraints is a highly non-linear and non-
convex problem. To reduce the complexity of problem, studies have assumed partial 
convexification for obtaining the optimal signal plans [18, 19]. It has been shown 
that traffic light optimization belongs to the family of NP-complete problems whose 
complexity increases dramatically for real-world and more extensive transportation 
networks with prolonged study periods. Classical optimization methods used in this 
regard are not suitable for a variety of reasons. For example, they are sensitive to 
initial estimates of solution vector and require gradient computation of constraints 
and the objective functions. Further, the discrete nature of signal timing plan and 
phasing sequence limit the application of traditional optimization approaches. 
Similarly, classical signal control optimization techniques are usually more suited 
to isolated intersections. They are not scalable for large urban transport networks 
where the interdependence of traffic signals across multiple intersections may be 
explored. Hence, such methods do not consider the interdependencies and connec-
tivity of traffic signals vital for large-scale urban transport networks.

1.5 Metaheuristics for TSC: the new frontier

Metaheuristics techniques, including and swarm intelligence and evolutionary 
algorithms, have emerged as appealing alternatives to classical optimization meth-
ods for addressing signal control problems. They can be easily adapted for solving 
signal optimization problems with mixed types of continuous and discrete variables 
on large-scale transportation systems. Metaheuristics are based on approximate 
random methods and involve an iterative master process that can efficiently provide 
high-quality, acceptable solutions with relatively low computational efforts [20]. No 
prior information regarding the search space characteristics is required. In addition, 
metaheuristics do not rely on gradient information of the objective functions and 
the associated constraints with reference to signal timing variables. Further, the 
process of finding the optimal solution is simple and straightforward. Entailing 
less complexity than exact methods means that metaheuristics could be easily 
implemented to solve non-linear complex optimization problems. Furthermore, for 
many large-scale engineering problems that involve uncertainties (such as traffic 
flow), obtaining near-optimal solutions within a reasonable time is acceptable. 
Owing to these benefits, several metaheuristics techniques have been successfully 
applied for solving TSC optimization problems. Metaheuristics aim at obtaining the 
optimal values/ranges for various signal parameters that influence the performance 
of signalized intersections and include variables such as cycle length, green splits, 
phase sequence, offsets, change interval, etc. These parameters of interest are also 
known as decision variables. Constraints conditions for signal optimization include 
lower and upper cycle length, green splits thresholds, etc.

Metaheuristics have been widely applied to solve the TSC problems under a 
single objective framework known as mono-objective optimization. The single 
objective optimization can be classified into four main types: i) travel time 
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minimization, ii) delay minimization, iii) throughput maximization, and iv) fuel 
consumption and exhaust emissions (CO, CO2, NOx, HCs) minimization. Mono-
objective optimization of traffic signals has some benefits; however, field traffic is 
highly complex, non-linear, and stochastic in nature, and quite often, the applica-
tion of multi-objective optimization becomes inevitable. In the process of finding 
the optimal signal control parameters, traffic engineers usually deal with multiple 
conflicting objectives. They are seldom interested in knowing the single-objective-
based best solution without considering the other objectives. It is quite possible 
that an indented improvement in one of the objectives may lead to the deterioration 
of others. Therefore, it is essential to obtain a reasonable trade-off among various 
clashing objectives while optimizing the signal timing parameters. To address this 
issue, researchers have proposed bi-objective or multi-objective metaheuristic 
frameworks which involve more than one objective function to be optimized con-
currently. Adoption of multi-criteria/objectives metaheuristics for signal optimiza-
tion is rational as well as more beneficial.

1.6 Study objectives

This study provides a comprehensive review of metaheuristics techniques 
applied to signal control optimization. The surveyed literature is categorized 
based on the types of metaheuristics used, i.e., evolutionary algorithms and swarm 
intelligence techniques. A total of over 15 metaheuristics optimization techniques 
in traffic signal control and optimization are presented. Literature is summarized 
based on classification of techniques, considered optimization objectives, decision 
variables, and constraints conditions. Finally, based on the identified literature 
gaps, major challenges and prospects for future research are also proposed.

1.7 Paper organization

The remainder of this work is organized as follows. Section 2 provides research 
methods and publication analysis of signal control optimization using meta-
heuristics. Section 3 reviews evolutionary algorithms’ metaheuristics for signal 
optimization. Section 4 provides a summary of swarm intelligence techniques in the 
context of the subject domain. Section 5 and 6 presents surveys of trajectory-based 
metaheuristics and few others for TSC optimization. Finally, Section 7 presents the 
review conclusions and outlines the current challenges and recommendations for 
future research.

2. Methodology

The relevant literature on TSC was searched (in May 2021) using a detailed 
systematic review (SR). SR is a formal and standard protocol for performing a 
review study. To ensure that findings were reached in a valid and reliable manner, 
the study adopted a three-staged approach, i.e., i) planning, ii) execution, and iii) 
analysis. The planning stage involved defining the research scope and aims, setting 
the inclusion and exclusion criteria, and developing the review protocols. The 
execution stage involved a systematic search using relevant search strings. The rel-
evant publications were meticulously selected by browsing through different elec-
tronic databases such as “Google Scholar,” Science Direct,” Wiley Online Library,” 
“Scopus,” “Web of Science,” and “IEEE Xplore.” To explore these databases, the 
following “Keywords” were used: “signalized intersections,” “traffic congestion,” 
“traffic signal control,” “traffic signal timing optimization,” “traffic control 
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through metaheuristics,” “intelligent traffic control,” “dynamic traffic manage-
ment,” “traffic simulation and optimization,” “multi-objective traffic control,” etc. 
Titles, keywords, and abstracts of all the downloaded documents were reviewed 
to determine the appropriate selection of articles for the current study. Additional 
appropriate publications were added to the list by looking at the references selected 

Figure 1. 
Chronological distribution of indexed publications on traffic signal optimization using swarm intelligence and 
evolutionary computation techniques (period 2000–2021).

Figure 2. 
Percentage distribution of indexed publications on traffic signal optimization based on metaheuristic type.
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publications. Publications were searched irrespective of publication year and 
the number of citations to have the maximum number for initial consideration. 
Duplicate articles found in various databases were also identified and removed. 
Non-academic publications, such as magazine articles, company reports, newspa-
pers, presentations, and interview transcripts, were excluded. Finally, the analysis 
stage involved the classification, categorization, and summarization of the main 
theme of selected articles.

Figure 1 presents the chronological distributions of shortlisted publications in 
which metaheuristics are used for solving traffic signal control optimization. It may 
be observed from the publications reporting in Figure 1 that is there is a growing 
trend in the application of metaheuristics in the subject domain. Figure 2 shows the 
percentage distribution of published studies in the area of traffic control optimiza-
tion based on the type of metaheuristic applied. It may be observed from the Figure 
that the Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant 
Colony Optimization (ACO) have been widely used for signal optimization.

3. Review of evolutionary algorithms (EAs) for TSC

This section reviews the previous studies in the literature that applied evolu-
tionary algorithms (EAs) for traffic signal control and optimization. EAs are the 
most widely used metaheuristics optimization techniques across diverse fields of 
science and engineering. EAs are population-based random search techniques and 
are inspired by Darwin’s theory of natural theory of evolution. The EAs contain a 
population of individuals, each symbolizing a search point in the feasible solution 
space exposed to a common learning process while proceeding among different 
generations. EAs begins with the initialization of random population, which are 
then subjected to selection, crossover, mutation through various generations so that 
offsprings generated evolve toward more favorable regions in the search space. At 
each generation, the fitness of the population is evaluated, and those with better 
fitness values are selected and recombined that have an increased probability of 
improved fitness. The program is iteratively repeated until it converges to the best 
(or near-optimal) solutions. The basic structure of EAs remains similar for all the 
algorithms under its family. Figure 3 presents the sample structure of EAs and 
their working principle. The following passages provide a brief explanation of 

Figure 3. 
General flow depicting the search mechanism of EAs.
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S.No Metaheuristic Used Optimization Objectives Reference

Delay Stops throughput Travel time Queue Emissions Fuel Consumption

1 GA ✓ [21]

2 GA ✓ ✓ [22]

3 DE ✓ ✓ [23]

4 GA ✓ [24]

5 DE ✓ ✓ [25]

6 DE ✓ [26]

7 GA ✓ ✓ [27]

8 GA ✓ ✓ [28]

9 GA and DE ✓ [29]

10 GA ✓ ✓ ✓ [30]

11 DE ✓ ✓ [31]

12 GA ✓ ✓ [32]

13 GA ✓ [33]

14 NSGA ✓ ✓ [34]

15 NSGA-II ✓ ✓ ✓ ✓ [35]

16 GA ✓ [36]

17 DE ✓ ✓ [37]

18 GP ✓ [38]

Table 1. 
Summary of previous studies on traffic signal optimization using EAs.
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various EAs employed in the field of traffic signal optimization. Table 1 presents 
a summary of previous studies that have applied EAs for traffic signal control and 
optimization.

3.1 Genetic algorithm

Genetic algorithm is the most widely used method for traffic light optimization. 
John Holland initially proposed the GA metaheuristic in 1975 [39]. GA search mecha-
nism for finding the optimal solution of an objective function mimics the natural 
selection process of the evolutionary theory of nature, which supports the “survival 
of the fittest” concept. It is a population-based technique that involves the ranking of 
individual members of the population according to their fitness.

The search process of the optimal solution begins with the initialization of a 
random population of solutions. The offspring population is created by iteratively 
applying various genetic operators such as crossover, mutation, elitism, etc. until 
the stopping criteria are satisfied. In literature, many studies have demonstrated 
the robustness of GA for adaptive traffic signal control. For example, Foy et al. 
utilized GA for traffic light optimization, considering delay time minimization as 
the objective function [36]. The number of initial GA generations was varied over 
five GA traffic runs. The optimal fitness value was achieved for populations rang-
ing between the 20th to 30th generations with an average vehicle waiting time of 
around 40 seconds. GA was noted to yield rational signal timing plans reducing the 
timing delay significantly compared to the existing traffic control scheme. In their 
study, Rahbari et al., studied that traffic control at the signalized intersection with 
GA could reduce the congestion [40]. Yang and Luo adopted a hybrid GA simulated 
annealing (GA-SA) for signal control optimization at isolated signalized intersec-
tions considering delay as the objective function [41]. Empirical results showed that 
GA produced a rational signal timing plan compared to fixed control scenarios. A 
study conducted by Mingwei et al. proposed the application of multi-objective for 
intelligent traffic management at an isolated signalized intersection for a case study 
in China [42]. The considered optimization objectives included; average vehicle 
delay, vehicular stops, and fuel consumption. It was found that the optimized signal 
timing plan from GA significantly improved the considered traffic performance 
measures.

In another study, Turki et al. proposed a multi-objective NSGA-II to optimize 
various measures of effectiveness (such as delay, stops, fuel consumption, and 
emissions) at isolated signalized intersections in the city of Dhahran, Saudi Arabia 
[35]. Study results were compared with Synchro traffic simulation and optimiza-
tion tool, and the results for a typical intersection are shown in Figures 4 and 5. All 
the performance measures witnessed considerable improvement for the optimized 
signal timing plan obtained using an NSGA-II optimizer. Figure 4 (a–d) depicts 
the evolution of the four selected performance measures (delay, stops, fuel con-
sumption, and emissions) against the number of iterations for three random initial 
populations. It may be noted that all the algorithms converged to their respective 
objective functions at approximately 70 to 100 generations. Comparing the random 
initial populations, population size 30 for all cases yielded the best results.

Figure 5 shows the performance comparison of NSGA-II and Synchro signal 
control strategies for the selected measures of effectiveness (delay, stops, fuel 
consumption, and emissions). It may be noted from the Figure that the NSGA-II 
optimizer outperformed the Synchro results for all the performance measures.

Li et al. also investigated the applicability of NSGA-II for solving signal control 
optimization problems [34]. Average queue ratio and vehicle throughput were the 
objective functions. The algorithm’s results were validated on a microscopic traffic 
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simulation tool, VISSIM. Kwak et al. developed a GA traffic optimizer to evaluate 
the influence of traffic light setting on vehicle fuel consumption and emissions 
[32]. Model results were compared with TRANSIM, a microscopic traffic simula-
tor. It was observed that the proposed GA traffic optimizer could reduce exhaust 
emissions by approximately 20% and fuel consumption in the range of 8–20%. In 

Figure 4. 
Evolution of different performance measures against NSGA-II iterations; (a) delay evolution, (b) number of 
vehicle stops evolution, (c) fuel consumption evolution, (d) emission evolution. Reprinted with permission from 
Ref. [35] copyright (2021), MDPI.

Figure 5. 
Comparison of NSGA-II and synchro optimizers for various traffic performance measures. Reprinted with 
permission from Ref. [35] copyright (2021), MDPI.
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another study, Kou et al. employed multi-criteria GA for optimizing the signal tim-
ing plan of signalized junctions and compared the results with the highway capacity 
manual (HCM) method [28]. The study considered several optimization objectives 
such as stops, delays, and emissions. A reasonable trade-off established an optimal 
Pareto front among different conflicting objectives. Study results demonstrated 
the superior performance of the proposed GA traffic control scheme compared to 
the HCM method in terms of all the optimization objectives. Guo et al. developed 
a model for area-wide intersection traffic control in the central business district 
(CBD) area of Nanjing, China [43]. Capacity ratio, turning movement delay, and 
travel time was the three chosen objective functions. Computational experiments 
results showed significant mobility improvement compared to existing conditions. 
Study results were also validated in PARAMICS traffic simulation tool. In their 
study, Dezani et al. have shown that simultaneous optimization of traffic lights via 
GA and vehicle routes could significantly reduce the vehicle travel time compared 
to optimization considering only routes [44]. In another study, Tan et al. proposed 
a new Decentralized Genetic Algorithm (DGA) for signal timing optimization of 
traffic networks under oversaturated traffic conditions [45]. Average vehicle delay 
was used as the performance metric to evalauate the performance of proposed 
algorithm. Simulation results showed that DGA could effectively optimize the traf-
fic light setting and reduced the average network delay.

3.2 Differential evolution (DE)

Differential evolution is another population-based metaheuristic technique 
initially proposed by K.V. Pricein 1995 [46]. DE is characterized by its robustness, 
fast convergence to the objective function, and simplicity. Though the method has 
been successfully used for numerous applications across different disciplines, only 
a few studies have adopted DE for urban traffic control and management [25–29]. 
For example, in their recent study, Jamal et al. compared the performance of GA 
and DE for optimizing traffic lights at isolated signalized intersections in the city 
of Dhahran, Saudi Arabia [29]. Average delay time minimization was the objective 
function. The study concluded that both GA and DE could yield intelligent and 
rational signal timing plans, reducing the intersection average delay between 15 and 
35%. DE was noted to converge to objective function faster than DA over several 
simulation runs. Similarly, in another study, Liu et al. proposed bacterial foraging 
optimization-based DE algorithm for optimizing delay at signalized intersections 
[37]. To improve convergence precision, DE was utilized for updating the bacteria 
position during the chemotaxis process. The proposed scheme yielded very prom-
ising results, reducing the intersection delay by over 28% compared to only 5% 
obtained by GA optimization. In their study, Korkmaz et al. suggested three differ-
ent types of delay differential evolution-based delay estimation models (DEDEM), 
i.e., linear, quadratic, and exponential [47]. The researchers reported that all the 
proposed models effectively predicted the vehicle delay estimates in terms of rela-
tive errors between estimated and simulated values; however, quadratic DEDEM 
methods outperformed other models. Ceylan also approached the signal control 
optimization problem using the metaheuristic DE and Harmony-Search (HS) for 
network-wide traffic control and optimization [48]. Study results showed that DE 
algorithms yielded better results compared to HS.

In another research study, Yunrui et al. proposed multi-agent fuzzy logic control 
based on DE to optimize delay and queue length through a network of eleven inter-
sections in the urban traffic context [31]. DE was used to decide and optimize the 
parameters of the fuzzy systems because it is easy to understand and implement. 
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Empirical results revealed that the proposed method could substantially improve 
the network performance measures such as average vehicle delay, traffic through-
put, and queue length. In a recent study, Liu et al. have proposed an improved adap-
tive differential evolution (ADE)-based evolvable traffic signal control (EvoTSC) 
scheme for global optimization of different traffic performance measures on large 
scale urban transportation networks [49]. The proposed TSC method was compared 
with a conventional TSC scheme on two practical and three synthetic transporta-
tion networks with varying traffic flow demands and different physical scales. 
Comparison results indicated that the DE-based EvoTSC method significantly 
outperformed its counterpart under all the considered scenarios. Zhang et al. also 
applied an online intelligent urban traffic signal control approach using multi-
objective DE for real-time traffic control and optimization [50]. Experimental 
results showed that the proposed approach provides a more robust configuration 
of traffic signal phases and has relatively better real-time performance than the 
traditional traffic control scheme.

3.3 Genetic programming (GP)

Genetic programming (GP) is another population-based metaheuristic tech-
nique that belongs to the family of evolutionary algorithms [51]. GP is an extension 
of GAs that allows for deep exploration of space on computer programs. GP starts 
with a population of random programs (candidate solutions) that are fit for apply-
ing evolutionary operators similar to genetic processes, thereby simulating the 
fundamental principles of Darwin’s evolution theory [52]. GP follows an iterative 
process to breed the solutions to problems using the probabilistic selection proce-
dure for the carryover of fittest solutions to the offerings by applying genetic opera-
tors such as crossover and mutation. In literature, not many studies have focused on 
applications of GP for traffic analysis and management in urban transport net-
works. Montana and Czerwinski used a hybrid GA with strongly typed GP (STGP) 
for intelligent control and optimization of evolving traffic signals on a small-scale 
transport network [53]. Numerical simulation results showed that the proposed 
hybrid STGP model could effectively improve network performance under varying 
traffic demands.

A study conducted by González also proposed the application of GP for solving 
signal control problems [54]. This study considered four different traffic scenarios 
with properties and traffic conditions in a previous study [55]. Study results were 
also validated using the microscopic traffic simulator tool SUMO. Findings showed 
that GP could provide competitive and robust results for all the tested scenarios. 
However, the highway/network scenario had a more pronounced performance 
improvement (having an improvement of 10.34%) than the isolated intersection 
scenario (with an improvement of 4.24%). In another study, Ricalde and Banzhaf 
adopted an improved GP with epigenetic modifications for traffic light scheduling 
and optimization under dynamic traffic conditions [56]. Extensive simulation 
analysis revealed that the proposed model improved the network performance 
compared to standard GP and other previously used methods. This study, how-
ever, did not use any real-world data for validation purposes. In another study, 
the authors used a similar GP approach with epigenetic modifications (EpiGP) to 
design and evolve traffic signals using real-time field traffic data [38]. Results indi-
cated significant improvement in network performance compared to conventional 
methods, including standard GP, static, and actuated traffic control techniques.. 
Over 12% improvement in average delay was reported under high-density traffic 
conditions.
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4. Review of swarm intelligence (SI) techniques for TSC

This section reviews the previous studies in the literature that applied swarm 
intelligence (SIs) techniques for traffic signal control and optimization. SI is 
another class metaheuristics that are increasingly used for various engineering and 
industrial applications. The search mechanisms of SI are believed to be inspired by 
human cognition representing the individual’s interaction in a social environment. 
For this reason, SI techniques are also sometimes called “behaviorally inspired 
algorithms.” In SI algorithms, each swarm member has a stochastic behavior due to 
their perception of the neighborhood and acts without supervision. By collective 
group intelligence, swarm utilizes their resources and environment effectively. The 
primary attribute of a swarm system is self-organization, which assists in evolving 
and obtaining the desired global level response by effective interactions at the local 
level. Just like EAs, SIs are population-based iterative procedures. After randomly 
initializing the population, individuals are evolved across different generations by 
mimicking the social behavior of animals or insects to reach the optimal solutions. 
However, SIs do not involve the use of evolutionary operators like crossover and 
mutation like EAs. Instead, a potential solution modifies itself based on its relation-
ship with the environment and other individuals in the population as it flies through 
the search space. The following passages provide a brief explanation of various 
swarm intelligence techniques employed for solving signal control optimization 
problems. Table 2 presents a summary of previous studies that have applied SIs for 
traffic signal control and optimization.

4.1 Particle swarm optimization (PSO)

Particle swarm optimization is a population-based swarm intelligence technique 
that was first introduced in 1995 by Eberhart and Kennedy. In the PSO algorithm, 
every potential solution is referred to as a particle representing a location in the 
problem space. The entire population of potential solutions (particles) is called the 
swarm. PSO search mechanism for global optima is inspired by birds in which each 
particle can update its velocity and position by using local and global best values. 
PSO is yet another widely used optimization algorithm for signal control problems. 
For example, Celtek applied PSO for real-time traffic control and management in 
the city of Kilis city in Turkey [77]. Algorithm performance was investigated in 
real-time using the SUMO traffic simulator. Social Learning-PSO was introduced as 
an optimizer for the traffic light. Empirical results obtained using the proposed PSO 
architecture resulted in travel time by 28%. The algorithms performed well both for 
undersaturated and oversaturated traffic conditions. Gokcxe and Isxık proposed a 
microscopic traffic simulator VISSIM-based PSO model for optimizing vehicle delay 
and traffic throughput using field data from28 signalized roundabout in Izmir, 
Turkey [64]. The simulation tool was used to evaluate the solutions obtained by 
PSO. Optimization of traffic signal head reduced the average delay time per vehicle 
by approximately 56% and increased the number of passing vehicles by 9.3%. In 
their study, Jia et al. employed multi-objective optimization of TSC using PSO [72]. 
The optimization objectives included average vehicle delay, traffic capacity, and 
vehicle exhaust emissions. The validity of the algorithm was examined by applying 
it to the real-time signal timing problem. The suggested algorithm provided com-
petitive performance for all the MOEs compared to other efficient algorithms such 
as NSGA-II, IPSO, and GADST.

Abushehab et al. compared PSO and GA techniques for signal control optimiza-
tion on a network of 13 traffic lights [78]. SUMO was used as a simulator tool for the 
network. Both the algorithms yielded systematic and rational signal timing plans; 
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S.No Metaheuristic Used Optimization Objectives Reference

Delay Stops throughput Travel time Queue Emissions Fuel Consumption

1 ACO ✓ ✓ ✓ [57]

2 AIS ✓ ✓ [58]

3 GWO ✓ [59]

4 ABC ✓ ✓ [60]

5 ACO ✓ ✓ [61]

6 BA ✓ ✓ [62]

7 CS ✓ [63]

8 PSO ✓ ✓ [64]

9 PSO ✓ ✓ [65]

10 BA ✓ [66]

11 PSO ✓ [33]

12 PSO ✓ ✓ [67]

13 ABC ✓ [68]

14 ABC ✓ ✓ [60]

15 PSO ✓ ✓ ✓ [40]

16 ACO ✓ [69]

17 CS ✓ [70]

18 ACO ✓ ✓ [71]

19 PSO ✓ ✓ ✓ [72]
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S.No Metaheuristic Used Optimization Objectives Reference

Delay Stops throughput Travel time Queue Emissions Fuel Consumption

20 PSO ✓ [73]

21 PSO ✓ [74]

22 INA ✓ ✓ [75]

23 FFA ✓ [76]

Table 2. 
Summary of previous studies on traffic signal optimization using SI techniques.
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however, some algorithm variants were found to be more efficient than the others. 
In their study, Angraeni et al. proposed a modified PSO (MSPO) and fuzzy neural 
network (FNN) for optimizing signal cycle length at an isolated intersection [79]. 
Simulation results using PSO led to a reduction in MSE value from 6.3299 to 2.065, 
while network performance was improved by 4.26%. The accuracy of the train-
ing process using MPSO was higher than FNN. Chuo et al. reported a significant 
decrease in vehicle queue length by using PSO as a traffic signal optimizer [73]. In 
another study, Garcıa-Nieto et al. applied PSO to optimize the cycle program of 
126 traffic signals located in two large and heterogenous metropolitans of cities of 
Bahıa Blanca in Argentina and Malaga in Spain [80]. The Obtained solutions were 
validated using the traffic simulation package SUMO.

In comparison to the existing pre-defined traffic control schemes, PSO achieved 
significant quantitative improvement for both the objectives, i.e., overall journey 
time (74% improvement) and the number of vehicles reaching their destinations 
(31.66%) improvement). In another study, a researcher proposed an improved PSO 
architecture by combining traditional PSO with GA for multi-objective traffic light 
optimization. The selected performance indexes included vehicular emissions, 
vehicle delay, and queue length [40]. The authors reported that the improved PSO 
method has a quick response and higher self-organization ability which is beneficial 
for improving the efficiency of traffic signal control.

Olivera et al. investigated the applicability of PSO to reduce vehicular exhaust 
emissions (CO and NOx) and fuel consumption considering large-scale heteroge-
neous urban scenarios in the cities of Seville and Malaga in Spain [67]. Study results 
showed that the proposed signal control strategy could significantly reduce the 
exhaust emission (CO by 3.3% and NOx by29.3%) compared and fuel consumption 
(by 18.2%) compared to signals designed by human experts. In their study, Qian 
et al. designed a simulation protocol for traffic different signal parameters such as 
cycle, green signal ratio, and phase difference using three Swarms Cooperative-PSO 
algorithms [74]. The considered optimization objectives included average vehicle 
delay and average parking number per vehicle. Algorithm simulation results were 
validated using traffic simulator CORSIM. Lo and Tung compared the performance 
of PSO and GA-based signal control along four intersections on an urban arterial 
and noted that the PSO algorithm outperformed GA both in terms of speed con-
vergence and accuracy of search [81]. A couple of other recent studies also dem-
onstrated the adequacy and robust performance of PSO for TSC and optimization 
[82, 83].

4.2 Ant colony optimization (ACO)

Ant Colony optimization is a swarm intelligence method-based optimization 
technique that mimics the natural behavior of ants in finding the shortest path 
from an origin to a food source [84]. In ACO, the path of every ant from origin 
to destination is considered as a possible solution. ACO has been widely used for 
traffic signal optimization. In their study, Putha et al. used ACO for traffic signal 
coordination and optimization in the context of an oversaturated urban transport 
network [85]. The authors reported that ACO could provide reliable solutions of 
optimal signal timing plan compared to GA. Yu et al. also applied ACO for intel-
ligent traffic control at signalized intersections considering vehicle waiting time 
as the optimization objective [86]. The authors reported that ACO outperformed 
the traditional traffic actuated scheme, predominantly during traffic flow periods. 
He and Hou also proposed the application of a multi-objective ACO algorithm for 
the timing optimization of traffic signals [57]. Several parameters such as vehicle 
delay, number of stops, and traffic capacity performance indices were chosen as 
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performance indexes. Numerical simulation results demonstrated that ACO is a 
simple and robust technique for signal control optimization problems. The pro-
posed ACO technique significantly improved the selected performance indicators 
compared to Webstar and GA algorithms.

In another study, ACO optimized the timing plan for traffic lights at isolated 
signalized intersections [61]. All the selected intersection measures of effective-
ness (MOEs), including vehicle delay, parking rate, and the number of stops, were 
improved by a fair margin. Sankar and Chandra proposed a multi-agent ACO for 
effective traffic management on a network level [69]. The authors concluded that 
the method could be pretty useful in reducing average vehicle delays and traffic 
congestion under varying traffic conditions. Haldenbilen et al. developed an ACO-
based TRANSYT (ACOTRANS) model for area traffic control (ATC) through a 
coordinated signalized intersection networks under different traffic demands [87]. 
A total of 23 links were considered for the analysis, and the network Disutility Index 
(DI) was chosen as the primary performance index. A comparative analysis of the 
network’s PI obtained using TRANSYT-7F with hill-climbing (HC) optimization 
and TRANSYT-7F with GA was also performed. Study results showed that the pro-
posed ACOTRANS improved the network’s PI by 13.9% and 11.7% compared to its 
counterparts TRANSYT-7F optimization with HC and GA. Li et al. compared ACO 
and Fuzzy Logic for optimizing traffic signal timing in a simulated environment 
[88]. Traffic capacity and vehicular delay were considered as the objective func-
tions and did not consider pedestrian traffic. The validity of proposed algorithms 
was tested using actual time-period and conventional algorithms. Jabbarpour et al. 
conducted a detailed review of the literature focused on applying ACO evolutionary 
algorithms for the optimization of vehicular traffic systems [89].

Rida et al. proposed ACO for real-time traffic light optimization problems at 
isolated signalized intersections [71]. Objective functions include minimizing the 
vehicle waiting time and increasing the traffic flow. The proposed model yielded 
robust performance compared to fixed time signal controller and other dynamic 
signal control strategies. Renfrew and Yu, in their studies, also reported that ACO 
demonstrated robust performance compared to actuated control in optimizing 
signal timing plan, particularly under high traffic demand [90, 91]. Srivastava and 
Sahana proposed a novel hybrid nested ACO model intending to reduce the vehicle 
waiting time at signalized intersections [92]. The proposed model was also com-
pared with the hybrid nested GA model. Results showed that nested hybrid models 
outperformed traditional ACO and GA-based traffic control.

4.3 Artificial bee colony (ABC)

The traditional algorithms used for training carry some drawbacks of getting 
stuck in computational complexity and local minima. The artificial bee colony 
(ABC) algorithm is a revolutionary approach developed by Karaboga et al. [93]. 
ABC has good exploration capabilities in finding optimal weights during the train-
ing process [94]. ABC algorithm operates on the principle of foraging behavior of 
honeybees in seeking quality food. Each cycle of the search comprising three steps: 
sending employed bees onto the food source to measure nectar amount; selecting 
food source by onlookers once the information is shared by employed bees, and 
sending the scouts for discovering new food source [95].

ABC algorithm is widely used in optimizing traffic-related problems by previ-
ous researchers [60, 68, 96]. Zhao et al. investigated a typical intersection as a case 
study at Lanzhou city [60]. The green time length of each phase of the signal cycle 
and signal cycle were considered as decision variables. Favorable convergence was 
achieved using different setting parameters of the algorithm. The effect of signal 
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cycle on control targets resulted that vehicle delays will increase with the signal 
cycle; however, the stops will decrease. In comparison to non-dominating sorting 
genetic algorithm and webster timing algorithm, ABC manifested better conver-
gence. In another study, Dell’Orco et al. developed TRANSYT-7F to investigate 
network performance index (PI) for optimizing signal timing [96]. Results revealed 
that PI’s of the network in the case of ABC improved by 2.4 and 2.7% compared to 
genetic algorithm and hill-climbing method.

4.4 Cuckoo search (CS)

Cuckoo search (CS) is a recently developed metaheuristic algorithm developed 
by Yang and Deb [97], inspired by the natural breed parasitism of the cuckoo spe-
cies. For understanding its working principle, consider that each bird lays one egg 
at a time and dumps it in a random nest which represents a single solution. The nest 
with high-quality eggs will be moved to the next generation. The number of host 
nests is fixed, and the egg laid by the cuckoo is discovered by the host bird. In this 
situation, the host bird either gets rid of the egg or abandons the nest by developing 
a new nest [98]. Few studies interpret CS as more efficient than PSO and GA [97].

Araghi et al. employed neural networks (NN) and adaptive neuro-fuzzy infer-
ence system (ANFIS) to optimize the results of CS in the case of intelligent traffic 
control [63]. The results were compared to that of the fixed time controller. It was 
revealed that the CS-NN and SC-ANFIS showed 44% and 39% improved perfor-
mance against the fixed-time controller. Similarly, in another study, the authors 
evaluated the performance of ANFIS using CS for optimization of controlling 
traffic signals for an isolated intersection [70]. Improved performance of ANFIS-CS 
was obtained against fixed-time controller.

4.5 Bat algorithm (BA)

Bat algorithm (BA), initially developed by Xin-she yang in 2010, is inspired by 
the echolocation of microbats [99]. The working principle of BA encompasses three 
basic steps: bats use echolocation to sense the distance bifurcating the food and 
barrier; bats randomly fly with variable loudness and wavelength.; bats automati-
cally adjust their wavelength and pulse depending upon the proximity of food/
prey [100].

Srivastava, Sahana used BA to determine the wait time at a traffic signal for 
the discrete microscopic model [66]. The study was based on 12 nodes and four 
intersections. The results were compared to GA. Relatively higher performance was 
obtained for BA algorithm as compared to GA. Jintamuttha et al. carried experi-
mental simulation for the green time of intersection for ten cycles per run [62]. The 
results of the experiment were optimized using BA. The average queue length and 
waiting time improved due to optimization.

4.6 Artificial immune system (AIS)/immune network algorithm (INA)

The immune network algorithm (INA) or artificial immune system (AIS) is 
another useful optimization algorithm recently practiced for signal control optimi-
zation problems. As its name suggests, the working mechanism of this algorithm 
is inspired by the biological immune system. Immune cells have receptors that can 
detect harmful pathogens and activate antibodies to fight them, leading to their 
elimination [101]. Louati et al. applied INA to optimize queue, delay, and traf-
fic throughput at signalized intersections under varying traffic demands [75]. It 
was found that INA outperformed traditional fixed-time adaptive traffic control 
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strategies and validated the study results through VISSIM, a microscopic traffic 
simulation platform. In another study, Trabelsi et al. evaluated the performance of 
AIS to detect and rationally control anomalous traffic conditions through a network 
of signalized intersections [58]. Simulation results proved the adequacy and robust-
ness of the proposed AIS-based signal control method.

Darmoul et al. employed multi-agent immune network (INAMAS) for optimal 
control and management of interrupted traffic flow at signalized intersections 
[102]. The proposed INAMAS models offered an intelligent mechanism that could 
explicitly capture the disturbance-related knowledge of traffic fluctuations. To 
demonstrate the efficacy of the proposed model, the authors compared its perfor-
mance against two widely used signal control strategies, namely fixed-time control 
and LQF-MWM (longest queue first –maximal weight matching) algorithm. The 
suggested INAMAS scheme provided a competitive performance in terms of chosen 
performance indicators, i.e., vehicle queue and waiting times under extreme traffic 
conditions involving high traffic volume and block approaches. Figure 6a plots the 
average vehicle delay for all the three signal control strategies under various traffic 
scenarios [102]. For scenario 1 (moderate traffic congestion), the INAMAS algo-
rithm produces approximately a 24% reduction in average delay values compared 
to the LQF-MWM strategy. For scenario 2 (high-density traffic), the proposed 
INAMAS optimizer decreased the average delay by nearly 32%. For scenario 3 
(extreme congestion), the corresponding improvement by the INAMAS algorithm 
is about 28%. Figure 6b depicts the relationship between the total network delay 
and simulation time (in minutes) for all three signal optimization strategies [102]. 
It is evident from the results in Figure 6b that during the first 5 minutes, all the 
controllers have comparable performance. At the end of simulation analysis (after 
5 hours), when the traffic density reaches 9600 vehicles per hour, the INAMAS 
controller achieved better performance compared to others, showing its superior 
capability to manage large and complex traffic networks.

Moalla et al., in their study, also demonstrated the robustness of AIS for control-
ling traffic at isolated signalized intersections [103]. However, the authors also 
emphasized that validation of the proposed AIS scheme is challenging and should 
be handled carefully. In another study, the author highlighted AIS-based traffic 
control’s significance for network-wide traffic management [104]. Comparative 
results with TRANSYT 7F showed the superior performance of AIS approach. 
Galvan-Correa et al. proposed a new metaheuristic known as the micro artificial 

Figure 6. 
(a) Comparison of average total delay per vehicle from various optimizers (b) cumulative network delay for 
scenario 1 for various optimizers Ref. [102].
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immune systems (MAIS) to optimize vehicular emission and traffic flow in the city 
of Mexico [105]. The performance of the suggested MAIS technique was compared 
with several other metaheuristics, including GA, DE, SA, PSO. Results showed 
that MAIS achieved better results compared to most of the other metaheuristics. 
In a recent study, Qiao et al. proposed a novel hybrid algorithm, known as the 
Immune-Fireworks algorithm (IM-FWA) for effective traffic management on 
large-scale urban transportation networks [106]. The proposed hybrid algorithm 
was developed based on fireworks and artificial immune algorithms. A hierarchi-
cal strategy was proposed in the framework to avoid possible offsets conflicts and 
reasonable configuration of intersection offsets. Simulation results showed that the 
proposed IM-FWA could successfully overcome the shortcomings of FWA and AIS 
algorithms by providing a better and more rational signal timing plan to effectively 
reduce traffic flow delays.

4.7 Firefly algorithm (FA)

The characteristic behavior of fireflies is animated by Yang [107] into a nature-
inspired meta-heuristic swarm intelligent method called Bat Algorithm. In BA, all 
fireflies are assumed unisex, and attractiveness is proportional to their brightness, 
which in turn depends on the distance. Thus, the brightness can be considered a 
cost function, which is maximized in optimization.

Kwiecień, Filipowicz [studied optimizing costs controlled by queue capacity, 
maximal wait, and servers [76]. It was deduced that the use of FA could maximize 
the value of the objective function, and FA converges toward the optimal solution 
very quickly. Goudarzi et al. [108] investigated traffic flow volume by a probabilistic 
neural network method called deep belief network (DBN). FA was used to optimize 
the learning parameters of DBN. As a result, the proposed model predicted the 
traffic flow with higher accuracy compared to traditional models.

4.8 Gray wolf optimizer (GWO)

Gray wolf optimizer (GWO) is a new metaheuristic technique recently proposed 
by Mirjalili in 2014 [109]. GWO is inspired by the social hierarchy and hunting 
behavior of gray wolves. In GWO optimization, the wolves represent a solution set 
of candidate solutions. The hunting cycle in the GWO commences with the acquisi-
tion of a random population of candidate solutions (wolves) followed by identify-
ing optimal prey’s locations using a cyclic process. GWO has several advantages 
compared with evolutionary approaches, easy programming and implementation, 
algorithm simplicity, no need for algorithm-specific parameters, and lower com-
putational complexity [110]. In recent years, GWO has been increasingly used 
in diverse disciplines. However, studies on its applications in transportation and 
traffic engineering in general and traffic control and optimization in particular are 
very few.

Teng et al. were the first to use a hybrid gray wolf and grasshopper algorithm 
(GWGHA) algorithm for timing optimization of traffic lights [111]. The obtained 
solutions were simulated in a microscopic traffic simulator package SUMO. The 
performance of the proposed GWGHA hybrid algorithm was compared with 
other metaheuristics like GWO, GOA, PSO, and SPSO2011. Results indicated that 
the proposed hybrid algorithm provided better solutions than its counterparts 
because it utilizes the feature of GWO for accelerating the convergence speed while 
using GOA to diversify the population. In another recent study, Sabry and Kaittan 
proposed a novel hybrid algorithm consisting of gray wolf and fuzzy proportional-
integral (GW-FPI) for active vehicle queue management in an urban context [59]. 
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The proposed traffic controller was compared with PI through repeated MATLAB 
simulations. Study results indicated the stable and robust performance of the 
proposed hybrid controller for queue management in a dynamic transport network 
with varying traffic flow demands.

5. Review of trajectory-based metaheuristics for TSC

This section surveys the previous works that applied trajectory-based meta-
heuristics techniques) for traffic signal control and optimization. As the name 
suggests, these algorithms form search trajectories in solution space and iteratively 
improve the single solution in its neighborhood. Their exploration process starts 
from a random initial solution generated by another algorithm. At each stage, 
the current solution is replaced by a better offspring population. Trajector-based 
metaheuristics are mainly characterized by their internal memory sorting the state 
of search, candidate solution generator, and selection policy for candidate move-
ment through generations. Table 3 summarizes the previous works that applied 
trajectory-based search metaheuristics, hybrid metaheuristics, and others for traffic 
signal control and optimization.

5.1 Tabu search for signal control optimization

Tabu Search (TS) is a metaheuristic introduced by Fred Glover in 1986 to 
overcome the local search (LS) problem of existing methods [123]. TS allows the LS 
heuristic to diversify the search for solution space outside the local optima [124]. 
One of the important features of TS is its memory function, which can restrict few 
search directions for a more detailed LS, thereby making it easier to avoid local 
optimum solutions. By combining the greedy concept and randomization, the TS 
algorithm could provide an efficient solution to many optimization problems. In 
literature, only a few studies have focused on the application of Tabu search for 
signal control optimization. Hu and Chen proposed traffic signal control based on 
a novel greedy randomized tabu search (GRTS) algorithm considering travel time 
as the primary optimization objective [118]. GRTS results were compared with a 
GA-based traffic control scheme using data from a real city network to demonstrate 
the benefits of the proposed method. Numerical simulation results revealed that 
over 25% reduction in travel time might be achieved under medium to high traffic 
demands. In another study, Karoonsoontawong and Woller applied reactive tabu 
search (RTS) for simultaneous solutions of traffic signal optimization and dynamic 
user equilibrium problems on two transport networks in a simulated environment 
[119]. Three different variants of RTS were investigated based on deterministic 
or probabilistic neighborhood definitions. The performance of all the RTS vari-
ants was evaluated using three criteria such as solution quality, CPU time, and 
convergence speed. Simulation results showed that the RTS approach could provide 
promising results in terms of improving the overall network performance.

In a recent study, Hao et al. proposed a hybrid tabu search-artificial bee colony 
(TS-ABC) algorithm for robust optimization of signal control parameters in 
undersaturated traffic conditions at isolated signalized intersections [68]. This 
study considered two performance indexes such as average delay and mean-square 
error of average delay. The proposed signal control optimizer was validated using 
field data from an intersection in the city of Zhangye, China. Numerical simulation 
results compared with GA showed that the proposed TS-ABC is better in reducing 
the traffic delay under varying and heterogeneous traffic conditions. Chentoufi and 
Ellaia also proposed a hybrid particle swarm and tabu search (PSO-TS) for adaptive 
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S.No Metaheuristic Used Optimization Objectives Reference

Delay Stops throughput Travel time Queue Emissions Fuel Consumption

1 SA-GA ✓ [112]

2 IM-FWA ✓ [106]

3 ISA-GA ✓ [113]

4 SA ✓ ✓ [114]

5 HS ✓ [115]

6 HS ✓ ✓ ✓ [116]

7 JAYA ✓ [117]

8 TS ✓ [118]

9 TS-ABC ✓ [68]

10 TS ✓ [119]

11 PSO-TS ✓ [120]

12 WCO ✓ [121]

13 GHW-GHA ✓ ✓ [111]

14 JAYA ✓ [122]

15 GW-FPI ✓ [59]

Table 3. 
Summary of previous studies on traffic signal optimization using trajectory-based metaheuristics, hybrid metaheuristics, and others.
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traffic lights timing optimization on real-time isolated signalized intersections in 
the context of Moroccan cities [120]. The authors also highlighted the significance 
of integrating the proposed PSO-TS model and VISSIM to achieve optimum aver-
age delay estimates. Simulation results demonstrated the superior efficiency of the 
PSO-TS technique against the traditional static models under oversaturated traffic 
conditions.

5.2 Simulated annealing (SA)

Simulated Annealing (SA), developed by Kirkpatrick et al. is inspired by the 
statistical mechanics of annealing in solids [125]. For understanding, consider a 
change in temperature, which causes a change in energy and movement of particles 
in solids. There is a sequence of decreasing temperature in annealing until criteria 
are met [126].

Li, Schonfeld [112] reported traffic signal time optimization using metaheuris-
tic capabilities of SA with GA. It was concluded that SA-GA models outperform 
in optimization compared to individual SA and GA models. Similar results were 
reported by Song et al. in evaluating the optimized model for reducing traffic emis-
sions on arterial roads [113]. Oda et al. [114] employed SA to optimize traffic signal 
timing and reported its improved performance as compared to traditional models.

6. Other metaheuristics for TSC

This section reviews the previous works that applied some other metaheuristics 
for traffic signal control and optimization. These include the harmony search algo-
rithm, water cycle algorithm, and Jaya algorithm. Table 3 summarizes the previous 
works that applied trajectory-based search metaheuristics, hybrid metaheuristics, 
and others for traffic signal control and optimization.

6.1 Harmony search (HS)

The metaheuristic harmony search (HS) algorithm simulates the natural musical 
improvisation process where the musicians aim to achieve a near-perfect state of 
harmony [127]. In the HS algorithm, the candidate solution population is known as 
harmony memory (HM), where every single solution in solution space is referred 
to as “harmony,” which belongs to the “n”-dimensional vector. Though HS has been 
successfully used for numerous applications across diverse domains, its applications 
for signal control optimization are limited. In a recent study, Gao et al. applied to 
HS in addition to four others metaheuristics for traffic signal scheduling (TSS) 
problems [121]. Experiments were conducted on real-time data from signalized 
intersections in Singapore to examine the performance of proposed metaheuristics. 
The authors considered heterogeneous traffic conditions. Simulation results proved 
the adequacy of all algorithms; however, the hybrid algorithm (ABC-LS) outper-
formed other techniques in terms of solution quality.

In another study, Ceylan and Ceylan adopted a hybrid harmony search algorithm 
and TRANSYT hill-climbing algorithm (HSHC-TRANS) for solving stochastic equi-
librium network design (SEQND) in the context of optimal traffic signal setting 
problems [128]. The effectiveness of HSHC-TRANS was evaluated against HS and 
GA in terms of network performance index (PI). Results showed that the proposed 
hybrid model yielded about 11% in the network’s PI compared to the GA-based 
model. In another study, Gao et al. addressed the urban traffic signal schedul-
ing problem (TSSP) using a discrete harmony search (DHS) with an ensemble 
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of local search [115]. The primary objective was to minimize the network-wide 
total delay under a pre-defined finite horizon. Extensive simulation experiments 
were carried out using traffic data from a partial transport network in Singapore. 
Comparative analysis showed that the HS algorithm as a meta-heuristic achieved 
better performance compared to fixed-cycle traffic signal control (FCSC). Dellorco 
et al. also investigated the applicability of HS for signal control optimization on the 
two-junction network with the fixed flow on the links [116]. A comparative analysis 
of HS with GA and HC algorithms showed that HS resulted in a better network’s PI 
compared to its counterparts. Afterward, the validity of the proposed HS algorithm 
was assessed by applying it to a test network.

6.2 Jaya algorithm

The Jaya algorithm is a recently proposed metaheuristic initially introduced by 
R.V. Rao [129]. The word Jaya comes from Sanskrit, which means “victory.” In the 
Jaya algorithm, the search strategy always attempts to be victorious by reaching 
the optimal and best solution, and thus it is named “Jaya.” It is arguably one of 
the simplest and easy-to-implement metaheuristics. The main benefit of Jaya for 
optimization problems lies in the fact that this algorithm requires only common 
controlling parameters such as population size and the number of iterations and 
does not require any additional algorithm-specific constraints/parameters. While 
this algorithm has been successfully used for several scheduling and optimization 
problems in recent years, its applications in the domain of traffic scheduling and 
management are relatively scarce.

A recent study conducted by Gao et al. compared the performance of Jaya 
algorithms with other metaheuristics (like water cycle algorithm (WCO), genetic 
algorithm (GA), artificial bee colony, and harmony search (HS), and hybrid ABC-LS) 
for solving traffic light scheduling problem [121]. Simulation results showed all the 
algorithms achieved competitive results; however, the hybrid algorithm attained 
better accuracy and convergence. The proposed models were also tested on real-time 
traffic and phase data from a network of intersections in the Jurong area of Singapore. 
In another study, the authors proposed an improved Jaya algorithm for solving traffic 
light optimization problems in the context of large-scale urban transport networks 
[122]. The chosen performance index was to minimize the network-wide total traffic 
delay within a given time horizon. To enhance the search performance in the local 
search space, a neighborhood search operator was proposed. Experiments were 
carried out using traffic data for a case study from the Singapore transport network. 
Study results demonstrated the robustness and better performance of proposed 
improved Jaya algorithms against standard Jaya algorithm and exiting traffic light 
control scheme. In another follow-up study, Gao et al. studied large-scale urban traffic 
lights scheduling problems using three different metaheuristics, namely Jaya, WCO, 
and HS [117]. The objective function was to optimize the delay time of all vehicles 
network-wise under a fixed time horizon. This study also proposed a feature search 
operator (FSO) to improve the search performance of proposed metaheuristics. 
To examine the efficacy of proposed methods, experiments were carried out using 
real-time traffic data. It was concluded that metaheuristic-based traffic control could 
significantly improve the network performance compared to existing traffic control 
strategies. Numerical simulation results showed that in comparison to feature-based 
search (FBS), operator for all algorithms improved the total vehicle delay time by 
more than 26% in their worst case scenarios.

Figure 7a depicts the relationships between total network delay time (sec) 
and sampling intervals for a typical urban traffic network with 100 junctions 
from the west Jurong area in Singapore [117]. Minimum (min.), average (avg.) 
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and maximum (max.) total delay values each for 30 repeats and five sampling 
intervals (5, 10, 15, 20, and 30 sec) are reported. It is evident from the results that 
a sampling period of 15 seconds yielded the best results, which were then adopted 
for subsequent experiments. Figure 7b shows the relative percentage improvement 
in network performance (reduction in network delay) for standard Jaya algorithm 
with improved Jaya (iJaya), and Jaya with FBS operator (iJaya+FBS) for a sample 11 
cases of traffic network from the same study [117]. Compared to standard Jaya, the 
iJaya yielded the improvements in range for 0–6% for min., avg., and max. Results, 
while iJaya+FBS algorithm resulted in corresponding improvement values between 
9 and 11%. Figure 7c depicts the percentage improvement of IWCA and IWCA+FBS 
algorithms relative to standard WCA optimizer. The IWCA improved the standard 
WCA in terms of min., avg., and max. Results for 11 test cases in the range of 2–8%, 
while the corresponding improvement for IWCA+FBS algorithm is approximately 
20–24%. Figure 7d shows the network performance improvement of standard 
HS and HS + FBS algorithms for the same network of traffic junctions [117]. The 
improvement for HS + FBS algorithm compared to standard HS optimizer are 
between 2 and 12% for min., avg., and max. Results for the considered cases.

Figure 8 presents the graphical comparison among the three optimization 
algorithms (iJaya+FBS, IWCA+FBS, and HS + FBS) in terms of the average relative 
percentage deviation (ARPD) of the resulting network delay time values [117]. It is 
clear from the results that the IWCA+FBS algorithm with an average delay reduc-
tion of 28.54% outperformed the iJaya+FBS and HS + FBS having the correspond-
ing values of 28.22% and 27.84%, respectively. Further, all the algorithms yielded an 
improvement of at least 26% in the worst-case scenarios.

Figure 7. 
(a) Results comparison with different sampling times for network of 100 junctions, (b) the % improvement of 
iJaya and iJaya+FBS with standard Jaya, (c) the % improvement IWCA and IWCA+FBS with standard Jaya, 
(d) the % improvement HS + FBS and standard HS. Ref. [117].
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6.3 Water cycle algorithm (WCA)

The water cycle algorithm (WCA) is another recently proposed metaheuristic 
whose search mechanism is inspired by the natural water cycle process, where 
streams and rivers flow down the hill to reach the sea [130]. The surface run-off 
model is imitated in WCA for updating the current candidate solutions and the gen-
eration of new offspring. The effectiveness of WCA has been explored for various 
applications such as truss structures, constrained and unconstrained engineering 
design problems [130–133]. However, very few studies have used WCO for traffic 
control, management, and optimization.

A recent study by Gao et al. proposed the application WCO for traffic signal 
scheduling and optimization based on actual traffic data from a case study in 
Singapore [121]. WCO was compared with four other metaheuristics and a 
hybrid algorithm (ABC-LS), considering the network delay as the main optimi-
zation objective. Numerical simulation results proved the benefits of adopting 
metaheuristic-based traffic control strategies instead of existing fixed traffic light 
schemes. In another study, Gao et al. compared WCO with the Jaya algorithm and 
Harmony search using the field traffic data from the same transportation network. 
The performance metric minimized the network-wide total traffic delay within 
a given time horizon [117]. The study proposed a neighborhood search opera-
tor to enhance the search performance of all the algorithms in the local search 
space. Study results showed that WCA, with an average better improvement of 
in network-wide delay (28.54%), outperformed HS (28.22%) and Jaya algorithm 
(27.84%).

7. Conclusions, current challenges, and future research directions

Traffic control and management using metaheuristics have emerged as an effec-
tive solution to mitigate urban congestion. This study provided a comprehensive 
review of state-of-art research on traffic signal optimization using different meta-
heuristics approaches. The surveyed literature is categorized based on the nature 
of applied metaheuristics, i.e., swarm intelligence (SI) techniques, evolutionary 

Figure 8. 
ARPD improvements comparison for different optimizers. Reprinted with permission from Ref. [117] copyright 
(2021), Elsevier Ltd.
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algorithms, trajectory-based metaheuristics, and others. Although numerous 
metaheuristics have been employed for signal optimization, GA, PSO, ACO, and 
ABC algorithms have been widely explored. Various traffic signal parameters such 
as cycle length, green splits, offsets, and phasing sequence are considered decision 
variables to solve signal control optimization problems. Similarly, studies have 
considered several optimization objectives such as delay, number of stops, travel 
time, throughput, queue, fuel consumption, exhaust emissions to address the prob-
lem. Some studies have adopted single-objective optimization, while others have 
attempted to solve traffic signal control as a multi-objective optimization problem. 
However, little work has been done to understand the correlations between the 
conflicting objectives which is vital for traffic engineers and decision-makers to 
evaluate their relative importance. Based on the presented survey work, the follow-
ing passages present key challenges, research gaps, and future research directions in 
this area.

• The review has shown that most of the previous works have adopted a single 
metaheuristic method for TSC optimization. However, very few studies have 
investigated the applicability of hybrid or ensemble metaheuristics for solving 
TSC optimization problems. In general, hybrid techniques are more useful 
than traditional metaheuristics. Hence, the application of hybrid metaheuris-
tics for signal optimization could be a promising research direction.

• Traditional evolutionary algorithms and swarm intelligence optimizers could 
yield acceptable solutions. However, the performance of these optimiza-
tion techniques may be compared with recent state-of-the-art optimiza-
tion approaches such as Teaching Learning Based Optimization Algorithm 
(TLBOA), Gravitational Search Algorithms (GSA), Rock Hyraxes Swarm 
Optimization (RHSO), hyper-heuristics, which are not explored yet for traffic 
signal optimization problems.

• The literature review also noted that most previous studies were focused on 
single-objective optimization; however, traffic engineers often have to deal 
with multiple conflicting objectives to optimize the performance at the net-
work level. Alternatively, for multiobjective optimization, the vast majority 
of existing works introduce weights for different objectives and consequently 
tackle signal optimization as a signal objective optimization problem. To 
optimize different performance indicators along optimal paretofront, multiple 
objectives have to be properly optimized. Developing an optimizer for multi-
objective scenarios remains a challenging issue and is worth exploring in future 
studies.

• Objective functions based on energy consumption and exhaust emissions 
have become a topic of increasing interest in recent years. From the reviewed 
literature, it was concluded that various approximate fuel consumptions and 
emission models were used for signal control optimization. Application of such 
approximate models could lead to an un-realistic traffic light setting. Future 
studies should consider the calibration of fuel consumption and emission 
models for a given network.

• It was also evident from the presented literature that there is a shortage of 
research on statistical performance evaluation of proposed metaheuristics. 
Therefore, it would be interesting to explore the statistical analysis of such 
optimization strategies in terms of worst, average, and best results. Likewise, 
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statistical significance tests may be conducted to compare the performance 
among various metaheuristics in solving signal optimization problems.

• Lack of appropriate validation protocol is another important issue. Some stud-
ies have employed mere traffic simulation platforms to assess the validity of 
applied metaheuristics, while others have used them for isolated intersection 
scenarios or small traffic networks. Network optimization has become popular 
in recent years. For achieving desired improvements at the network level, the 
methods should be tested for large-scale complex transportation networks.

• The surveyed literature also indicated that most previous studies considered 
only vehicular traffic and neglected the pedestrian traffic in solving the TSC 
problem using metaheuristics. It is important to consider all forms of traffic 
and driving systems to improve the overall efficiency of the transport system.

• The surveyed literature also revealed that many studies develop metaheuristic-
based traffic control considering specific traffic demand conditions, neglect-
ing the other potential scenarios. It is essential to consider all ranges of traffic 
flow conditions (undersaturated, saturated, and oversaturated flow condi-
tions) and traffic disturbances in developing metaheuristic to address TSC 
optimization problems.

• The accuracy and reliability of the signal timing plan obtained using meta-
heuristics are highly dependent on the accuracy of traffic flow prediction 
models. In recent years, with rapid advances in computational power, big data 
technology has been successfully used for accurate traffic flow prediction. 
Therefore, the application of metaheuristics coupled with big data technol-
ogy for traffic signal optimization appears to be another interesting research 
direction.
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