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Chapter

Reconstruction of Graphs
Sivaramakrishnan Monikandan

Abstract

A graph is reconstructible if it is determined up to isomorphism from the col-
lection of all its one-vertex deleted unlabeled subgraphs. One of the foremost
unsolved problems in Graph Theory is the Reconstruction Conjecture, which asserts
that every graph G on at least three vertices is reconstructible. In 1980’s, tremen-
dous work was done and many significant results have been produced on the
problem and its variations. During the last three decades, work on it has slowed
down gradually. P. J. Kelly (1957) first noted that trees are reconstructible; but the
proof is quite lengthy. A short proof, due to Greenwell and Hemminger (1973), was
given which is based on a simple, but powerful, counting theorem. This chapter
deals with the counting theorem and its subsequent applications; also it ends up
with a reduction of the Reconstruction Conjecture using distance and connected-
ness, which may lead to the final solution of the conjecture.

Keywords: Reconstruction, Counting Theorem, Tree, Diameter, 2-connected

1. Introduction

Probably the foremost unsolved problem in Graph Theory is Ulam’s Conjecture.
This problem is due to P.J. Kelly and S.M. Ulam. Kelly’s Ph.D thesis [1] written
under S.M.Ulam in 1942 dealt with this. Ulam proposed it as a set theory problem in
his famous book “A Collection of Mathematical Problems” [2].

This is how Ulam’s problem was originally stated [2]:
Suppose that E and F are two sets, each containing m elements such that there is

defined a distance function μ for every pair of distinct points, with values either 1 or
2, and μ p, pð Þ ¼ 0. If, for every subset of n� 1 points of E, there exists an isometric
system of m� 1 points of F and the number of distinct subsets isometric to any
given subset of m� 1 points is the same in E and in F, then does E and F isometric?

There are many restatements of Ulam’s original conjecture, each dealing with
another way of talking about sets. Kelly [3] has given the graph theoretic version of
this problem as below and solved it for trees and disconnected graphs, and verified
it for graphs on up to six vertices.

Theorem 1.1. (Ulam Conjecture).
Let G and H be graphs with V Gð Þ ¼ v1, v2,⋯, vn and for n≥ 3. If G� vi ffi

H � ui, for all then G ffi H.
Many graph theorists have found other ways to restate the Ulam Conjecture. But

the current version of this problem, popularly known as the Reconstruction Con-
jecture is the one formulated by Frank Harary [4].

Theorem 1.2. (Reconstruction Conjecture).
Every graph on at least three vertices is uniquely determined up to isomorphism

by the collection of its one vertex-deleted subgraphs.
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Graphs obeying the above conjecture are said to be reconstructible. Many classes
of graphs and some parameters of graphs are already proved to be reconstructible.
The papers [5, 6] and the book [7] deal with earlier work done on this problem. P. J.
Kelly first proved that trees are reconstructible; but the proof is quite lengthy. A
short proof was given by Greenwell and Hemminger using a powerful but simple
counting theorem. This chapter deals with the counting theorem and its subsequent
applications; also it ends up with a reduction of the Reconstruction Conjecture using
distance and connectedness, which may lead to the final solution of the conjecture.

2. Reconstructible parameters and graphs

A vertex-deleted subgraph of a graph G, is called a card of G. The collection of
all cards of G is called the deck of G and is denoted by D Gð Þ.

Note that the graphs in the deck are unlabelled and, if G contains isomorphic
vertex-deleted subgraphs, then such subgraphs are repeated in D Gð Þ according to
the number of isomorphic subgraphs that G contains. Therefore D Gð Þ is a multiset,
rather than a set, of isomorphism type of graphs.

Figure 1 shows an example of a graph and its deck.
A graph H with deck D Hð Þ ¼ D Gð Þ is called a reconstruction of G. If every

reconstruction of G is isomorphic to G, then G is said to be reconstructible. A graph
that is not reconstructible is given by G ffi K2 because, if H is the graph consisting of
two isolated vertices, then clearly H is a reconstruction of G but it is not isomorphic
to G. A property p defined on a class F of graphs is called a recognizable property if
p Gð Þ ¼ p Hð Þ whenever G∈F and H is a reconstruction of G: A class C of graphs is
said to be recognizable if for all graphs G in C, any reconstruction of G must be in C.
A parameter θ ¼ θ Gð Þ is said to be reconstructible if for all reconstructions H of G,
θ Hð Þ ¼ θ Gð Þ. In other words θ Gð Þ is reconstructible if it can be determined uniquely
from the deck of G: A class C of graphs is said to be reconstructible if every graph in C
is reconstructible. A class C of graphs is said to be weakly reconstructible if for all
graphs G in C, any graph in C that is a reconstruction of G is isomorphic to G:

Theorem 1.3. If G is a p, qð Þ-graph with p≥ 3, then p and q are reconstructible.
Proof. It is trivial to determine the number p, which is necessarily one greater

than the order of any subgraph G� v. Also, p is equal to the number of
subgraphs G� v: To determine q, label these subgraphs by Gi, i ¼ 1, 2, … p, and
suppose Gi ffi G� vi, where vi ∈V Gð Þ: Let qi denote the size of Gi. Consider an
arbitrary edge e of G, say e ¼ v jvk. Then e belongs to p� 2 of the subgraphs Gi,
namely all except G j and Gk.

Figure 1.
Graph and its deck.
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Hence,

X

p

i¼1

qi

counts each edge p� 2 times. That is,

X

p

i¼1

qi ¼ p� 2ð Þq

Therefore,

q ¼

Pp
i¼1qi

p� 2

Corollary 1.4. Given a graph G� v in the deck of G ¼ p, qð Þ, the degree of v and
the degrees of the neighbors of v in G are reconstructible.

Proof. The degree of v in G is simply q� E G� vð Þj j, and this is reconstructible
since q is. Therefore d, the degree sequence in nondecreasing order of G, is
reconstructible.

Let d0 be the degree sequence of G� v but with the degree of v inserted in its

correct position. The nonzero entries of the vector difference d� d0 occur in posi-
tions corresponding to neighbors of v in G, and their degrees can be read off from d:

Example 1.5.We illustrate Theorem 1.3 and Corollary 1.4 with the six subgraphs
G� v shown in Figure 2 of some unspecified graph G. From these subgraphs
we determine p,q, and degvi for i ¼ 1, 2, :::6. Clearly p ¼ 6. By calculating the

Figure 2.
Deck of the graph G.
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qi, i ¼ 1, 2, :::6, we find that q ¼ 9. Thus, degv1 ¼ degv2 ¼ 2, degv3 ¼ degv4 ¼ 3, and
degv5 ¼ degv6 ¼ 4.

Theorem 1.6. The connectivity κ Gð Þ of a graph G is reconstructible.
Proof. A graph G is disconnected if and only if κ Gð Þ ¼ 0. If G is connected and

let κ Gð Þ = k ≥ 1ð Þ. Then there exists a set of k-vertices, say v1, v2, … , vk in V Gð Þ such
that G� v1, v2, … vkf g is disconnected and the removal of any set of fewer than k-
vertices from G do not separable G: It follows that κ G� við Þ ¼ k� 1 for i ¼
1, 2, … , k and κ G� vð Þ≥ k� 1 for v∈V Gð Þ ¼ v1, v2, … , vkf g. Hence for a connected
graph G, κ Gð Þ � min

v∈V Gð Þ
κ G� vð Þ þ 1. Since the R.H.S. of the above equation is known

from the deck of G, κ Gð Þ is reconstructible.

Theorem 1.7. If a graph G is reconstructible, then the complement G of G is
reconstructible.

Proof. Let G� v1,G� v2, … ,G� vn
� �

be the given deck of G: Then

G� v1,G� v1, … ,G� vn
n o

¼ G� v1,G� v2, … ,G� vnf g: Therefore, D Gð Þ is

known. Since G is reconstructible, G can be obtained uniquely (up to isomorphism)

from D Gð Þ Hence G and so G is known. That is, G is reconstructible.
Theorem 1.8. Regular graphs are reconstructible.
Proof. From the deck of G, the degree sequence is reconstructible. Therefore, from

D Gð Þ it can be determined whetherG is regular and if it is, its degree r is reconstructible.
Thus without loss of generality, we may assume that G is an r�regular graph

with V Gð Þ ¼ v1, v2, … , vp, p≥ 3. Take any G� vi in the deck. The only way to
reconstruct a regular graph of degree r from G� vi is to add a new vertex vi joining
it to all the vertices of degree d� 1 in G� v. Hence G is uniquely reconstructible.

Theorem 1.9. For graphs of order at least 3, connectedness is a recognizable
property. In particular, if G is a graph with V Gð Þ ¼ v1, v2, … , vp, p≥ 3, then G is
connected if and only if at least two of the subgraphs G� vi are connected.

Proof. Let G be a connected graph. By theorem G contains at least two vertices
that are not cut-vertices. Let v1 and v2 be two vertices that are not cut-vertices.
Then, clearly G� v1 and G� v2 are connected.

Conversely, assume that there exists vertices v1, v2 ∈V Gð Þ such that both G� v1
and G� v2 are connected. Thus, in G� v1 and also in G, vertex v2 is connected to
vi, i≥ 3. Moreover, v1 is connected to each vi, i≥ 3 in G� v2 and thus in G. Hence
every pair of vertices of G are connected and so G is connected.

Remark 1.10. Since connectedness is a recognizable property, it is possible to
determine from the subgraphs G� v, v∈V Gð Þ, whether a graph G of order at least 3
is disconnected.

Theorem 1.11. Disconnected graphs of order at least 3 are reconstructible.
Proof.We have already noted that disconnectedness in graphs of order at least 3

is a recognizable property. Thus, we assume without loss of generality that G is a
disconnected graph with V Gð Þ ¼ v1, v2, … vp, p≥ 3. Further, let Gi ¼ G� vi for i ¼
1, 2, … p. Hence, if G contains an isolated vertex, then G is reconstructible. Assume
that G has no isolated vertices. Among all the components of all the graphs in D Gð Þ,
let C be one with maximal number of vertices. Then C must be a component of G.
Let v0 be a vertex of C that is not a cut vertex. Consider all graphs in D Gð Þ that have
the least number of components isomorphic to C. Among these, let G� v be the one
with the largest number of components isomorphic to C ¼ v0. Then the only way to
form G from G� v is by replacing one component C� v0 by C.

Theorem 1.12. Separable graphs G without end vertices are reconstructible.
Proof. If the given deck of G contains two connectred cards and one discon-

nected cards, then G must be connected and containing a cut vertex and so it
separable. Therefore, since the degree sequence of a graph is reconstructible, the
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class of all separable graphs without end vertices is recognizable. Throughout this
proof, blocks mean rooted blocks where roots are the cut vertices of the graph that
are in the blocks. The largest end blocks of G are identified as the the largest end
blocks in all cards G� v: Let B be the one of the largest end blocks of G and the
unique cut vertex in B is indicated in that card G� v: If any non-cut vertex w of B is
deleted from B, then new rooted blocks are produced. Suppose that among the
blocks so produced B1 is the largest, B2 the next largest (or another largest) and so
on. Among all such vertex-deletions B� w, some of them must produce a maxi-
mum number, say k1 of B1‘s. Among all those vertex-deletions B� w producing k1 of
B1‘s, some of them must produce a maximum number, say k2 of B2‘s, and so forth.

Now consider a card G� u showing a minimum number of blocks B, and a
maximum number of blocks B1, B2, and so forth (in that order), all with roots as
marked. Then the card G� u will show all blocks of G, except for one B, plus k1
B1‘s, k2 B2‘s, and so forth. Thus we can find all end blocks of G, with cut vertices
marked. Let D be some smallest end block of G:Now choose a connected card G� v
in which there is a smaller number of end blocks D than in G: Then G� vmust have
resulted from deletion of a vertex from D: Since G has no end vertices, the leftovers
D� v is a nontrivial subgraph of G: That leftovers can be identified by considering
first the smallest connected subgraph, say D0 of G� v containing all end blocks
smaller than D: If D0 has ∣D∣� 1 vertices, it is the leftovers of D: Otherwise, add to
D0 the (unique) block which joins it to the rest of G: Continue adding blocks in that
way until the resulting subgraph B contains ∣D∣� 1 vertices. Then G can be recov-
ered by replacing B by D, using the same cut vertex of attachment. Hence G is
reconstructible.

Definition 1.13. For graphs F and G we denote by s F,Gð Þ the number of non-
identical subgraphs F0 of G such that V F0ð Þ⊆V Gð Þ,E F0ð Þ⊆E Gð Þ and F0 ffi F.

In his thesis [1], Paul J. Kelly proved that for any two graphs F and G with
V Fð Þj j< V Gð Þj j, the number of subgraphs of G isomorphic to F is reconstructible
from the deck of G: Greenwell extended this result as follows: Let P denote a
graphical property. If F is a subgraph of G having property P, then the number of
subgraphs of G that are isomorphic to F and maximal with respect to property P is
reconstructible from the deck of G:

Theorem 1.14. (Kelly’s Lemma) Let F and G be graphs of orders p1 and p
respectively, where p1 < p. Then the number s F,Gð Þ is recognizable from the sub-
graphs G� v, v∈V Gð Þ.

Proof. Each subgraph of G isomorphic to F occurs in exactly p� p1 subgraphs
G� v, v∈V Gð Þ. Therefore,

p� p1
� �

s F,Gð Þ ¼
X

v∈V Gð Þ

s F,G� vð Þ

Since the numerator of the right hand side of this equation is recognizable and p
and p1 are known, s F,Gð Þ is recognizable. Also,

s F,Gð Þ ¼

P

v∈V Gð Þ

p� p1

3. Counting theorem

Let P denote a graphical property (such as being connected, being n-connected
for some n≥ 2 or being planar, for example).Let G be a given graph, and let F be a
graph such that F has property P and F⊂G, that is, s F,Gð Þ≥ 1. By an F,Gð Þ�chain
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with respect to P,we mean a sequence of pairwise nonisomorphic subgraphs of G
such that each subgraph has property P and

F ffi F0 ⊂F1 ⊂F2 ⊂⋯⊂ Fn ⊂G

where V F0ð Þ⊆V F1ð Þ⊆⋯⊆V Fnð Þ⊆V Gð Þ and E F0ð Þ⊆E F1ð Þ⊆⋯⊆E Fnð Þ⊆E Gð Þ.
The chain F0, F1, F2,⋯, Fnð Þ is said to have length n. Two F,Gð Þ�chains with

respect to a property P are called isomorphic if they have the same length and
corresponding terms are isomorphic graphs. The rank of F in G (with respect to P)
is the maximum length among all F,Gð Þ�chains with respect to P.

Let F be a subgraph of a graph G such that F has a graphical property P. Then F is
said to be a maximal subgraph with respect to P if V Fð Þ⊆V Gð Þ and E Fð Þ⊆E Gð Þ, and
if, whenever H is a subgraph of G having property P such that V Fð Þ⊆V Hð Þ⊆V Gð Þ
and E Fð Þ⊆E Hð Þ⊆E Gð Þ, it follows that F ¼ H. For example, if P1 is the property of
being connected, then a subgraph F of a graph G is a maximal subgraph with respect
to P1 if and only if F is a component of G. If P2 denotes the property of being a
block, then F is a maximal subgraph with respect to P2 if and only if F is a block of G.

Let P denote a graphical property and let G be a given graph. If F is a subgraph of
G having property P, then by 54mP F,Gð Þ we mean the number of subgraphs of G
that are isomorphic to F and maximal with respect to property P. For example, if P2

denotes the property of being a block and F ffi K3, then for the graph G of Figure 3,
it follows that s F,Gð Þ ¼ 6 and mP F,Gð Þ ¼ 2.

Theorem 1.15. (Counting Theorem). Let G be a graph of order at least 3, and let P
be a graphical property. Suppose that each subgraph of G with property P has order
less than of G. If for each subgraph F of G with property P and for each graph
F0 ffi F such that V F0ð Þ⊆V Gð Þ and E F0ð Þ⊆E Gð Þ, there is a unique subgraph H of G
that is maximal with respect to P such that V F0ð Þ⊆V Hð Þ and E F0ð Þ⊆E Hð Þ, then for
each subgraph F of G having property P, the number mP F,Gð Þ is recognizable.

Proof. Let F be a subgraph of G such that F has property P.
By hypothesis, the order of F is less than the order of G. Denote the rank of F in

G by r.
We show that

mP F,Gð Þ ¼
Xr

n¼0

X

�1ð Þns F,F1ð Þs F1,F2ð Þ⋯s Fn�1, Fnð Þs Fn,Gð Þ
h i

(1)

where the inner sum is taken over all pairwise nonisomorphic F,Gð Þ�chains
F0,F1,⋯Fnð Þ of length n. (Note that all F,Gð Þ�chains can be determined since each
is contained in some G� v, v∈V Gð Þ.)

We verify (Eq. (1)) by induction on r. If r ¼ 0, the only F,Gð Þ�chain is the
trivial F0ð Þ, where F0 ffi F. This implies that each subgraph of G that is isomorphic
to F is, in fact, a subgraph that is maximal with respect to P. Thus mP F,Gð Þ ¼
s F,Gð Þ and (Eq. (1)) holds in the case where r ¼ 0. Let r be a positive integer, and
assume that (Eq. (1)) is true for all subgraphs F of G with property P and having
rank less than r. Let F be a subgraph of G having property P and rank r in G. By

Figure 3.
The number of subgraphs with a specific property.
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hypothesis, for each graph F0 ffi F such that V F0ð Þ⊆V Gð Þ and E F0ð Þ⊆E Gð Þ, there is
a unique subgraph H of G that is maximal with respect to P such that V F0ð Þ⊆V Hð Þ
and E F0ð Þ⊆E Hð Þ. Thus, the number of subgraphs of G isomorphic to F that are
subgraphs of maximal subgraphs isomorphic to H is given by s F,Hð Þ:mP H,Gð Þ.
Hence, if we sum these numbers over all nonisomorphic subgraphs H of G having
property P, then we obtain the total number of subgraphs of G isomorphic to F. In
symbols,

s F,Gð Þ ¼
X

s F,Hð Þ:mP H,Gð Þ

where the sum is taken over all nonisomorphic subgraphs H of G having
property P. Since s F,Hð Þ ¼ 1 if H ffi F, we have

mP F,Gð Þ ¼ s F,Gð Þ �
X

H 6¼F

s F,Hð Þ:mP H,Gð Þ (2)

In (Eq. (2)) it suffices to consider only those subgraphs H of G having property
P for which s F,Hð Þ>0. Since any such subgraph H has rank less than r, the
inductive hypothesis can be applied to each term mP H,Gð Þ, yielding

mP F,Gð Þ ¼ s F,Gð Þ �
X

s F,Gð Þ
X

rankH

m¼0

X

�1ð Þms H,H1ð Þs H1,H2ð Þ⋯s Hm,Gð Þ
h i

(3)

where the inner sum is taken over all pairwise nonisomorphic H,Gð Þ-chains
H0,H1,⋯,Hmð Þ of H of G having property P such that s F,Hð Þ>0 and H 6¼ F.
Redistributing the summations in (Eq. (3)), we obtain

mP F,Gð Þ ¼ s F,Gð Þ �
X X

rankH

m¼0

X

�1ð Þms F,Hð Þs H,H1ð Þ⋯s Hm,Gð Þ
h i

or equivalently,

mP F,Gð Þ ¼
X

r

n¼0

X

�1ð Þms F,Hð Þs H,H1ð Þ⋯s Hm,Gð Þ
h i

(4)

where the inner sum is over all pairwise nonisomorphic F,Gð Þ�chains
F0,F1,⋯,Fnð Þ of length n. However, this is precisely (Eq. (1)). By Theorem 1.14,
the right side of (Eq. (4)) is recognizable. Thus the left hand side is recognizable.

Theorem 1.16. Let G be a connected graph with two or more blocks. Then the
blocks of G are recognizable.

Proof. First observe that connected graphs with two or more blocks are recog-
nizable. By Theorem 1.9 connectedness is a recognizable property. A connected
graph G has two or more blocks if and only if G� v is disconnected for at least one
vertex of G, that is, v is a cut-vertex of G. Thus let G be a connected graph with two
or more blocks. Then each subgraph F of G that is a block has order less than that of
G. Furthermore, for each F0 ffi F such that V F0ð Þ⊆V Gð Þ and E F0ð Þ⊆E Gð Þ, there is
a unique subgraph H of G that is maximal with respect to the property P2 of being a
block (that is, a unique block H of G) such that V F0ð Þ⊆V Hð Þ and E F0ð Þ⊆E Hð Þ.
Therefore by Theorem 1.15, the number mP2 F,Gð Þ is the number of blocks of G
isomorphic to F.
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4. Trees

Paul J. Kelly first proved that trees are reconstructible; but the proof was quite
lengthy. Here we present a short proof due to Greenwell and Hemminger using the
counting lemma.

A vertex v of a tree G is called a peripheral if it is an end-vertex of a diametrical
path of G that is peripheral if its eccentricity e vð Þ ¼ diamG. By a branch of a central
tree we mean a maximal subtree of G in which the central vertex is an end vertex. A
branch of a bicentral tree of G is a maximal subtree of G containing the central edge
and in which the central edge is incident with an end vertex. A radial branch is a
branch that contains a peripheral vertex of the tree. A tree is called basic if it has
exactly two branches, exactly one of which is a path. The branch that is a path is
called the stem of the basic tree; the other branch is called the top.

Theorem 1.17. Every tree of order at least 3 is reconstructible.
Proof. First we note that trees are recognizable. Since the order, size and con-

nectedness of a graph G can be determined from its subgraphs G� v, v∈V Gð Þ, it
can be recognized whether a p, qð Þ graph G is connected and q ¼ p� 1, that is, it can
be recognized whether G is a tree. Therefore, we assume that G is a tree. If no vertex
of G has degree exceeding 2, then G is a path. Hence, paths are reconstructible.
Thus, we assume that G is not a path.That is, G has vertices of degree 3 or more.
Then a diametrical path of such a tree G necessarily has order less than G. From
Theorem 1.14, it follows that the number of paths of various lengths in G is
recognizable. This implies that the diameter is a recognizable parameter.

Since the diameter of a tree equals either 2r or 2r� 1 according as the tree is
central or bicentral, where r is the radius. It further follows that the radius is
recognizable and whether G is central or bicentral is recognizable. We have already
mentioned that the number of diametrical paths in G recognizable. Now, a vertex u
is peripheral if and only if degGu ¼ 1 and G� u has fewer paths of length diamG
than does G. Hence the number of peripheral vertices is recognizable.

A central tree Gwith central vertex v has degGv branches, at least two of which are
radial, while a bicentral tree has exactly two branches, both of which are radial. A tree
(which is not a path) having radius r is basic if and only if it contains no subgraph of
Type 1, 2, or 3, as shown in Figure 4. The central vertices are drawn as solid circles. In
each case, the indicated u-v path is a diametrical path of the original tree: its length is
2r if the subtree is of Type 1 or Type 2 and is 2r� 1 if the subtree is of Type 3. The
length a and b of the indicated paths satisfy 1≤ a≤ r� 1 and 1≤ b≤ r� 1. The lengths
c and d satisfy 1≤ c≤ r� 2 and 1≤ d≤ r� 2. If a non-basic tree contains a subtree of
Type 1, 2 or 3 as a proper subtree, then this is recognizable by Theorem 1.14. Thus, in
order to show that all nonbasic trees are recognizable, we need only show that a non-
basic tree G is recognizable when G itself is of Type 1, 2 or 3.

A tree G of order p is of Type 1 if and only if it contains a path of length 2r ¼
p� 2, one 3�vertex, and the only subgraph G� v with three components is
isomorphic to 2Pr∪K1. A tree G of order p is of Type 2 if and only if it contains a
path of length 2r ¼ p� 3, has exactly two 3�vertices, and in the two subgraphs
G� vwith three components, the size of any component that is a path at most r� 2.
Finally, a tree G of order p is of Type 3 if and only if it contains a path of length
2r� 1 ¼ p� 3, has exactly two 3�vertices, and each subgraph G� v with three
components is isomorphic to Prþ1∪Pr�1∪K1 or in each such G� v, the size of any
component that is a path at most r� 2. Thus nonbasic trees of Types 1, 2 and 3 are
recognizable. Since nonbasic trees are recognizable, basic trees are also
recognizable.

Claim:1 Basic trees are reconstructible.

8
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Let G be a central basic tree, and consider those subgraphs G� v which are
bicentral(basic) tree. For each such tree G� v, let mv denote the least distance from
a vertex of degree 3 or more in G� v to a vertex incident with the central edge of
G� v. Among all such numbers mv, let mv1 be one of minimum value. By adding v1
to G� v1 and joining v1 to the end-vertex of the stem of G� v1, the tree G is
obtained. Suppose that G is a bicentral basic tree. Consider all those subgraphs G� v
which are central(basic) trees. One of these trees, say G� vp, has a vertex of degree
greater than 2 closest to the central vertex. By adding vp to Gvp and joining vp to the

end-vertex of the stem of G� vp, the tree G is produced.

Figure 4.
Nonbasic trees.
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Claim:2 Nonbasic trees are reconstructible.
Let G be a nonbasic tree. If F is a subtree of G that is maximal with respect to the

property P of being a basic tree having the same diameter as G, then we call F a
maximal basic subtree of G. Clearly, every subtree of G with property P has order
less than that of G and is a subtree of a unique maximal basic subtree of G. So, if
such subtrees exist, by Theorem 1.14, the number of maximal basic subtrees of G
isomorphic to a given basic subtree F of G having the same diameter as G is
recognizable.

We now determine the radial branches of G. If no subtree of G has property P,
then each radial branch of G is a path (of length radG) and the number of radial
branches equals the number of peripheral vertices in G. If, on the other hand, G has
basic subtrees with the same diameter as that of G, then G has radial branches that
are not paths. In fact, every maximal basic subtree of G gives rise to such a branch.
Let H1,H2,⋯,Ht be nonisomorphic subtrees of G with property P such that every
maximal basic subtree F of G is isomorphic to some Hi, 1≤ i≤ t, and such that
mP Hi,Gð Þ>0 for i ¼ 1, 2,⋯, t. For convenience, let mi ¼ mP Hi,Gð Þ. For each i,
1≤ i≤ t, consider a maximal basic subtree F of G that is isomorphic to Hi. The tree F
has one radial branch B that is not a path. If G has n peripheral vertices and B
contains ki peripheral vertices (of F and hence of G), then B is the top of n� ki
maximal basic subtrees of G isomorphic to Hi(namely, one for each of the n� ki
stems produced from the other nki peripheral vertices). Thus, the number mi of
maximal basic subtrees isomorphic to Hi equals ℓi n� kið Þ, where ℓi is the number
of radial branches of G isomorphic to B. Therefore, ℓi ¼ mi=n� ki, where mi, ni and

ki are recognizable. The number of radial branches of G that are paths equals n�
Pt

i¼1ℓiki. Since bicentral nonbasic trees have only radial branches, it follows that
such trees are reconstructible. However, we still construct any nonradial branches
that may exist if G is a central nonbasic tree. This can be accomplished though, by
observing that, in this case, the nonradial branches of G are the nonradial branches
of G� v, where.

i. v is a peripheral vertex of a radial branch containing at least two peripheral
vertices,or.

ii. v is a nonperipheral end vertex of a radial branch.

If no vertex v as described in ið Þ and iið Þ exist, then all radial branches of G are
paths and the nonradical branches of G are the nonradical branches of G� v with
the exception of with the exception of one path of length radG� 1, in G� v, where
v is a peripheral vertex.

We now illustrate some of the ideas involved in the proof of Theorem 1.17 by
considering the subgraphs of Figure 5, where Gi ¼ G� vi for some graph G with
V Gð Þ ¼ v1, v2,⋯, v16.

Clearly, G has order p ¼ 16 and, by Theorem 1.3, size q ¼ 15. Since G1 and G2,
for example, are connected it follows by Theorem 1.9 that G is connected. There-
fore, we recognize G as a tree. Hence, by Theorem 1.17 that G is recognizable.
Therefore, we now proceed to reconstruct G:.

We observe that G has vertices of degree exceeding 2 (since, for example, G1

does) so that G is not a path. Hence a diametrical path of G has order less than that
of G, so by determining the lengths of all paths in the subgraphs G� v, the
maximum such length is the diameter of G. The maximum is 6 (which occurs in G1,
for example) so that diam Gð Þ ¼ 6. Since the diameter of a tree is either 2r or 2r1,
where r is the radius of the tree, depending on whether the tree is central or
bicentral, it follows that r ¼ radG ¼ 3 and that G is a central tree.
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In order to calculate the number n of peripheral vertices of G, we first calculate
the number of diametrical paths. This can be done with the aid of Kelly’s Lemma, in
which F ffi P7 and p1 ¼ 7. We obtain

s P7,Gð Þ ¼

P

v∈V Gð Þs P7,G� vð Þ

16� 7
¼

45

9
¼ 5

Thus a vertex v1 of G is a peripheral vertex if and only if G� v1 is a tree and
G� v1 has fewer than five diametrical paths. The subgraphs G1,G2,G11, and G12

satisfy these criteria so that the number n of peripheral vertices of G is four.
We next determine whether G is a basic or nonbasic (central) tree. Observe that

the Type 1 tree of Figure 6 is a subtree of at least one subgraph G� v (in fact, T is a
subtree of all Gi, i 6¼ 6). Therefore T is a proper subtree of G and G is nonbasic.

We now determine the radial branches of G. Since every radial branch that is not
a path is the top of some maximal basic subtree of G (that is, a subtree of G that is

Figure 5.
Deck of a tree.
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maximal with respect to the property P of being a basic subtree of G and having
diameter 6), we begin by finding the maximal basic subtrees of G. By inspecting the
graph, we see that only subtrees of G having property P are trees H1,H2 and H3

shown in Figure 7. Therefore every maximal basic subtree of G is isomorphic to one
of H1,H2 and H3.

The number mP H1,Gð Þ of maximal basic subtrees of G isomorphic to H1 can be
computed with the aid of (Eq. (1)) of Theorem 1.15. By investigating the subgraphs,
we see that there is only one H1,Gð Þ�chain (up to isomorphism), namely the trivial
chain H1ð Þ. Thus by (Eq. (1)), mP H1,Gð Þ ¼ �1ð Þs H1,Gð Þ, where s H1,Gð Þ is the
number of subtrees of G isomorphic to H1. By using Kelly’s lemma with p1 ¼ 9, we
have

s H1,Gð Þ ¼

P

v∈V Gð Þs H1,G� vð Þ

16� 9
¼

14

7
¼ 2:

Therefore there are two maximal basic subtrees of G isomorphic to H1.
In order to compute mP H2,Gð Þ, we observe that, up to isomorphism, there are

two H2,Gð Þ�chains, namely H2ð Þ and H2,H1ð Þ, where H1 is shown in Figure 7. By
(Eq. (1)),

mP H2,Gð Þ ¼ �1ð Þ0s H2,Gð Þ þ �1ð Þ1s H2,H1ð Þs H1,Gð Þ:

Again using Kelly’s Lemma, we have

s H2,Gð Þ ¼

P

v∈V Gð Þs H2,G� vð Þ

16� 8
¼

32

8
¼ 4

Figure 6.
A type 1 subtree of G.

Figure 7.
The basic subtrees of G having diameter 6.
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One observes that s H2,H1ð Þ ¼ 2. Also we have already seen that s H1,Gð Þ ¼ 2. So
mP H2,Gð Þ ¼ 4� 2:2ð Þ ¼ 0: Therefore there are no maximal basic subtrees of G
isomorphic to H2.

In order to compute mP H3,Gð Þ, we observe that, up to isomorphism, there are
two H3,Gð Þ�chains, namely H3ð Þ and H3,H1ð Þ, where H1 is shown in Figure 7. By
(Eq. (1)),

mP H3,Gð Þ ¼ �1ð Þ0s H3,Gð Þ þ �1ð Þ1s H3,H1ð Þs H1,Gð Þ:

Again using Kelly’s Lemma, we have

s H3,Gð Þ ¼

P

v∈V Gð Þs H3,G� vð Þ

16� 8
¼

16

8
¼ 2

One observes that s H3,H1ð Þ ¼ 1 and we have already seen that s H1,Gð Þ ¼ 2. So
mP H3,Gð Þ ¼ 2� 2:1ð Þ ¼ 0: Therefore there are no maximal basic subtrees of G
isomorphic to H3.

Thus G has exactly two maximal basic subtrees each of which is isomorphic
to H1.

If H0 is a maximal basic subtree of G, then H0 ffi H1 has one non-path radial
branch B, and B is isomorphic to the graph shown in Figure 8, where v corresponds
to the central vertex of G.

Since B contains two of the four peripheral vertices of G, each radial branch
isomorphic to B is the top of 4� 2 ¼ 2 maximal basic subtrees isomorphic to H1.
Thus the number ℓ of radial branches isomorphic to B equals 1, sincemP H1,Gð Þ ¼ 2.

At this point we conclude that G contains exactly one radial branch that is not a
path, namely B. All other radial branches of G are necessarily paths. Since the
branch B contains two of the four peripheral vertices possessed by G. It follows that
each of the remaining two peripheral vertices corresponds to a radial branch that is
a path. All radial branches of G have thus been determined, as shown in Figure 9.

Figure 8.
The unique non-path radial branch of G.

Figure 9.
The radial branches of G.
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Since the tree constructed thus far has order 12 and G has order 16, G contains
nonradial branches. These can be determined by noticing that G1, for example, is
obtained by the deletion of a peripheral vertex of G belonging to the radial branch B.
Since B is isomorphic to the graph shown in Figure 9 and contains more than one
peripheral vertex of G, the nonradial branches of G1 are precisely the nonradial
branches of G. Combining this observation with our information in Figure 9, we
have constructed the tree G shown in Figure 10.

5. Diameter two or three

In 2003, S. K. Gupta [8] defined three families of simple graphs of diameter two
or three and proved that the reconstruction conjecture is true if reconstruction is
proved for either these three families. Already the digraph reconstruction conjec-
ture was disproved [9]. So the proof of the reconstruction conjecture depends on
any property on graphs that does not hold for digraphs. Since the diameter is one
such property of graphs, graph theorists thought that the final proof of the recon-
struction conjecture may hold in this line of direction. Gupta’s reduction of the
reconstruction conjecture is presented next.

Gupta defined three disjoint families of simple graphs, namely F 1,F 2 and F 3

such that the reconstruction conjecture is true if it true for the families F 1,F 2 and
F 3. These families are quite restrictive in that each has diameter two or three. First
of all, it is proved that these families F 1,F 2 and F 3 are recognizable by showing that
graphs of diameter two are recognizable. The reconstruction conjecture is thus
reduced to showing weak reconstructibility for the three families.

Theorem 1.18. If a graph G has diameter greater than three then the diameter of

G is less than three.
Proof. Let G be a connected with diameter greater than 3.

Then there exists u, v∈V Gð Þ such that d u, vð Þ> 3. Clearly the graph G will

contain the edge uv. In G any vertex different from u and v is adjacent to u or to v or
to both since there is no path of length 3 connecting u and v in G.

Let x and y be any two vertices different from u and v. If they have u or v as a

common neighbor inG, then xuy or xvy is a path connecting them inG. Otherwise, they

must be adjacent in G since neighbors of u and neighbors of v are not adjacent in G:

Now define.

i. C1 : class of all graphs H such that diam Hð Þ ¼ diam H
� �

¼ 2:

ii. C2 : class of all graphs H such that diam Hð Þ ¼ 2 and diam H
� �

> 2:

iii. C3 : class of all graphs H such that diam Hð Þ ¼ diam H
� �

¼ 3:

Figure 10.
The tree G reconstructed.
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For i∈ 0, n� 2½ �, pv H, ið Þ is the number of pairs of non-adjacent vertices of H
such that, for each pair, there are exactly i paths of length two between the
two vertices, and pav H, ið Þ is the number of pairs of adjacent vertices of H
such that, for each pair, there are exactly i paths of length two between the two
vertices.

Theorem 1.19. If pv H, n� 2ð Þ>0 or pav H, n� 2ð Þ>0 then H is disconnected.
Proof. If pv H, n� 2ð Þ>0 or pav H, n� 2ð Þ>0, then H must contain at least one

pair of vertices, say u, vð Þ, such that there are n� 2 paths of length two between u
and v, which means vertices u and v are adjacent to all other remaining n� 2

vertices of H: Hence, in H, no vertices other than u and v are adjacent to them.

Therefore, in H, either u and v are isolated vertices or they together form a

component isomorphic to K2: Thus, H is disconnected.
Theorem 1.20.

að Þ
X

n

i¼1

pv Hi, jð Þ ¼ jþ 1ð Þpv H, jþ 1ð Þ þ n� jþ 2ð Þð Þpv H, jð Þ∀j∈ 0, n� 3½ �

bð Þ
X

n

i¼1

pav Hi, jð Þ ¼ jþ 1ð Þpav H, jþ 1ð Þ þ n� jþ 2ð Þð Þpav H, jð Þ∀j∈ 0, n� 3½ �

Proof. (a) Let u, vð Þ be a pair of vertices in the graph H such that d u, vð Þ ¼ 2 and
let there be exactly k paths of length two uv1v, uv2v, … , uvkvð Þ between u and v.
Then, both in H � u and H � v, the pair u, vð Þ will not appear at all. In each of the k
cards H � vi, where i ¼ 1, 2, … , k, this pair u, vð Þ appears as having k� 1 paths of
length two. In the remaining n� k cards, this pair will appear as having k paths of
length two.

(b) Proof is similar to Part(a) but taking u, vð Þ as a pair of adjacent vertices.
Theorem 1.21. Parameters pv H, ið Þ and pav H, ið Þ are reconstructible for all

i∈ 0, n� 2½ �:
Proof. First we prove that the parameters pv H, ið Þ are reconstructible and that of

pav H, ið Þ follows similarly.
From the given deck of H, the left hand side of Theorem 1.20(a) is

known for j∈ 0, n� 3½ �. Thus, from Theorem 1.20(a), we have n� 2 independent
linear equations of n� 1 parameters pv H, 0ð Þ, pv H, 1ð Þ,⋯, pv H, n� 3ð Þ and
pv H, n� 2ð Þ:

Case 1. Suppose pv H, n� 2ð Þ>0:

Now, by Theorem 1.19, H is disconnected. So H and hence H is reconstructible.
Then each parameter pv H, ið Þ (where i∈ 0, n� 2½ �) is clearly reconstructible.

Case 2: Suppose pv H, n� 2ð Þ ¼ 0:
In this case, we have an additional linearly independent equation pv H, n� 2ð Þ ¼ 0

apart from the n� 1 equations stated in Theorem 1.20(a). Nowwe have n� 1 linearly
independent equations with n� 1 unknowns namely pv H, 0ð Þ, pv H, 1ð Þ,⋯,
pv H, n� 3ð Þ and pv H, n� 2ð Þ: The unique solution set of these equations will provide
the values of the parameters pv H, 0ð Þ, pv H, 1ð Þ,⋯, pv H, n� 2ð Þ:

Theorem 1.22. Graphs of diameter two are recognizable.
Proof. Graphs of diameter one are precisely complete graphs and so they are

recognizable. If diam Hð Þ 6¼ 1 and pv H, 0ð Þ ¼ 0, then diam Hð Þ ¼ 2 since pv H, ið Þ
(where i∈ 0, n� 2½ �) is the number of pairs of non-adjacent vertices of H such that,
for each pair, there are exactly i paths of length two between the two vertices. If
pv H, 0ð Þ> 0, then diam Hð Þ> 2.

The number of pairs of vertices of H such that distance between vertices of each
pair is greater than two (or pv H, 0ð Þ) is reconstructible.

15

Reconstruction of Graphs
DOI: http://dx.doi.org/10.5772/intechopen.98726



Theorem 1.23. Families C1, C2 and C3 are recognizable.
Proof. Given the deck of some graph H, H ¼ Hiji∈ 1, n½ �f g, we can get the deck

of H, H0 ¼ Hiji∈ 1, n½ �
� �

. We can recognize whether diam Hð Þ ¼ 1 or not (as
complete graphs are recognizable). If diam Hð Þ 6¼ 1 and pv H, 0ð Þ ¼ 0, then

diam Hð Þ ¼ 2. If pv H, 0ð Þ>0, then diam Hð Þ> 2. So we can recognize both H and H
whether they have diameter equal to one or two or greater than two. So, C1 and C2
are recognizable. We have, if diam Hð Þ> 2 and diam H

� �

> 2 then diam Hð Þ ¼ 3 and

diam H
� �

¼ 3. Also, G∈ C3 if and only if diam Hð Þ> 2 and diam H
� �

> 2. Hence C3 is

also recognizable.
The next well known result is useful while proving the reduction of the Recon-

struction Conjecture.
Theorem 1.24 ([10]). If a graph H has diameter greater than three then the

diameter of H is less than three.
Theorem 1.25 ([11]). If a graph H has radius greater than three then the radius

of H is less than three.
Theorem 1.26 (Gupta et al. [8]). The Reconstruction Conjecture is true if and

only if all graphs H with diam Hð Þ ¼ 2 and all graphs H with diam Hð Þ ¼

diam H
� �

¼ 3 are reconstructible.

Proof. The necessity is obvious. For sufficiency, let H be a graph. If H is
disconnected, then it is reconstructible. So, we can take that H is connected. If

diam Hð Þ ¼ 2 or diam Hð Þ ¼ diam H
� �

¼ 3, then H is reconstructible by hypothesis.

Hence we may assume that diam Hð Þ ¼ 1 or, by Theorem 1.24, diam H
� �

≤ 2. If

diam Hð Þ ¼ 1 or diam H
� �

¼ 1, then H is reconstructible (because graphs with

diameter one are precisely complete graphs). Hence we assume diam H
� �

¼ 2.

Now H is reconstructible by assumption. Hence H is reconstructible by
Theorem 1.7.

Theorem 1.27. Graphs on n vertices having an n� 1ð Þ-vertex are reconstructible.
Proof. Since the degree sequence of H is reconstructible, we can recognizable

whether the graph has a vertex of degree n� 1 or not. Therefore the claim of under
consideration is recognizable, weakly reconstructible. In a card H � v, where degHv
= n� 1, annexing a new vertex to H � v and joining it all the vertices of H � v; the
graph H in this way is unique. Hence H is reconstructible.

Lemma 1.28. Separable graphs H with diam Hð Þ ¼2 are reconstructible.
Proof. We know that, graphs G with diam Hð Þ ¼2 are recognizable. A

connected graph is separable if and only if one of its cards is disconnected.
Now H has no non-end block, as otherwise H has diameter greater than 2. So all
the blocks of H are end-blocks. Hence H has only one cut vertex, say v. Since
diam Hð Þ ¼2, v must be adjacent to all other vertices of H. Hence H is
reconstructible.

Yang Yongzhi [2] proved the following reduction of the Reconstruction Conjec-
ture in 1988. Yongzhi achieved this significant reduction of the RC by proving the
reconstructibility of a new class of graphs called P-graphs. Yongzhi observed that
reconstructibility of P-graphs turns out to be of great use while shuttling between a
graph and its complement in order to reconstruct it.

Definition 1.29. A graph G with p vertices is a P-graph, if.

i. there exists only two blocks in G and one of them is an edge (denote it by rx with
d xð Þ ¼ 1Þ, and

ii. there exists a vertex u 6¼ r, d uð Þ ¼ p� 2 (Figure 11).
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Lemma 1.30. P-graphs are recognizable.
Proof. Since the degree sequence and the number of cut vertices are recon-

structible, recognizability of (i) of Definition 1.31 follows immediately. Existence of
u as in (ii) of Definition 1.31 is guaranteed by the existence of a connected card
obtained by deleting a p� 2 vertex in the given deck of G:.

Every graph must be contained in one of the following disjoint classes of graphs:
disconnected graphs (which are reconstructible); separable graphs without end
vertices (which are reconstructible); separable graphs with end vertices; and 2-
connected graphs. Yongzhi [12] further divided the class of separable graphs with
end vertices into P-graphs and other than P-graphs, and proved that the former
class of graphs is reconstructible if all 2-connected graphs are reconstructible. We
omit the proof as it is very lengthy.

Theorem 1.31. P-graphs are reconstructible if all 2-connected graphs are
reconstructible.

Theorem 1.32. Every connected graph is reconstructible if and only if every
2-connected graph is reconstructible.

Proof. The necessity is obvious. For proving the sufficiency part, assume that all
2-connected graphs are reconstructible. Let G be a separable graph on p (≥ 12)
vertices. If G has no end vertex then G is reconstructible (by Theorem 1.12).

Thus,we can assume that G has an end vertex and a p� 2ð Þ
� vertex because of Theorems 1:12 and 1:7 and the hypothesis

� �

: (5)

We have two subcases.
Case 1. The graph G has at least two end vertices.

Now G has at least two p� 2ð Þ � vertices: (6)

Let u1 and u2 be two p� 2ð Þ-vertices in G. By (Eq. (6)), G has at most two end

vertices and (Eq. (5)) now gives that G has either one or two end vertices.

Case 1.1. The graph G has exactly one end vertex, say y:.

Now G is a P-graph (as in (i) and (ii) below) and hence G is reconstructible by
Theorem 1.31.

(i) If y is not adjacent to ui, i ¼ 1, 2, then inG� y, u1 and u2 are p� 2ð Þ-vertices and

hence G� y is a block as G� y has only p?1 vertices. Hence G is a P-graph.

(ii) If y is adjacent to u1 (say), then in G� y, u2 is adjacent to all the vertices

hence no vertex other than u2 can be a cut vertex of G� y. Also if u2 were a

cut vertex of G� y, then u1 and all its p� 3 neighbors in G� y are confined

to a single block with p� 2 vertices and the only other vertex of G� y must

be an end vertex adjacent to u2. Thus G has two end vertices, leading to a

contradiction. Hence G� y has no cut vertex and G is a P-graph.

Figure 11.
A P-graph on 9 vertices.
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Case 1.2. The graph G has exactly two endvertices.

Now the bases of the two endvertices in G are different (otherwise G has at most
one p� 2ð Þ-vertices, contradicting (Eq. (6))). No vertex other than the bases of the

endvertices can have degree p� 2: Hence G has at most two p� 2ð Þ-vertices and
(Eq. (6)) now gives that has exactly two p� 2ð Þ-vertices, which are the bases of the

endvertices. In this case G is clearly recognizable from its degree sequence and is

reconstructible by augmenting an end vertex-deleted card G� y (by adding a

vertex to G� y and joining it to a p� 3ð Þ-vertex).
Case 2. The graph G has exactly one end vertex, say y.
If G has more than one p� 2ð Þ-vertex, then G is a P-graph and hence is

reconstructible by Theorem 1.31. Hence let G have exactly one p� 2ð Þ-vertex, say w
Case 2.1. The vertices w and y are nonadjacent in G.
Now we can assume that w is a cut vertex of G as otherwise G is a P-graph and

hence is reconstructible. So w and q (the base of y) are the only cut vertices of G.
Hence G is the union of three subgraphs Bwq (the non-end block containingw and q),
Fw (the union of end-blocks containing w) and the end-block By (K2) containing y:

If deg q ¼ p� 3 then Fw ffi K3 (because G has only one end vertex). Consider a 2-
vertex deleted card G� zwith exactly two end vertices (the deleted 2-vertex cannot
be from Bwq as every 2-vertex in Bwq is adjacent to w and q so that no additional end
vertex is created). Such a G� z will have an automorphism that interchanges the
two end vertices, interchanges the two bases and fixes all other vertices. Hence all
augmentations of G� z by introducing a 2-vertex so that the resulting graph has
only one end vertex and only one end-block isomorphic to K3 are isomorphic.

If deg q 6¼ p� 3 then deg q< p� 3 (because ∣Fw∣ ≥ 3). Now in the cards G� v
that are connected and have at least one end vertex (cards for which the deleted
vertex is not one of w, y and q), the vertices w, y and q are identifiable as the only cut
vertex of degree p� 3, the only end vertex nonadjacent with w and the base of y
respectively. Among these cards G� v, if we choose one, say G1 such that.

i. w and q are in the same block, and.

ii. the block containing w and q has maximum number of vertices,

then the non-end block of G1 is Bwq. Hence Bwq is known with w and q labeled.
The only end vertex-deleted card in the deck is G� y and its only cut vertex is w:

Since Bwq is known with w and q labeled, there is an isomorphism α from Bwq on to a
block of G� y such that α wð Þ ¼ w. The graph Gα obtained from G� y by adding a
vertex and joining it only with α qð Þ is a candidate for G. If β is another such
isomorphism and Gβ is the corresponding augmented graph, then Gα ffi Gβ under
the mapping ψ where

ψ ¼

βα�1 onthe vertices of α Bwq

� �

αβ�1 onthe vertices of β Bwq

� �

identity onallother vertices

8

>

>

<

>

>

:

whenα Bwq

� �

and β Bwq

� �

are different blocks ofG� y and

ψ ¼
βα�1 onthe vertices of α Bwq

� �

identity onallother vertices

(

when α Bwq

� �

and β Bwq

� �

are different blocks ofG� y:
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Hence G is known up to isomorphism.
Case 2.2. The vertices w and y are adjacent in G.

Now in G, w is the only end vertex and y is the only p� 2ð Þ-vertex and they are

not adjacent. Hence G is reconstructible as in Case 2.1. This completes the proof.
“Reconstruction Conjecture for digraphs” is already disproved by Stockmeyer

[9]. So a proof for the Reconstruction Conjecture will depend on some property for
graphs which does not extend to digraphs. Such properties are called significant
properties (from the reconstruction angle) by Stockmeyer. One such property
which arises out of distance in complement is given by Theorems 1.7 and 1.24. So
far, in digraphs, there is no definition of complement and diameter such that
Theorem 1.7 and 1.24 are simultaneously true. So reductions of the Reconstruction
Conjecture obtained using the above theorems apply only for graphs and deserve
attention. One reduction was proved in the last chapter (Theorem 1.26) by Gupta
et al. [8] using Theorems 1.7 and 1.24. Reconstructibility of the subfamilies of 2-
connected graphs in the families ℱ1,ℱ2 and ℱ3 are sufficient for the truth of the
Reconstruction Conjecture.

Theorem 1.33 ([13]). All 2-connected graphs are reconstructible if and only if all 2-

connected graphs G such that diam Gð Þ ¼2 or diam Gð Þ = diam G
� �

¼ 3 are reconstruct-

ible.
Proof. The necessity is obvious. For sufficiency, let G be a 2-connected graph.

Since graphs of diameter one are precisely complete graphs, this, together with
hypothesis, leaves us to reconstruct only 2-connected graphs G of types (a) and (b)
below.

að Þ diam Gð Þ ¼3 but diam G
� �

is different from 3.

If diam G
� �

> 3, then by Theorem 1.24, diam Gð Þ< 3, giving a contradiction.

Hence diam G
� �

¼ 2: Hence G is reconstructible, by Lemma 1.28 if it is separable

and by hypothesis otherwise.
bð Þ diam Gð Þ> 3.

Now, by Theorem 1.24, diam G
� �

< 3 and so diam G
� �

¼ 2, since G is connected.

Therefore G and hence G is reconstructible by hypothesis.
Theorem 1.34. All graphs are reconstructible if and only if all 2-connected

graphs G such that diam Gð Þ ¼2 or diam Gð Þ = diam G
� �

= 3 are reconstructible.
Proof. Follows by Theorems 1.32 and 1.33.

6. Radius two

Theorem 1.35. If G is connected and rad Gð Þ≥ 3, then rad G
� �

≤ 2 and G has no

endvertices.

Proof. Let G be a connected graph with rad Gð Þ≥ 3. Then rad G
� �

≤ 2. If possible,

let G have endvertices. Then G has an n� 2ð Þ-vertex say v. Hence v is adjacent to all
but one vertex, say v0 of G. Hence v0 is adjacent to at least one neighbor of v in G
(as G is connected). Hence d v,wð Þ≤ 2,∀w∈V Gð Þ. Hence rad Gð Þ≤ 2, giving a
contradiction. This completes the proof.

Theorem 1.36. All 2-connected graphs are reconstructible if and only if all
2-connected graphs G with rad Gð Þ = 2 are reconstructible.

Proof. The necessity is obvious. For sufficiency, let G be any 2-connected graph.

It is enough to show that G or G is reconstructible. If rad Gð Þ ¼ 1, then G has a
vertex adjacent to all other vertices and hence G is reconstructible. If rad Gð Þ ¼ 2,
then G is reconstructible by hypothesis.
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Now let rad Gð Þ≥ 3. Then rad G
� �

≤ 2 and G has no endvertices by Theorem 1.35.

If rad G
� �

¼ 1, then G is reconstructible as it has a vertex adjacent to all other

vertices. When rad G
� �

¼ 2, G is disconnected, separable without end vertices or

2-connected. Therefore G is reconstructible by Theorem 1.11, Theorem 1.28 or the
hypothesis.

Theorem 1.37 ([13]). All graphs are reconstructible if and only if all 2-connected
graphs G such that rad Gð Þ ¼ 2 are reconstructible.

Proof. By Theorem 1.32, we have all graphs are reconstructible if and only if all
2-connected graphs are reconstructible. We also know that all 2-connected graphs
are reconstructible if and only if all 2-connected graphs G such that rad Gð Þ = 2.

As 2-connected graphs are recognizable, the families of 2-connected graphs in
the hypothesis of Theorems 1.34 and 1.37 are recognizable. Thus, to settle the
Reconstruction Conjecture, it is enough to prove that neither of these two families
contains a pair of non-isomorphic graphs having the same deck. However, radius of
a graph is not yet proved to be reconstructible.

Many classes of blocks which are cartesian, lexicographic or strong products of
graphs have been shown to be weakly reconstructible [6, 7]. Several other families
of graphs already proved to be reconstructible contain 2-connected graphs. As there
are a number of results on the structure of special classes of graphs of diameter 2,
they may lead to the reconstruction of more classes of graphs and further narrow
down the classes of graphs to be reconstructed to prove the Reconstruction
Conjecture. These narrowed down classes must contain counterexamples to the
Reconstruction Conjecture if at all there exists one.
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