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Abstract

Potato (Solanum tuberosum) as a food source and culinary ingredient varies is the 
fourth most produced noncereal crop in the world. Among multiple biotic stresses, 
late blight caused by Phytophthora infestans is the most destructive disease. Control 
of this pathogen is usually by the synthetic fungicides which have been fueled by 
the public concern about toxicity and environmental impact and development 
of pathogens resistance. Biological control agents (BCAs) seems the potentially 
alternative to these pesticides, biological disease control is now recognized and 
constitute an important tool in integrated pest management. BCAs strains should be 
able to protect the host plant from pathogens and fulfill the requirement for strong 
colonization. Bacteria such as Bacillus, Pseudomonas and Streptomyces and fungi 
such as Trichoderma and Penicillium were the most reported as a BCA against  
P. infestans using different direct antagonistic mode on the pathogen (via e.g. para-
sitism, antibiosis, or competition) or via exerting their biocontrol activity indirectly 
by induction in the plant of an induced systemic resistance to the pathogen. In this 
study, we present an overview and discussion of the use of beneficial microbes 
(bacteria and fungi) as novel BCAs for biocontrol of P. infestans.

Keywords: Solanum tuberosum, Phytophthora infestans, biological control agents, 
beneficial microbes

1. Introduction

Plant diseases need a good control strategies in order to maintain the quality and 
abundance of food around the world. Especially, human population growth has 
been the source of two major concerns: providing sufficient food for humanity and 
minimizing worldwide environmental pollution. Several approaches may be used to 
protect or control plant diseases. Beyond good cultural practices, harvest and post-
harvest approaches in reduction of pathogen growth, growers often rely heavily on 
chemical fertilizers and pesticides. However, many countries have reported alarm-
ing residues of agricultural chemicals in soil, water, air, agricultural products, and 
even in human blood and adipose tissue [1, 2]. Additionally, research suggests that 
the massive use of inorganic fertilizers world-wide is associated with the accumula-
tion of in agricultural soils [3]. Researchers and Policy makers recognize that the 
excessive and unsystematic application of agrichemical inputs poses a threat to the 
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environment and humans alike. Consequently, several biologist have focused their 
efforts on developing alternative inputs to synthetic chemicals for controlling pests 
and diseases [4]. Among these alternatives those referred to as biological control 
by using one or more beneficial microbes to suppress the damaging activities of 
soil-borne pathogens.

Plant growth-promoting microbes (PGPM) are free-living microorganisms of 
beneficial agricultural importance. The PGPM present important beneficial effects 
on plant health and growth, suppress disease-causing microbes and improve nutrient. 
PGPM exist in the rhizosphere and this is defined as the region around the root. 
PGPM compensate for the reduction in plant growth caused by weed infestation 
[5], drought stress [6], heavy metals [7], salt stress [8, 9] and some other unfavor-
able environmental conditions. Beneficial microbes are also the microorganisms 
that produce hormones, vitamins and growth factors that improve plant growth and 
increase crop production. Many research reported the ability of this microorgan-
isms to produce indole acetic acid (IAA), gibberellic acid, and cytokinins [10] and 
production of important metabolites such as siderophores, HCN, and antibiotics 
that have immense potentiality in enhancing the root surface area, altering root 
architecture and promoting plant growth. Among the numerous plant growth-
promoting microbes (PGPM) are the most commonly applied in the biological 
control strategies. PGPM may affect plant performance through multiple defense 
mechanisms against several pathogens, operating directly by the production of 
specific substances that are able to promote plant growth, increase the availability 
and uptake of plant nutrients under biotic stress and induce the defense response of 
plants attacked or indirectly through the suppression of plant pathogen [11, 12].

For the biological control of late blight which is Late blight disease, caused by 
Phytophthora infestans (Mont.) de Bary, is one of the most serious threats to potato 
production worldwide [13], Applications of different beneficial microbes as a 
biocontrol bacteria, fungi, algae or their metabolites, have been tested their ability 
to inhibit potato late blight, and when used as part of an integrated pest manage-
ment system, they have had varying degrees of success [14–16]. Bacteria with 
antagonistic activity toward P. infestans are found mainly in the genera Pseudomonas 
and Bacillus. Although some fungal antagonists such as Trichoderma atroviride and 
Muscodor albus showed effective inhibition [17–20]. The objective of this chapter 
is to review the ability of beneficial microbes used to control late blight of potato 
caused by P. infestans, building on recent detailed reviews and research articles 
on microorganisms antagonistic to late blight of potato and their management 
approaches.

2. The methods of isolation of P. infestans

P. infestans causes potato and tomato late blight, economically the most important 
disease of these plant species. The oomycete pathogen is frequently sampled, isolated 
to pure cultures and stored. Efforts were made to develop isolation and culturing 
techniques based on tomato and potato. There are two major steps of isolating  
P. infestans, Field collection and isolation of P. infestans from infected tissue [21]. Petri 
dish method makes easier the collection of largest number of diseased samples in the 
field because is based on selective medium. Leaves, stems, petioles and even slices of 
diseased tubers can be collected. It allows the transfer of samples from the field to the 
laboratory in good condition and in turn stimulating sporulation of the lesions for 
easy isolation. The petri dishes were prepared with 1.5-% water agar, the sample with 
only one lesion were chosen and placed on the plate lid with the abaxial side up, in 
such a way so that the agar is on the sample but never in contact. The plates must be 
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sealed with Parafilm paper and placed in a cooler. In the laboratory, samples should be 
incubated at 15–18° C for 3–7 days with light and dark periods of 12 hours and grown 
hyphal tip of P. infestans transferred on a selective medium. Previous reports men-
tioned the use of some effectiveness selective medium for the isolation of P. infestans. 
The application of fungicides against P. infestans can affect the establishement of the 
oomycetes and their isolation. It is recommended to use tubers from fields where 
systemic fungicides against P. infestans have not been applied. Gamboa et al. [22] 
reported a method named sandwich method, tuber aseptically were cut in half and 
quickly place an infected leaflet between both halves. The both halves were attached 
with adhesive tape and wrap the tuber with paper towels, then place it in a paper or 
plastic bag for transfer to the laboratory. In the laboratory, the tuber were cuted in 
slices from the place of contact between the infected leaf and the tuber then put them 
in a wet chamber and incubate for 7 days to induce pathogen development. Incubation 
temperature should be 15–18° C with light and dark periods of 12 hours [22]. In the 
laboratory the isolation P. infestans from infected plant tissue can be using different 
infected tissues from potato or tomato plants. Sporulating lesion on potato/tomato 
leaves taken from field are washed in fresh water and placed in a humid chamber 
(inverted petri dish with water agar) with the leaf’s abaxial side up and incubated at 
15–18°C for 1 day or until fresh sporulation appears. Small pieces of infected tissue 
from the sporulating border of the lesion are cut and placed under potato/tomato 
slices in an empty petri dish. Dishes are incubated at 15–18°C for 1 week, until there 
is abundant sporulation on the upper side of the slice. To re-inoculate leaves, pick 
sporangia from the top of the tuber and place them in a drop of water on a potato leaf 
or another tuber slice. If isolating from infected tubers, slice the tuber where infec-
tion has occurred and place in a moist chamber until sporulation occurs. When clean 
inoculum appears on the upper side of an infected tuber slice or leaf, the sporangia 
are harvested in a flow chamber, by picking them up with an inoculating needle and 
placing the sporangia on selective medium [23, 24]. Tumwine et al. [25] reported that 
P. infestans grew successfully and well on Rye A agar without the need of antibiotics 
is one of the recommended medium for the isolation of P. infestans. The Rye A agar 
was described for the first time in 1968 by Caten when Rye B agar were used for the 
sporulation. However, V8 juice agar (V8A) which is blend of 8 vegetable juices, which 
supplies the trace ingredients to stimulate the growth of fungi. The acidic pH of the 
medium favors fungal growth and suppresses bacterial growth. V8A has been one 
of the most popular and commonly used medium for growth and reproduction of 
Phytophthora species [26]. In 2020, [23] were studied five different media in order to 
select the optimal culture conditions of P. infestans. Modifiations were made to use 
ingredients available in local markets on the following media: lime bean agar (LBA), 
Tree tomato or tree tomato agar (TA), carrot agar (AZ), Rye A modifid agar and 32% 
non-clarifid V8 agar. The findings results showed that as was described before media 
such as Rye A favored the ability of P. infestans to grow effiently.

3. Bacteria

The use of biological agents to control or suppress Phytophthora infestans provides 
an economic and environmentally friendly approach. As a biopesticides bacteria are 
the most common and cheaper form of microbial pesticides. The potential of a range 
of bacterial strains as biocontrol agents of plant pathogens has been reviewed by many 
scientific reports [27–29]. Streptomyces, Pseudomonas and Bacillus were the most tree 
bacteria reviewed to control P. infestans [30, 31]. Actinomycetes were isolated from in 
general from soil. Samples were diluted to go on serial dilution and plate on humic acid 
vitamin agar as described by [32] supplemented with an antifungal and antibacterial 
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Gram- such as nalidixic acid. The isolation plates were incubated at 35 ± 2°C for 7 days. 
The colonies had been transferred to International Streptomyces Project (ISP) medium 
No. 2 agar [33, 34] plates for purity check. This isolation method can be improved 
using same modifications. In the other hand, The isolation methods used to collect 
bacillus and Pseudomonas from soil as an endophytic or epiphytic strains were routinely 
grown on Luria-Bertani (LB) medium and incubated in the dark at 30°C [31, 35].

3.1 Bacillus

Bacillus and its products have been known for application as biological control 
agent against a range of plant pathogen. The success of Bacillus species as biocontrol 
agent could be ascribed to a wide array of peptide antibiotics produced such as 
iturin A, mycobacillin, subtilin and bacilysin as well as 25 different basic chemical 
structures with proven antifungal secondary metabolites [36, 37]. Lamsal et al. [38] 
found after a dual culture inhibition assay was conducted on V8-PDA in plastic petri 
plates (8.5 cm diameter) that seven bacterial isolates (AB05, AB11-AB15 and AB17) 
qualified previously as beneficial microbes of tomato plants, inhibit efficiently P. 
infestans affecting tomatoes in Korea by more than 60% in vitro. However, AB15 was 
the most effective, inhibiting mycelial growth of the pathogen by more than 80% 
in vitro. For greenhouse evaluation, targeted plants were left to dry for 2 days, and 
then 100 ml of bacterial spore solution (107 spores/ml) was added to each pot 7 days 
before infection so that only soil, but no above-ground parts, received any bacterial 
spores. The results showed that AB15 was the most effective suppressing disease by 
74% compared with control plants under greenhouse conditions. According to 16S 
rDNA sequencing, a majority of the isolates are members of Bacillus, and a single 
isolate belongs to Paenibacillus. In India, for Bacillus subtilis strains were tested for 
their biocontrol activity against P. infestans in presence of the fungicide (Mancozeb) 
M45 (CURZATE®) as positive control. Before the sowing of potato seeds in blocks, 
all blocks were drenched with different bacterial cultures at the concentration 2x106 
CFU/ml, with the exception of chemical fungicide and control blocks. The potato 
seed tubers were treated with 0.2–0.3% of M 45 (Mancozeb) fungicide before ten 
days of planting. Results revealed that, bacterial treatments signifiantly reduced 
disease incidence of late blight compared with the control. Bacterial treatments 
increased the plant vegetative parameters like plant height, sprouting, number of 
leaves, fresh weight and dry weight of plants. In addition, treatments also showed the 
clear difference between commercial and non-commercial tuber yield/hectare. In a 
view of this results they suggest that the mode of the action were the ability of bacil-
lus subtilis strains to produce mycotoxins which can inhibit P. infestans growth and 
the capacity of bacillus to induce the peroxidase activity [39]. Elliott et al. [40] have 
been reported that Companion® and Serenade® are two Bacillus subtilis commercial 
biocontrol products which reported to suppress P. infestans. However, resistance to 
this bioproducts develops and some isolates of P. ramorum from North American and 
European population have been shown to be resistant [41]. Bacillus strains could  
control P. infestans directly by inhibiting the mycelial growth, germination of 
the cysts or the swimming of the motile zoospore by producing many antifungal 
compounds which suppress the pathogen or indirectly mechanisms by inducing 
the inhabitation of the activity of ribosome or stimulate active oxygen burst, NO 
production, callose deposition, and lignification [42–44].

3.2 Pseudomonas

Among biocontrol agents of interest, Pseudomonas spp., are known 
for their production of antibiotics involved in biocontrol, such as 
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2,4-diacetylphluoroglucinol and phenazines [45–47], which have been widely 
studied in various plant-pathogen systems. Phenazine-1-carboxylic acid (PCA)-
producing Pseudomonas spp., have been found effective against numerous phy-
topathogens, including bacteria, fungi, and oomycetes, such as the causal agent 
of bacterial blight of rice, Xanthomonas oryzae pv. oryzae [48], Gaeumannomyces 
graminis var. tritici [49] and the oomycetes Phytophthora spp., and Pythium 
spp., [50, 51]. PCA has been linked to biofilm formation, favoring attachment of 
PCA-producing Pseudomonas spp., to plant roots which facilitate the role of this 
beneficial microbes as biocontrol agents [52]. The mechanisms involved to control 
P. infestans by Pseudomonas were recently investigated, a previous study by [53] 
reported that the biocontrol of the pathogen could be by inhibiting sporangia and 
zoospore germination which suggesting the presence of many yet unknown anti-
oomycete determinants. However, [54] suggests that Phenazine-1-carboxylic PCA 
produced by Pseudomonas spp., is involved in P. infestans growth repression and led 
to important transcriptomic changes by both up and down regulating gene expres-
sion in P. infestans over time. Different metabolic functions were altered and many 
effectors were found to be upregulated after the application of PCA, suggesting 
their implication in biocontrol. The cyclic lipopeptide surfactant massetolide A is a 
metabolite with versatile functions in the ecology of Pseudomonas fluorescens SS101 
[55]. To study the effects of P. fluorescens SS101 and massetolide A on late blight of 
tomato, two leaves located on the second branch from the stem base of 5-week-old 
tomato plants were immersed in bacterial suspension (109 CFU ml−1) for 1 min or in 
a solution of massetolide A in sterile demineralized water (pH 8). Leaves immersed 
in sterile demineralized water (pH 8) for 1 min served as a control. Treated tomato 
plants were transferred to trays covered with transparent lids. After incubation 
for 1 d in a growth chamber at 15°C, the lower side of each treated tomato leaf was 
inoculated with 3 μl droplets of a P. infestans zoospore suspension (3–4 × 103 swim-
ming zoospores ml−1) or 3 μl droplets of sterile demineralized water (pathogen-
free control). P. fluorescens SS101 was effective in preventing infection of tomato 
(Lycopersicon esculentum) leaves by P. infestans and significantly reduced the expan-
sion of existing late blight lesions. Massetolide A was an important component of 
the activity of P. fluorescens SS101, since the massA-mutant was significantly less 
effective in biocontrol, and purified massetolide A provided significant control of 
P. infestans, both locally and systemically via induced resistance [56]. Additionally, 
Biosurfactants (Rhamnolipids) produced by fluorescent Pseudomonas have zoo-
spore lysis activity and biosurfactant-producing strain Pseudomonas koreensis 2.74 
has potential to induce resistance in potato plant against late blight disease. High 
sensitivity of P. infestans zoospores to biosurfactants suggest that they can be used 
to dampen the spread of potato late blight once infection has been detected in the 
field [57, 58].

3.3 Actinomycetes

Actinomycetes are Gram+ bacteria that represent a high proportion of the soil 
microbial biomass and have the ability to produce a wide variety of antibiotics 
and of extracellular enzymes. Several strains of actinomycetes have been found 
to control plant diseases [59–61]. Recently, [62] were identifed β-rubromycin as 
a P. infestans cyst germination inhibitor by screening compounds produced by 
Streptomyces isolated from soil. For that, an acetone extract was prepared from 
Streptomyces cultures grown for 5 days in liquid medium A at 30°C by adding an 
equal volume of acetone followed by mixing. 20-μL aliquots were mixed with 
1 × 103 P. infestans sporangia in total 70 μL (14.2% acetone solution), incubated 
at 10°C for 18 h, and examined using an inverted microscope. As a control, it is 
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confirmed that 15% acetone had no effect on morphological change in P. infestans. 
The isolation of the cyst germination inhibitor enabled to identify β-Rubromycin 
which can inhibit P. infestans cyst germination and hyphal elongation from sporan-
gia, while not affecting zoospore release, cyst formation, or appressorium forma-
tion. Chemical genetic analyses using β-rubromycin identifed a RIO kinase-like 
gene, PITG-04584, as a critical contributor to zoosporogenesis, cyst germination, 
and the formation of appressoria in P. infestans. The Lubimin is a vetispirane 
sesquiterpenoid that consists of (2R,5S,6S,8S,10R)-8-hydroxy-10-methyl-2-(prop-
1-en-2-yl)spiro[4.5]decane bearing a formyl substituent at position 6. It has a role 
as an antifungal agent and a phytoalexin. The synthesis of this biocompounds in 
noninoculated potato tuber slices have been elicited after using culture filtrates 
of Streptomyces isolates which induce the resistance of potato plants against late 
blight caused by P. infestans [63]. In this sense, the reliance on actinomycetes as 
promising biocontrol strategies are very useful in controlling P. infestans. Several 
actnimoycetes most of which were Streptomyces strains have been demonstrated to 
be effective [64–67].

From the gastrointestinal tract of a fish dredged near the South Orkney Islands 
in Antarctica, [68] isolated the psychrotolerant bacterial Vibrio splendidus T262. 
Investigation of this strain led to the isolation of a rare series of 15 bis- and trisin-
dole derivatives. Among them, six new indole alkaloids. Using the agar diffusion 
method, at 10 μg/paper disk, some of the isolated compounds showed activity 
against both gram-positive and gram-negative bacteria when trisindolal was active 
against the P. infestans and a number of other plant-pathogenic fungi.

Independently of the mode of action of biological control agents, the success-
ful application of rhizobacteria to suppress late blight was confirmed by several 
research using a range of bacteria such as Micrococcus luteus, Paenibacillus spp., 
Flexibacteraceae bacterium, and Enterobacter cloacae [35, 40, 69, 70]. However, there 
is a lack of research that highlight the effectiveness of the combination assays of one 
or more bacteria to control P. infestans. Whereas, the combinations have potential 
for extensive colonization of the rhizosphere, more consistent expression of benefi-
cial traits under a broad range of soil conditions, and antagonism to a larger number 
of pathogens than strains applied individually.

4. Fungi

The beneficial fungi have gained immense attention as biofertilizers due to 
their role in maintaining plant quality and quantity and their environment-
friendly relationship. Nowadays, use of this microorganisms as biocontrol agent 
(BCA) is considered to be a rapidly developing natural phenomenon in research 
area. Fungal biocontrol agents (BCAs) do not cause any harm to the environ-
ment, and they generally do not develop resistance in various types of pathogens 
due to their complex mode of action. They have been proved to be an alternative 
against the undesirable use of chemical products [71–73]. Previous reports have 
detailed the importance of various fungi species as effectiveness biocontrol 
agents against P. infestans [74–76]. For beneficial fungi isolation, the same method 
was adopted for years ago based on PDA medium and it can have same small 
modifications. PDA with chloramphenicol 0,016% (PDAc) and Rose Bengal Agar 
(RBA) (dextrose 10 g.l−1, meat peptone 10 g.l−1, K2HPO4 1 g.l−1, MgSO4.7H2O 
0.5 g.l−1, Rose Bengal 30 mg/l, Agar 20 g/l) media were used. Petri dishes were 
incubated for 4 days for bacterial isolation and 7 days for fungal isolation at 25°C 
in the dark [59, 77].
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4.1 Trichoderma

In the thick of various beneficial microbes have been investigated by several 
scientists, Trichoderma genera is a well-known biocontrol fungi that has been used 
since the 1930s to help plants acquire nutrients and control the plant pathogens 
[78]. Several Trichoderma species have been developed commercially as biofungi-
cides and biofertilizers.

Fungi in the genus Trichoderma and bacteria such as Bacillus amyloliquefaciens 
have shown in vitro potentiality to reduce the mycelial growth of Phytophthora 
infetsans, P. quercina, P. capsici, P. cactorum and P. plurivora attacking Quercus 
robur, Fagus sylvatica and Capsicum annuum [35, 79, 80]. The biocontrol roles of 
Trichoderma against P. infestans could be attributed to the Trichoderma’s rhizosphere 
competence and competitive ability [81], via the use of many mycoparasitic strate-
gies which are a direct mechanism for biological control that works by parasitizing, 
detecting, growing, and colonizing pathogen involving the detection of pathogens 
through chemotropism; lysis of the pathogen’s cell wall, pathogen’s hyphal pen-
etration by appresorial formation; production of cell wall-degrading enzymes 
(CWDEs) and peptaibols and parasitizing pathogen’s cell wall contents [82], antibi-
osis or by activating a defense response as well as increased plant growth [83]. Many 
studies have shown the biocontrol activity of Trichoderma against P. infestans. Khan 
et al. [84] reported for the first time the elucidation and production of viridiofun-
gin A (VFA) from T. harzianum isolate T23 cultures and the antifungal potential 
of VFA against P. infestans by suppressing zoosporangia germination and exhibit-
ing a high activity on germ-tube growth. In the assay, 0.3 ml PDB/V8 medium in 
0.6 ml Eppendorf tubes containing VFA concentrations from 50 to 200 μg ml−1 and 
sporangial suspensions of the pathogen were prepared. Control medium contained 
2% acetone. Cultures were incubated on a shaker at 100 rpm at 25°C in the dark 
for 24 h. Subsequently, aliquots were taken from the cultures. Germination rates of 
sporangia and germ tube elongations were determined. Moreover, [85] highlighted 
the ability of 14 strains of Trichoderma to emit volatile compounds that decreased 
or stopped the growth of P. infestans. The experiments were performed in Petri 
plates divided into two compartments. The first compartment, containing V8 agar, 
was inoculated in the center with a 5 mm diameter mycelial disk of P. infestans. The 
second compartment, containing PDA, was inoculated with 5 mm mycelial disk of 
actively growing mycelia from one of the 14 Trichoderma. The plate-dividing wall 
prevented any physical contact between the Trichoderma strains and P. infestans 
but allowed the free exchange of VOCs. After inoculation, the plates were sealed 
with two layers of Parafilm and incubated at 21°C for 6 d, at which point the growth 
diameters were recorded. Volatile organic compounds (VOCs) emitted from 
Trichoderma strains inhibited the mycelial growth of P. infestans grown on a labora-
tory medium by 80% and on potato tubers by 93.1%. Using GC–MS analysis showed 
that the most abundant compounds were 3-methyl-1-butanol, 6-pentyl-2-pyrone, 
2-methyl-1-propanol, and acetoin. Electron microscopy of the hyphae treated with 
T. atroviride VOCs revealed serious morphological and ultrastructural damages, 
including cell deformation, collapse, and degradation of cytoplasmic organelles.

4.2 Penicillium

Large number of reports mentioned that Penicillium spp., interact positively 
with plants roots. Some Penicillium species have shown an antagonistic activity 
against plant pathogens by producing antibiotics which is a primary mechanism 
of disease suppression by Penicillium also induce resistance in plants by activating 
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defense signals [86, 87]. The adaptability to different environments and tolerance to 
various abiotic stresses gives theses fungi species an advanced ranking to suppress 
many plant pathogens [87]. Previous reports have demonstrated that Penicillium 
species show efficacy as biocontrol agent against P. infestans. Based on the study 
conducted by [77] reported that Penicillium chrysogenum induce resistance against 
P. infestans in tomato plants. Dry Peni. chrysogenum mycelium extract was prepared 
using a detailed protocol described by [77] the extract was diluted with distilled 
water to a total carbohydrate content of 1.5 g l−1. The tomato plants were treated two 
times with about 25 mL extract per plant as foliar spray. Leaf discs (diam. 18 mm) 
of plants treated were laid onto moist filter paper. Leaf discs were inoculated with 
10 L droplets of zoospore suspension. The inoculated leaf material was kept at 23°C 
in the dark with a relative humidity at 100%. Three days later biochemical assays for 
the peroxidase activity and isoenzyme analysis were conducted. The application of 
the water extract of killed Peni. chrysogenum has shown no direct antifungal activity 
against the pathogen, however the protective effect of the extract was shown under 
controlled conditions after application on the whole plants and on leaf disk. The 
findings suggest that control resulted from the induction of defense mechanisms in 
the tomato plants. According to this many reports have been shown that the abil-
ity of Penicillium species to induce systemic expressions of defense-related genes 
[peroxidases (POX) and phenylalanine ammonia lyase (PAL) and PR-1 genes] is the 
key used by Penicillium to induce plant defense systems as well protects plants from 
pathogens [85, 86]. Otherwise, antagonistic activity of endophytic fungi associated 
with Artemisia nilagirica was studied against the pathogen P. infestans by the pres-
ence or absence of inhibition zone observed in dual cultures by using dual culture 
methods. The study has shown that among the endophytic fungal tested Penicillium 
atrovenetum and Trichoderma viride showed direct inhibition activity of pathogen 
mycelia growth [87]. Additionally, [88] reported that P. striatisporum Pst10 isolated 
from the rhizosphere of chili peppers showed very high antagonistic effects on 
mycelium growth and sporangia/spore formation or germination of Phytophthora 
spp., The analysis of the Pst10 organic solvent extract by thin-layer chromatography 
(TLC) and the antagonistic activity tests highlight the existence of three differ-
ent antifungal compounds produced by P. striatisporum Pst10. To study the Pst10 
antifungal spectrum of Pst10 the dual culture assays were used. In the other hand, 
To determine the effect of Pst10 sterilized liquid culture filtrates (SLCF) on sporan-
gium and spore germination, 100 μl of sporangium or spore suspensions of P. capsici 
were spread on 20 ml PDA agar containing 1 ml Pst10 SLCF. PDA plates were incu-
bated at 28 C for 24, 72, and 120 h. After each incubation time, 100 sporangia or 
spores were counted and germination rate was calculated under a light microscope.

Using fungi as biological agents to control or suppress the growth of P. infes-
tans is not just limited to Trichoderma and Penicillium even they were the most 
fungi reported. In 2020 [75] Isolated Aspergillus flavipes from agricultural soils as 
a strong inhibitor for growth of various species of Phytophthora. As well as, the 
crude extracellular extract of broth cultures of A. flavipes displayed a significant 
growth inhibition of various Phytophthora spp., The putative compounds from A. 
flavipes were chemically verified as 3-hydroxy-2′,4,4′,6′-tetramethoxychalocone, 
7,3,4,5′-tetramethoxyflavanone, isovitexin and amodiaquine. The non-activity 
of this compounds on several pathogens while their noticeable drastic effect on 
Phytophtora zoospores germination, mycelial anastomosis, sporangial formation 
and causing enlarged hyphal tips, dwarfness to the hyphal length. This results 
suggest that A. flavipes compounds are considered potentially as antiphytophthoral. 
Moreover, [89] described an antifungal metabolite, oosporein, which was isolated 
from the liquid culture of Verticillium psalliotae that produced the antagonistic 
effects on P. infestans. Oosporein exhibited a significant growth-inhibitory effect 
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on P. infestans in comparison with other phytopathogenic fungi. De Vries et al. [90] 
found that Out of an analysis of 12 fungal endophytes, Phoma eupatorii isolate 8082 
and Monosporascus spp., inhibited the growth of P. infestans in co-culture using 
the agar diffusion assays, co-inoculation in planta and anthocyanin, presumably 
through the secretion of secondary metabolites, particularly since their culture 
extracts were also active. Furthermore, the study reported that the two of the 
endophytes exhibited global inhibition of nine European P. infestans isolates. These 
examples indicate that many fungi species as a beneficial microbes are also char-
acterized with high potential to control P. infestans directly by antagonistic activity 
which inhibit the mycelia growth and the zoospore/zoosporangia germination via 
the production of a range of biocompounds and by the induction of defense mecha-
nisms. Nonetheless, the use of beneficial fungi as a potential candidate to be more 
studied and tested as a novel biocontrol agent in the field providing an alternative to 
resistance gene breeding and application of agrochemicals.

5. Mode of action

As mentioned early, previous investigations highlight the importance of fungi 
and bacteria as biological control against P. infestans. Thus, gaining insight into 
mechanisms is of high importance for disease control. It is reported that microor-
ganisms engage several antagonistic mechanisms against plant pathogens, including 
antibiosis, mycoparasitism, competition for nutrients and space, promotion of 
plant growth, induced plant defense mechanisms, and modification of environ-
mental conditions. Among those mechanisms, the antibiosis refers to interaction 
lethal between microorganisms through secondary metabolites, which is of high 
importance to identify target cell, protein or enzyme, in concrete, implicated in 
the mechanism. Moreover, identification of chemical substance responsible on 
inhibiting of plant pathogens is a task challenge, due to volatility of compounds 
and their synergetic effects. Until now, fewer compounds from microorganisms 
were shown to effectively affect P. infetans. These include Phenazine-carboxylic 
acid [91], Oosporein [92], β-Rubromycin [93], Iturin A [94], Fenngycin A, [95, 96], 
Thiobutacin [97], Bikaverin [98], Fusaric acid [98], 2,5-diketopiperazine [99] and 
Xenocumacine 1 [100], listed in Figures 1 and 2. Moreover, detailed mechanism of 
interaction against P. infestans was developed only with β-Rubromycin, Iturin A and 
phenazine-1-carboxylic acid. β-Rubromycin belongs to the quinone antibiotics that 
have the ability to inhibit retroviral reverse transcriptase but also act as inhibitors of 
DNA polymerases [101]. [94] evaluated the activity of β-Rubromycin produced by 
Streptomyces isolated from soil against P. infestans, showing that this compound was 
capable of inhibiting the infection caused by sporangia and zoospores in tomato 
plants. The mechanism of action seems to be related to the up regulation of the RIO 
kinase-like gene that are involved in morphological development, altering processes 
as important in P. infestans as cyst germination and hyphal elongation. [95] evalu-
ated the biocontrol capacity of Bacillus subtilis WL-2 against P. infestans, establish-
ing that Iturin A was the metabolite involved in the inhibition capacity against this 
phytopathogen, causing cell membrane disruption and an irregular internal cell 
structure. Iturin A is a lipopeptide that exerts its antimicrobial action through the 
alteration of the cell membrane via the production of pores that generate osmotic 
perturbation [102]. In addition to its activity in the membrane it was observed that 
iturin A was capable of generating mitochondrial damage in P. infestans, causing 
oxidative stress and alterations in the respiratory chain which alter ATP synthesis. 
[54] reported the effect of phenazine-1-carboxylic acid (PCA) produced by a strain 
of Pseudomonas fluorescens on the transcriptome of P. infestans, establishing that this 
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compound alters the expression of genes involved in functions like phosphorylation 
mechanisms, transmembrane transport and oxydo-reduction activities.

Another method of disease control, so-called Mycroparasitism, is able to antago-
nize plant pathogens and promote plant growth by treatment with other microorgan-
isms. Mycoparasitism is a direct mechanism in which microogranism colonizes the 

Figure 1. 
Anti-Phytophthora infestans compounds produced by fungi microorganisms.

Figure 2. 
Anti-Phytophthora infestans compounds produced by bacteria microorganisms.



11

Plant Beneficial Microbes Controlling Late Blight Pathogen, Phytophthora infestans
DOI: http://dx.doi.org/10.5772/intechopen.99383

pathogen through detection, parasitization and growth actions [103, 104]. This pro-
tection strategy has been recognized as an important mechanism of biological control. 
Mycoparasitics such as the oomycete Pythium oligandrum [105], Pythium periplocum 
[106] and different species from Trichoderma including T. asperellum, T. atroviride,  
T. virens, and T. harzianum are successfully used against P. infetans. These mycopara-
sitic grow faster than their pathogenic plant counterparts, which means that they can 
occupy rhizosphere space and nutrition, thus promoting both plant growth [107] 
resistance in host plants [108, 109]. The mechanism of Trichoderma spp., for example, 
appear to be very complex involving the detection of plant pathogen through chemot-
ropism; lysis of the pathogen’s cell wall (the key to mycoparasitism) [110]; pathogen’s 
hyphal penetration by appresorial formation; production of cell wall-degrading 
enzymes (CWDEs) and peptaibols, mediated by heterotrimeric G-proteins and 
mitogen-activated protein (MAP) kinases [111]; and parasitizing pathogen’s cell wall 
contents [112]. Degradation of pathogen’s cell wall during mycoparasitism is mediated 
by a set of hydrolytic enzymes including β-(1,6)-glucanases, chitinases, and proteases. 
Several members from each of these classes have been shown to be involved in myco-
parasitism and/or to be induced under mycoparasitism-related growth conditions 
[113]. Although these microorganisms demonstrate their potential as mycoparasitic 
biological control agents, fewer mechanistic studies have been investigate the molecu-
lar or genetic determinants of their mycoparasite lifestyle.

However, rather than directly expanding into infected plant, microorgan-
ism might compete with the pathogen producing secondary metabolites able to 
partially or totally inhibit the pathogenic fungi. This classical mechanism occurs 
when special and nutritious resources are limited. Consequently, the antagonistic 
microorganisms feed on the available resources for growth, causing therefore a 
reduction in the growth of the pathogens. A published example of metabolite-
pathogen protection is that produced by Phoma eupatorii 8082. This endophyte has 
a remarkable potential to produce the anthocyanin product [114]. The latter could 
be produced as a result of a stress response positively regulated by jasmonic acid 
[115–118]. Hence, it is possible that tissue colonization with Pho. Eupatorii induce 
jasmonic acid dependent defense responses, which may play a role in the inhibi-
tion of the P. infestans infection. Indeed, [119] reported that jasmonic acid induced 
reduction of infection in the leaves of tomato and potato plants and [120] testified 
the mandatory existence of jasmonic acid to activate the defensive responses elicited 
by a peptide secreted by P. infestans. Some microorganisms including Trichoderma 
spp., produce inorganic compounds able to alter soil pH and therefore able to 
modify micronutrients (phosphate, iron and Manganese) [121]. In these extreme 
conditions Trichoderma spp., were able to produce various kinds of Siderophore 
products [122], including: caprogens, ferrichromes and fusarinines [123], thanks 
to the change in non-ribosomal peptide synthetase products and diverse non-
ribosomal peptide synthetase-encoding genes [124]. Siderophores play a dual role, 
an antagonistic agent by inhibiting or even suppressing the growth of pathogens by 
divesting source of iron, as well as an agonist agent that helps to solubilize iron that 
was not available to the plant. These abilities explain the competition mechanism on 
the nutrient resources.

Alternative mechanism of disease control against attack of pathogens is based on 
the induction of systemic and local resistances [125]. Such resistances result from 
complex interactions between plants and antagonist elicitors, provoking physiologi-
cal and biochemical alteration of cells. Indeed, two major kinds of systemic resis-
tances have been studied; systemic acquired resistance (SAR) [126] and induced 
systemic resistance (ISR) [127]. Both systemic resistances are based on distinct phy-
tohormonal signals. Various compounds have been proposed as potential signals for 
systemic resistances activation. The non-protein amino acid, β-Aminobutyric acid 
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(BABA), is known to induce resistance against various pathogens on a wide range 
of plants. Indeed, DL- β-Aminobutyric acid-induced resistance of potato against 
late blight pathogen P. infestans trough the signaling compound salicylic acid [128]. 
BABA also provided significant control against P. infestans on tomato [129]. The sys-
temic defense is induced in a salicylic acid dependent manner; furthermore various 
inorganic chemicals including indole acetic acid, di-potassium hydrogen ortho-
phosphate, hydrogen peroxide, calcium chloride, ferric chloride and metalaxyl were 
able to induce resistance against the disease caused by P. infestans. Treatment with 
those agents promotes the synthesis of defense enzymes like peroxidase, polyphenol 
oxidase (POX) and phenylalanine ammonia lyase (PAL) [130]. In addition, Curdlan 
b-1,3-Glucooligosaccharides has shown to enhance plant resistance against the 
pathogen P. infestans in foliar tissues of potato (Solanum tuberosum L. cv. McCain 
G1) by accumulation of H2O2 and salicylic acid and the activities of phenylalanine 
amino-lyase, b-1,3-glucanase and chitinase [131].

6. Conclusion

The application of beneficial bacteria and fungi as biocontrol agents is an 
interesting building block of sustainable and environmentally sound management 
strategies of Phytophtora infestans. A holistic approach should be considered to 
reach satisfactory levels of P. infestans control by a beneficial microbes. Based on 
the number of currently known isolates with biocontrol activity against P. infestans, 
the predominant genera are Pseudomonas, Bacillus, Streptomyces, Trichoderma and 
Penicillium. The ability to affect survival structures, sharing the same ecological 
niche as Phytophtora, inducing resistance responses in the plant and promoting 
plant growth are desirable characteristics of a competent BCA against P. infestans. 
However, among several criteria the potential bottlenecks such as large-scale 
production, formulation, preservation conditions, shelf life, application methods, 
and combination potentiality of one or more microbes should be tackled early in the 
selection process.
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Appendices and nomenclature

BABA Acide bêta-aminobutyrique.
BCA Biological control agent.
CWDE Cell wall degrading enzymes.
HCN Hydrogen cyanide.
ISR Induced systemic resistance.
IAA Indole acetic acid.
MAP Mitogen-activated protein.
PAL Phenylalanine ammonia lyase.
PCA Phenazine-1-carboxylic acid.
PGPM Plant growth promoting microbes.
POX Peroxidase.
PR-protein Pathogenesis related protein.
SAR Systemic acquired resistance.
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