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Chapter

New Types of Dissipative
Streaming Instabilities
Eduard V. Rostomyan

Abstract

Two new, previously unknown types of dissipative streaming instabilities (DSI)
are substantiated. They follow from new approach, which allows solving in general
form the classical problem of an initial perturbation development for streaming
instabilities (SI). SI is caused by relative motion of the streams of plasma compo-
nents. With an increase in level of dissipation SI transforms into a DSI. The trans-
formation occurs because dissipation serves as a channel for energy removal for the
growth of the negative energy wave of the stream. Until recently, only one type of
DSI was known. Its maximal growth rate depends on the beam density nb and the

collision frequency ν in the plasma as �
ffiffiffiffiffiffiffiffiffiffi

nb=ν
p

. All types of conventional beam-
plasma instabilities (Cherenkov, cyclotron, etc.) transform into it. The solution of
the problem of the initial perturbation development in systems with weak beam-
plasma coupling leads to a new type of DSI. With an increase in the level of
dissipation, the instability in these systems transforms to the new DSI. Its maximal
growth rate is � ffiffiffiffiffi

nb
p

=ν. The second new DSI develops in beam-plasma waveguide
with over-limiting current of e-beam. Its growth rate � nb=ν. In addition, the
solutions of abovementioned problem provide much information about SI and DSI,
significant part of which is unavailable by other methods.

Keywords: beam-plasma instability, dissipative instability,
development of initial perturbation, growth rate, absolute/convective instability

1. Introduction

Streaming instabilities (SI) occupy a prominent place among other plasma
instabilities. They are caused by a motion of some plasma components relative to
others. An example is the well-known beam–plasma instability [1]. With this
instability, the directed motion of a group of fast electrons passing through the
background plasma excites potential oscillations with a large growth rate near the
plasma frequency. Particular attention to this instability is mainly due to the idea of
creating sources of powerful electromagnetic radiation on its basis. At present, these
sources have many advantages over the known vacuum sources [2, 3]. One more
example (we mention these two only) is the Buneman instability [4], in which
plasma electrons move relative to ions.

In the overwhelming majority of investigations beam–plasma interaction is
considered without any noticeable dissipation. It, actually, was assumed that the
dissipation is small and cannot have any noticeable effect on the physical processes.
In this case, the development of instability leads to an increase in the amplitude of
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electromagnetic oscillations in the plasma, as well as their energy at the expense of
beam kinetic energy. In the absence of dissipation, the level of excited oscillations
may be quite high, and their energy can even be comparable to the initial energy of
the beam [5].

However, generally speaking, dissipation in the system (collisions between
plasma particles, heating of metal surfaces due to their complex impedance, etc.)
can play an essential role in plasma–beam interaction. It can become not only a
decisive factor in limiting the spatial and temporal growth, determining the field
amplitude and the mode structure and limits the growth rates. In addition to these
properties, which are common to all systems, it is necessary to pay special attention
to the unique role of dissipation in systems with a stream of charge particles:
dissipation of high level does not suppress the SI completely. Strong dissipation
transforms each SI to instability of other type – to dissipative streaming instability
(DSI) [1]. This type of instabilities is due to the presence of the negative energy
wave (NEW) in a stream of charge particles [6, 7]. In fact, dissipation serves as a
channel for energy removal for excitation of this wave. This leads to instabilities of a
new physical nature, to DSI. Dissipation is the cause of this instability.

The physical nature of SI is not as simple as it might seem at first glance. It takes
a lot of effort1 to understand it clearly. This is all the more so, if we are dealing with
the transformation of SI into a DSI. The transformation (in general, the transfor-
mation of one type of instability into another) makes the behavior of SI in a system
with dissipation especially interesting. In addition, there are other reasons that
significantly increase interest in the study of problems associated with dissipation
and the DSI caused by it. Some of them are as follows.

Modern high-frequency microwave electronics, both plasma and vacuum, have
two basic trends of development: an increase in the frequency and power of the
output radiation [2]. With increasing frequency, the thickness of the skin layer on
the resonators’ walls decreases. This, in turn, leads to an increase in active energy
losses. Actual dissipation in the system increases.

The second trend – an increase in the power of output radiation – leads to the
need to increase the beam current. The role of space charge phenomena increases
also, as well as the role of the NEW. In these circumstances it becomes important to
take into account all factors that also lead to the buildup of the same wave i.e. to
dissipation. In a sense, dissipation becomes associated with the space charge phe-
nomena. In addition with an increase in the beam current, the return current
increases also. With account the decrease in the skin layer and the finite conductiv-
ity of metallic surfaces, this leads to an increase in the level of dissipation in the
system. All this indicates that dissipation, along with the space charge of the beam
plays an important role in microwave electronics. A detailed understanding of the
role of all these phenomena is vital for many problems aimed at achieving high-
intensity beams and their applications.

Until recently, only one DSI was known in beam–plasma interaction theory [1].
Its maximal growth rate depends on collision frequency ν in plasma and on the

beam density nb as �
ffiffiffiffiffiffiffiffiffiffi

nb=ν
p

. All types of the beam–plasma instabilities (Cheren-
kov, cyclotron, etc.), with an increase in the level of dissipation, transform into it.
This only known DSI has a number of specific features in comparison with other
(no-dissipative) instabilities: relatively low level of excited oscillations, relatively
small growth rate, etc. Many investigations have been devoted to its study. It was

1 The instability of low density e-beam in plasma is a vivid example demonstrating this sense. It is

discovered in 1948, experimentally proven in early sixties; however its physical meaning became finally

clear in the middle of seventies (see [8]).
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assumed that various phenomena in space plasma and in plasma of controlled
fusion can be explained on the basis of this instability.

However, recent studies have shown that there are other DSI also [9–11]. The
interaction of the stream with the background plasma critically depends on some
basic parameters of the system and/or on its geometry. Their changes lead to new
physics of the beam-plasma interaction and to previously unknown types of DSI.
The parameters are: the level of correlation between the beam and the plasma fields
and the value of the beam current.

Available methods of instability investigation do not allow getting complete
information on the process of transformation of given instability into another type.
Is known the most complete information on instability can be obtained by solving
the problem of the evolution of fields in space and time during the development of
an initial perturbation. This problem is classical in theory of instabilities [12]. Its
results can clear up how the fields of given instability transform to the fields of
another one along with many other accompanying details. The character of the
space–time evolution of an initial perturbation is an important issue in many
branches of physics. However, the results of this problem are hardly achievable.
Ultimately its mathematical solution reduces to calculation of the integral with
complete dispersion relation (DR) in the denominator of the integrand. For the
result the DR should be specified and solved before integration. This sharply
reduces generality of results. And even in the special cases, it is not always possible
to carry out the integration. In [13] an approach is presented that allowed overcome
difficulties and obtain analytical expression for the fields’ space–time structure for
all types of conventional beam-plasma instabilities. Results show that with increase
in level of dissipation all types of beam-plasma instabilities transform to the only
known type of DSI.

This review shows that the number of DSI is not limited by the above-mentioned
DSI. Two new types of DSI are substantiated. They follow from solution of the same
classical problem of initial perturbation development. One of the DSI manifests
itself in the results of solving the problem in systems with weak beam-plasma
coupling. Weak interaction realizes if the beam and the plasma are spatially sepa-
rated by a considerable distance. Under weak coupling the beam actually is left to its
own and its proper oscillation come into play. Moreover, among them is the NEW.
Its interaction with plasma causes instability, the growth rate of which reaches
maximum at resonance of the plasma wave with the NEW. This resonance of wave–
wave type was called “Collective Cherenkov effect” [14]. An increase in the level of
dissipation leads to a new DSI with the growth rate � ffiffiffiffiffi

nb
p

=ν. Actually the new
approach to solution of the classical problem has detected this new DSI.

The second new DSI appears in results of solving of the same problem in uni-
form cross-section beam-plasma waveguide with over-limiting e-beam. With an
increase in the beam current the fields of its space charge affects more and more on
the beam-plasma interaction. This manifests itself in two ways. Along with the
increasing of the role of space charge oscillations, static fields of the beam space
charge set an upper limit on the beam current that can pass through a given vacuum
electro-dynamical system. The limit can be overcome by plasma filling. Plasma
neutralizes the space charge of the beam. Plasma-filled waveguides can transmit
e-beams with a current that is several times higher than the limiting current in
vacuum waveguide. The fields of overlimiting e-beam space charge changes the
character of its instability. The instability of over-limiting beams is not associated
with any radiation mechanism [9, 14]. Its growth rate reaches maximum at the
point of exact Cherenkov resonance and depends on the beam density as

ffiffiffiffiffi

nb
p

[9, 14, 15], With an increase in the level of dissipation, one more new type of DSI
develops [9]. Its growth rate depends on the parameters as � nb=ν.
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In present review special attention is paid to systems, the geometry of which is
similar to geometry of plasma microwave sources. These devices are a cylindrical
waveguide with thin annular plasma and spatially separated thin annular e-beam. In
this geometry the new types of DSI manifest themselves also [10].

In order to dispel all possible doubts about the correctness of the results, both
new DSI are also substantiated by conventional analysis of the corresponding DR.
To obtain a geometry-independent result for weak beam-plasma coupling we use
perturbation theory based on smallness of the coupling parameter.

2. The only known DSI and transition to it

For the beginning we shortly present rezoning, from which follow: all types of
beam-plasma instabilities (Cherenkov, cyclotron, beam instability in spatially peri-
odical structure) transform to the only known DSI with the maximal growth rate
� ωb=

ffiffiffi

ν
p

(ωb is the Langmuir frequency of the beam, ν is the collision frequency in
plasma). The transition takes place with an increase in the level of dissipation. This
help us to reveal a criterion for identification of DSI type.

In general, the dispersion relation (DR), describing a plasma system penetrating
by an electron beam can be written as

D ω,kð Þ ¼ D0 ω,kð Þ þDb ω,kð Þ ¼ 0 (1)

where D0 ω,kð Þ ¼ ReD0 ω,kð Þ þ iImD0 ω,kð Þ describes the plasma (without
beam), but Db ω,kð Þ describes the beam contribution in the system dispersion

Db ω,kð Þ ¼ � ω2
bA ω,kð Þ

γ3 ω� kVb � fð Þ2
, (2)

ω is the frequency, k is the wave vector of perturbations, ωb is Langmuir
frequency of the e-beam, Vb is the velocity of the beam electrons (directed along z

axis), A ω,kð Þ is a polynomial with respect to ω and k, γ ¼ 1� V2
b=c

2
� ��1=2

. It is
assumed that ImD0j j< < ReD0j j and Db ω,kð Þj j< < D0 ω,kð Þj j, f ¼ 0 with the
Cherenkov interaction, with the cyclotron interaction f ¼ nΩ=γ, (Ω is the cyclotron
frequency, n is the harmonic number), and f ¼ kcorVb when e-beam interacts with
the periodical structure, kcor ¼ 2π=l, l is the length of spatial period.

The beam electrons interact with the proper oscillations of the system and the
interaction leads to instability. Developing instability manifests itself most effec-
tively at frequencies and wavelengths close to the proper frequencies of the system
in the absence of the beam, and, at the same time, close to the beam natural
frequencies. In fact, along with (1) following condition is met

ω� kVb � f ¼ 0: (3)

All (conventional) beam-plasma instabilities, including DSI, follow from
(1)–(3). With an increase in level of dissipation all types of no-dissipative instabil-
ities (Cherenkov, cyclotron etc) transform into the well-known DSI. If one searches
the solutions of DR (1) in the form ω ¼ ω0 þ δ (ω0 satisfies (1) and (3); this case
called resonance instability) he arrives to the expression

δ
∂D0

∂ω

� �

ω ¼ ω0,

k ¼ k0

þ iImD0 ω0, k0ð Þ ¼ ω2
b=γ

3
� �

A ω0, k0ð Þ
δ2

: (4)
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All types of no-dissipative instabilities follow the first and the right-hand side
term. In this case the dissipative (second) term in (4) is small. The DSI follows from
the second term (when it is greater than the first term) and the right-hand side

term. The relation between the respective growth rates δ ν¼0ð Þ and δ ν!∞ð Þ is

δ ν!∞ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ ν¼0ð Þ� �3

2ImD0

∂D0

∂ω

s

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

δ ν¼0ð Þ� �3

ν

s

�
ffiffiffiffiffiffiffiffiffiffi

nb=ν
p

(5)

where the frequency of collisions in plasma ν is introduced (ImD0 � ν). The
expression (5) presents relation between the growth rates of no-dissipative and
dissipative instabilities. Below we use (5) and its analogs as a criterion for
identification of DSI type.

3. Weak beam-plasma coupling. New type of DSI

3.1 Solution of the problem of initial perturbation development under weak
beam-plasma coupling

The best way to study an instability in detail and its possible transformation to
that of other type is the solving of the problem of initial perturbation development.
The information obtained by other ways is insufficient and does not give any
details. Here we present general (geometry independent) solution of the problem
for weakly coupled beam-plasma systems.

Consider a system consisting of a mono-energetic rectilinear electron beam and
cold plasma. To begin with, suppose the following: the plasma and the beam are
weakly coupled (e.g. in a consequence of a sufficiently large distance between
them). Let an initial perturbation arises at a point z ¼ 0 (the electron beam propa-
gates in the direction z>0) at the instant t ¼ 0 and the instability begins develop-
ing. Our goal is to obtain the fields’ space–time distribution at an arbitrary instant
t>0 and investigate in detail the instability behavior by analyzing obtained expres-
sion. In the process, we interest only the longitudinal structure of the fields, i.e.,
their dependence on the longitudinal coordinate z and time t. The transverse
structure of the fields can be obtained by expanding in terms of the system’s
eigenfunctions. In accordance with this, only two arguments are highlighted below:
frequency and longitudinal component of the wave vector. Other arguments are
irrelevant in the consideration below. To avoid overburdening the formulas, they
are omitted.

In given case of weak beam-plasma coupling the instability is the result of the
interaction of the beam negative energy wave (NEW) and the slowed down wave in
the plasma. The interaction is of Collective Cherenkov type. We proceed from the
theory of wave interaction in plasma [16]. In terms of this theory the problem of the
initial perturbation evolution under instability development in non-equilibrium
plasma can be considered based on the set of partial differential equations for the
amplitudes of the interacting waves: beam charge density wave Eb z, tð Þ and the
slowed down electromagnetic wave Ew z, tð Þ in the plasma

∂

∂t
þ Vb

∂

∂z

� �

Eb z, tð Þ � iδ2Ew z, tð Þ ¼ J z, tð Þ (6)

∂

∂t
þ Vp

∂

∂z
þ ν ∗

� �

Ew z, tð Þ � iEb z, tð Þ ¼ 0
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where t is the time, z is the coordinate along the beam propagation direction,
J z, tð Þ is a function determined by the initial conditions, Vb is the directed velocity
of the beam, Vp is the group velocity of the resonant wave in plasma, Vb >Vp, ν ∗

describes dissipation in plasma and is proportional to the frequency of collisions in
it. The meaning of the denotation δ will be cleared up below. Note, the set (6) is
meaningful irrespective of the problem of development of any instability. Gener-
ally, it describes resonant interactions between two waves in unstable medium. One
only condition should be satisfied: the growth rate attains maximum under Collec-
tive Cherenkov Effect. If the maximum is attained under conventional Cherenkov
Effect, as for conventional beam-plasma instabilities, the interaction should be
described by other set of Equations [16].

The solution of the set (6) gives the dependence of the field’s amplitude on
longitudinal coordinate and time under instability development. Applying the
Laplace transformation with respect to time t and the Fourier transformation with
respect to the spatial coordinate z, we obtain following expressions for the
transform Ew ω, kð Þ:

Ew ω, kð Þ ¼ J ω, kð Þ
D ω, kð Þ

D ω, kð Þ ¼ ω� kVbð Þ ω� kVp þ iν ∗
� �

þ δ2 (7)

The field’s amplitude Ew z, tð Þ can be found by inverse transformation

Ew z, tð Þ ¼ 1

2πð Þ2
ð

C ωð Þ

dω

ð

∞

�∞

dk J ω, kð Þ exp �iω tþ ikzð Þ
ω� kVbð Þ ω� kVp þ iν ∗

� �

þ δ2
(8)

where C ωð Þ is the contour of integration with respect to ω. For given case it is a
straight line that lies in the upper half plane of the complex plane ω ¼ Reωþ iImω

and passes above all singularities of the integrand.
Thus, the problem has been reduced to the problem of integration in (8). It is

somewhat simpler in comparison to the integral, which represents classical solution.
Instead of full DR its analog stands. The analog is determined by interaction of the
waves, participating in the instability development. This replacement simplifies
integration. However, it remains difficult and many authors use roundabout
methods carry out an expression for possible estimation of the fields behavior
[17, 18]. Presented here method easily leads to the desired result i.e. to expression
for space–time distribution of the fields. We merely transform the variables ω and k
to another pair ω and ω0 ¼ ω� kVb. The first integration (over ω) may be carried
out by the residue method and the integration contour must be closed in the lower
half-plane. The first order pole is

ω ¼ � 1� Vp=Vb

� ��1
δ2=ω0 þ iνþ ω0Vp=Vb

� �

(9)

The second integration (over ω0) cannot be carried out exactly, and we are
forced to restrict ourselves to the approximate steepest descent method [19]. This
method gives result in the limit of relatively large t. According to this method, the
contour of integration should be deformed to pass through the saddle point in the
direction of the steepest descent. The saddle point is found from the condition

d

dω0 ω ω0ð Þtþ iω0z=Vbð Þ ¼ 0 (10)

6
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and is equal to

ω0
s ¼ iδ Vbt� zð Þ= z� Vpt

� �� �1=2
(11)

As a result we arrive to the following expression for the field’s space time
structure under development of the instability in spatially separated beam-plasma
system

Ew z, tð Þ ¼ � J0
2
ffiffiffi

π
p exp χ wkð Þ

ν z, tð Þ
Vb � Vp

� �1=2δ
1=2 Vbt� zð Þ1=2

(12)

χ wkð Þ
ν ¼ χ

wkð Þ
0 � ν ∗ Vbt� z

Vb � Vp
; χ wkð Þ

0 ¼ 2δ

Vb � Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z� Vpt
� �

Vbt� zð Þ
q

J0 ¼ J ω ¼ ω ωs
0ð Þ,ω0 ¼ ω0

s

� �

3.2 Analysis of the instability development

The expression (12) looks very complicate. At first glance it is impossible to
extract any information on the instability behavior from it. However, it turned out,
the expression may be easily analyzing. Moreover, the results are obtained from
scratch, i.e. they are not based on prior research. Substantial part of the information
is unavailable by other way. In particular, the analysis clearly shows that with
increase in level of dissipation the no-dissipative instability turns to a new type of
DSI and provides detailed information on both instabilities.

The properties of the instability is determined mainly by the exponential factor

exp χ wkð Þ
ν z, tð Þ ¼ exp

2δ

Vb � Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z� Vpt
� �

Vbt� zð Þ
q

� ν ∗ Vbt� z

Vb � Vp

	 


, (13)

which provides many information: the temporal and the spatial growth rates, the
spread of the unstable perturbations’ velocities, the nature of the instability (abso-
lute or convective), the effect of dissipation on instability, etc.

First consider some general properties of the instability, which follow from (13).
It is easily seen that in the absence of dissipation unstable perturbations have

velocities in the range from Vp to Vb. The wave packet moves in the beam propa-
gation direction and, along with exponential growth of the fields, expands. Its
length increases over time l � Vb � Vp

� �

t. The knowledge of the boundary
velocities of unstable perturbations allows at once determining the nature of the
instability (convective/absolute) based on the definition only, without reference to
additional studies (we mean the Sturrock’s laws [20]). It is clearly seen that the
instability is convective in the laboratory frame and other frames moving at
velocities V >Vb and V <Vp. However, if the observer’s speed is within the range
Vp <V <Vb, then the same instability is absolute (see Figure 1).

Now we turn to determination of the meaning of the denotation δ in (6). For this
we consider case ν ¼ 0 and find the point of the field’s maximum from expression

∂χ
wkð Þ
0 z, tð Þ
∂z

¼ 0 (14)

Its root is zm ¼ w
ν¼0ð Þ
pk t i.e. the point of the field’s maximum moves at velocity

7
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w
ν¼0ð Þ
pk ¼ 1=2ð Þ Vb þ Vp

� �

: (15)

In the wave theory the velocity (15) is called convective velocity. It characterizes
the spatial convection of the fastest growing perturbations. (15) shows that the peak
of the wave packet disposes in its middle. The packet is symmetric with respect to

its peak. Substitution of zm into the χ wkð Þ
0 z, tð Þ determines the field’s behavior in the

maximum as E0 zm, tð Þ � exp δ tð Þ, i.e. δ represents the maximal growth rate of the
instability, which develops in absence of dissipation in systems with weak beam-

plasma coupling. At the point zm ¼ w
ν¼0ð Þ
pk t the peak forms, because here the growth

rate of perturbations is maximal.
The meaning of the parameter δ may also be determined from the DR (7) only,

bypassing the results of integration (12). The general expression for the group
velocity Vgr ω, kð Þ obtained from DR (7) has the limit (15) under k ¼ 0. The same

limit (note that ν ¼ 0) leads to DR in form ω2 þ δ2 ¼ 0, i.e. the parameter δ is the
imaginary part of complex frequency (the growth rate). In this case (absence of
dissipation) the instability is due to interaction of the NEW with the plasma. To

emphasize the important role of δ we add the respective indexes δ � δ
ν¼0ð Þ
NEW . Its

dependence on specific parameters is found out below.

At a fixed point z the field first grows up to the value � exp δ
ν¼0ð Þ
NEW z= VbV0ð Þ1=2

n o

that is reached at the instant t ¼ z=wa where

wa ¼ 2VbVp= Vb þ Vp

� �

: (16)

Then the field decreases, and at the time t≥ z=V0 the wave packet completely

passes given point. The exponent δ ν¼0ð Þ
NEW z= VbV0ð Þ1=2 is, in fact, the maximal spatial

growth rate. At a given point, the field reaches its maximum at the moment when
the peak has already passed it (see Figure 1). The reason is that perturbations
moving at lower velocities reach the point for a longer time, and they have time to
grow more. wa is the velocity of the most effectively amplified perturbations.

Thus, the solution of the problem of initial perturbation development along with
other detailed information, gave results of conventional initial and boundary prob-
lems. This coincidence confirms correctness of developed approach (initial
assumptions, mathematics, etc.). An additional advantage of the approach is in its
geometry-independence. At first glance, the presented approach seems more
complicated than traditional approaches, but this complexity is only apparent.

Figure 1.
Asymptotic shapes of the instability development under weak beam-plasma coupling vs. longitudinal coordinate
z at instants t1 ¼ 0, 5=δν¼0

NEW t2 ¼ 0, 9=δν¼0

NEW t3 ¼ 1, 2=δν¼0

NEW . The dotted line gives the shape of the wave packet
for strong beam-plasma coupling.

8

Plasma Science and Technology



3.3 The influence of dissipation. New type of DSI

Dissipation significantly influences on the presented picture of the instability
development and changes it. First of all, it suppresses slow perturbations. The wave

packet shortens. The threshold velocity V
wkð Þ
th is determined from the condition

χ
wkð Þ
0 ¼ ν ∗ Vbt� zð Þ= Vb � V0ð Þ and is equal

V
wkð Þ
th ¼ λ02Vb þ V0

1þ λ02
>V0; λ

0 ¼ ν ∗ = 2δ
ν¼0ð Þ
NEW

� �

(17)

Only high-velocity perturbations (in the range V
wkð Þ
th < v<Vb) grow. The change

in the velocity of the trailing edge shortens the packet’s length and can affects the
nature of instability (convective/absolute) if the frame’s velocity lies in the range

Vp ≤ v≤V
wkð Þ
th . Also, dissipation limits the growth rates of perturbations with veloc-

ity v. Substituting z ¼ vt we have for the field E z ¼ vt, tð Þ � expG vð Þt, where

G vð Þ ¼ 2δ ν¼0ð Þ
NEW

Vb � Vp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vb � vð Þ v‐Vp

� �

q

� ν ∗ Vb � v

Vb � Vp
(18)

As expected, the growth rates fall down. Dissipation distorts the symmetry of
the induced wave packet. In presence of dissipation the dynamics of the fields can
be obtained from the same Eq. (14) accounting for dissipation. It has the form

z� wgt
� �2 ¼ λ02 Vbt� zð Þ z� V0tð Þ: (19)

The solution of (18) gives the point of the field maximum z
νð Þ
pk ¼ w

νð Þ
pk t, where

w
νð Þ
pk ¼ 1

2
Vb þ Vp

� �

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

λ02

1þ λ02

s

Vb � Vp

� �

8

<

:

9

=

;

>w
ν¼0ð Þ
pk (20)

This expression shows that with an increase in the level of dissipation, the peak
shifts more and more to the front of the wave packet. This takes place along with

the decreasing of the wave packet’s length. Substitution of w νð Þ
pk into χ

wkð Þ
ν gives the

field value in the peak and shows the respective growth rate as the function on the
level of dissipation

E0 z ¼ zpkt, t
� �

� exp δ
νð Þ
NEW t

n o

; δ
νð Þ
NEW ¼ δ

ν¼0ð Þ
NEW f λ02

� �

; f xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi

1þ x
p

�
ffiffiffi

x
p

(21)

The function f xð Þ presents the dependence of the growth rate on the level of dissipa-

tion (see Figures 2 and 3). In the limit ν ∗ ! ∞we have E0 !� exp δ
ν!∞ð Þ
wk t

n o

, where

δ
ν!∞ð Þ
wk ¼ δ

ν¼0ð Þ
NEW

h i2
=ν ∗ � ffiffiffiffiffi

nb
p

=ν ∗ (22)

As a criterion for the type of DSI this relation between the growth rates of DSI

δ
ν!∞ð Þ
NEW and the growth rate of SI δ ν¼0ð Þ

NEW sharply differs from that for the conventional
case (5). Actually the expression (22) shows that with an increase in level of
dissipation in weakly coupled beam-plasma systems the instability, caused by the
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beam’s NEW interaction with the plasma transforms to a new type of DSI. Its
characteristic peculiarity is in new, previously unknown, inverse proportional
dependence of the growth rate on dissipation. Below this result is confirmed by
conventional electro-dynamical analysis of the DR for weakly coupled beam-plasma
system.

3.4 Substantiation of the new DSI by conventional analysis of the DR

From electro-dynamical point of view, a spatially separated beam-plasma sys-
tem is nothing, but a multilayer structure. The traditional analytical consideration
of such systems leads to a very cumbersome DR, which, in addition, is highly
dependent on the geometry and greatly complicates with an increase in the number
of layers. However, the importance of the problem and the need for its analytical
investigation has led to development of specific methods. Here an approach is
presented that allows avoiding abovementioned difficulties. Also, the approach has
an important advantage: the procedure for obtaining the DR does not depend on
specific shape/geometry. In other words, obtained results can be adapted to systems
of any geometry. The approach considers the problem of weak beam-plasma inter-
action by perturbation theory. The small parameter, which underlies the theory, is

Figure 2.
The function f xð Þ presents the dependence of the growth rate of the instability, caused by NEW excitation on the
level of dissipation. Here x ¼ ν=δν¼0

NEW .

Figure 3.

Shapes of developing waveform versus longitudinal coordinate at fixed instant 3=δ
ν¼0ð Þ
NEW for various values of

dissipation (parameter k ¼ ν=δ
ν¼0ð Þ
NEW ): k1 ¼ 0, k2 ¼ 1, k3 ¼ 2, k4 ¼ 4.
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the parameter of weak beam-plasma coupling. We briefly present here the basics of
this approach accounting for dissipation [11].

Consider a system consisting of a mono-energetic rectilinear electron beam and
cold plasma. To begin with, suppose the following: the plasma and the beam are
weakly coupled (e.g. a consequence of a sufficiently large distance between them).
We also assume their homogeneity in the cross section. The geometry of the system is
not specified. It also is assumed that the beam current is less than the limiting current
in the vacuum waveguide. Dissipation in the system is taken into account by the
introduction the collisions in plasma. For simplicity, consideration is limited to the
case of a strong external longitudinal (to the beam propagation direction) magnetic
field, which prevents the transverse motion of the beam and plasma particles.

The small parameter underlying the perturbation theory is the parameter of
weak coupling between the beam and the plasma (that is, the smallness of the
integrals describing the overlap of beam and plasma fields). In the zero order
approximation, the perturbation theory assumes independence of the beam and
plasma. In the first-order approximation, the theory leads to the DR [11, 14].

Dp ω, kð ÞDb ω, kð Þ ¼ G κ4δεpδεb
� �

ω¼ω0,k¼k0
(23)

Dp,b ω, kð Þ ¼ k2
⊥p,b � κ2δεp,b;G< < 1

κ2 ¼ k2 � ω2

c2
; δεp ¼

ω2
p

ω ωþ iνð Þ ; δεb ¼
ω2
b

γ3 ω� kVbð Þ2
,

ω and k are the frequency and longitudinal component of the wave vector, ωp,b

are Langmuir frequencies for the plasma and the beam respectively, ν is the colli-

sion frequency in the plasma, Vb is the velocity of the beam electrons, γ ¼
1� V2

b=c
2

� ��1=2
, c is speed of light, G is the coupling parameter, the point ω0, k0f g is

the intersection point of the beam and the plasma dispersion curves, the values k⊥p
and k⊥b play role of transverse wave numbers. Analytically, G as well as k⊥p and k⊥b
are expressed through the integrals of eigenfunctions of the zero order problem
[11, 14]. The integral for G represents overlap of the beam and plasma fields. It
shows how far the plasma field penetrates the beam and vice versa. The specific
expressions for k⊥p, k⊥b and G are not essential for the subsequent presentation and
are not presented here (see [11, 14]).

The expressions Dp,b ω, kð Þ ¼ 0 are the zero order DR for the plasma and the

beam respectively. Their solutions are assumed to be known. The form of the DR
(23) is comparatively simple. It shows the interaction of beam and plasma waves.
Using (23) with small G, it is easy to describe instabilities in given system. The main
result of a decrease in the beam–plasma coupling is in the increase in role of the
beam NEW. Its interaction with plasma leads to instability. The spectra of slow (�)
and fast (+) beam waves follow from the roots of Db ω, kð Þ ¼ 0. If one searches them
in form ω� ¼ kVb 1þ x�ð Þ, x�j j< < 1, the roots become [11, 14].

x� ¼ �
ffiffiffi

α
p

=γ
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β4γ2αþ 1
q

þ β2γ
ffiffiffi

α
p� �

, (24)

where α ¼ ω2
b=k

2
⊥bV

2
bγ

3, β ¼ Vb=c. The interaction of the NEW (x�) with the
plasma leads to instability. If one looks for the solutions of (23) in the form ω ¼
kVb 1þ xð Þ, ( xj j< < 1) it becomes [11].

xþ qþ iν=kVbð Þ x� xþð Þ x� x�ð Þ ¼ Gα=2γ4 (25)
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where q ¼ 2γ2ð Þ�1
k2
⊥pV

2
bγ

2=ω2
p � 1

� �

. Mathematically, the instability is due to

corrections to the expression for the slow beam wave x ¼ x� þ x0. Under collective
Cherenkov resonance q ¼ �x� [11], the equation for x0is

x0 þ iν= 2γ2kVb

� �� �

x0 ¼ �G
ffiffiffi

α
p

= 4γ3
� �

(26)

In absence of dissipation the instability is due to NEW interaction with the
plasma. Its growth rate is

δ
ν¼0ð Þ
NEW ¼ kVbImx0 ¼ kVb=2γð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G
ffiffiffi

α
p� �

=γ
q

: (27)

We emphasize unusual dependence on the beam density as n1=4b (for strong

coupling this dependence is � n
1=3
b ). With ordinary Cherenkov resonance the

system is stable. Under collective Cherenkov resonance dissipation manifested itself
as an additional factor that enhances NEW growth and the instability gradually
transforms to that of dissipative type. The Eq. (26) gives an expression for the
growth rate as a function on level of dissipation

δ λð Þ ¼ δ
ν¼0ð Þ
NEW f λ2

� �

; λ ¼ 1=2γ2
� �

ν=δ
ν¼0ð Þ
NEW

� �

: (28)

where f xð Þ is the function given in (21). The dependence of the growth rate on
the level of dissipation in (28) coincides to that in (21). In limit λ ! 0 (28) coincides
to (27). In the opposite limit of strong dissipation λ ! ∞ (28) represents the growth
rate of the new type of DSI (it also follows from (26) by neglecting the first term in
brackets)

δ
ν!∞ð Þ
NEW ¼

2γ2 δ
ν¼0ð Þ
NEW

� �2

ν
¼ G

ffiffiffi

α
p

2γ

kVbð Þ2
ν

� ωb

ν
(29)

We arrive to the same new type of DSI presented in (22). The expression (28)
shows a gradual transition of the growth rate of no-dissipative instability caused by
NEW interaction with plasma into the growth rate of new type of DSI. It develops
under weak coupling and differs from the conventional DSI (with an growth rate �
ωb=

ffiffiffi

ν
p

). In [21] the same new DSI is substantiated in a finite external magnetic field.

4. Uniform cross section beam-plasma waveguide. One more new type
of DSI

4.1 Evolution of the initial perturbation in plasma waveguide with
over-limiting electron e-beam

One more new DSI arises under consideration of the problem of the initial
perturbation development for the instability of over-limiting beam (OEB) in uni-
form cross-section plasma waveguide.

Consider a cylindrical waveguide, fully filled with cold plasma. A mono-
energetic relativistic electron beam penetrates it. The external longitudinal mag-
netic field is assumed to be strong enough to freeze transversal motion of the beam
and the plasma electrons. We also assume that the beam and plasma radii coincide
with the waveguide’s radius and consider only the symmetrical E-modes with
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nonzero components Er, Ez, and Bφ. The development of resonant instability in this
system is described by the DR and resonant condition those are [1].

D0 ω, kð Þ þDb ω, kð Þ ¼ 0;ω ¼ kVb (30)

D0 ¼ k2
⊥
þ κ2 1�

ω2
p

ω ωþ iνð Þ

 !

;Db ¼ �κ2
ω2
b=γ

3

ω� kVbð Þ2
; κ2 ¼ k2 � ω2

c2

ω and k are the frequency and the longitudinal (along beam propagation direc-
tion that is z axis) wave vector, k⊥ ¼ μ0s=R, R is the waveguide’s radius, μ0s are the
roots of Bessel function J0: J0 μ0sð Þ ¼ 0, s = 1,2,3 … , ωp,b are the Langmuir frequen-

cies for the plasma and the beam, Vb is the beam velocity, γ ¼ 1� V2
b=c

2
� ��1=2

, ν is
the frequency of collisions in plasma, c is the speed of light.

The character of the beam-plasma interaction changes depending on the beam
current value. If the beam current is less than the limiting current in vacuum
waveguide the instability is due to induced radiation of the system eigenwaves by
the beam electrons. But, if the beam is over-limiting, its instability has the same
nature as the instability in medium with negative dielectric constant [9, 14, 15]. We

introduce a parameter α ¼ ω2
b=k

2
⊥
V2

bγ
3, which represents the beam current value

and the character of beam-plasma interaction. It corresponds (correct to the factor
γ�2) to the ratio of the beam current to the limiting current in vacuum waveguide

[14] I0 ¼ mV3
bγ=4e, i.e. α ¼ Ib=I0ð Þγ�2 (Ib is the beam current). The values α< < γ�2

correspond to under-limiting beam currents Ib < < I0, but the values γ�2
< < α< < 1

correspond to over-limiting beam currents. This is possible under comparatively
high values of the relativistic factor γ. Here we consider development of an initial
perturbation in the system, when the beam current slightly exceeds the limiting
vacuum value. In this case the instability is due to a-periodical modulation of the
beam density in medium with negative dielectric constant. Its growth rate attaints
maximum under exact Cherenkov resonance and is equal [15].

δ
ν¼0ð Þ
ovl ¼ ωbVb

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ 1þ μð Þ
p , μ ¼ γ2

k2
⊥
V2

b

ω2
p � k2

⊥
V2

bγ
2

(31)

However, the resonant frequency, which is determined by the expressions (30),
remains unchanged [15].

In order to show the variety of possible approaches to the solution of the prob-
lem of the initial perturbation development, in given case we solve it by other way.
We turn to the set of origin equations, which describes e-beam instability in mag-
netized plasma waveguide

∂Er

∂z
� ∂Ez

∂r
¼ � 1

c

∂Bφ

∂t
; L̂ v0b ¼ e

m
Ez;

∂v0p
∂t

¼ e

m
Ez � νv0p

∂Bφ

∂z
¼ � 1

c

∂Er

∂t
; L̂n0b ¼ �n0

∂v0b
∂t

;
∂n0p
∂t

¼ �np0
∂v0p
∂z

(32)

1

r

∂

∂r
rBφ ¼ 1

c

∂Er

∂t
þ 4πe np0v

0
p þ nb0v

0
b þ nb

0Vb

� �

; L̂ � ∂

∂t
þ Vb

∂

∂z
;

where t is time, z and r are the cylindrical coordinates, Er, Ez and Bφ are the
fields’ components which are coupled with the beam, v0b,p and n0b,p are the pertur-
bations of velocity and density for the beam and the plasma respectively, n0 and np0
are the unperturbed densities for beam and plasma respectively. In the process, we
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interest only the longitudinal structure of the fields, i.e., their dependence on the
longitudinal coordinate and time. The transverse structure of the fields can be
obtained by expansion on series of the system’s eigenfunctions. For given case those
are the Bessel functions. We use the expansions

Ez r, z, tð Þ ¼
X

s

E sð Þ
z z, tð ÞJ0 μ0sr=Rð Þ,Bϕ r, z, tð Þ ¼

X

s

B
sð Þ
ϕ r, tð ÞJ1 μ1sr=Rð Þ (33)

where J0 and J1 are the Bessel functions; μos and μ1s their roots in ascending
order, J0 μ0sð Þ ¼ 0, J1 μ1sð Þ ¼ 0, s ¼ 1, 2, 3, … . The quantities vp,b and np,b should be

expanded by analogy to Ez, but Er – by analogy to Bφ. From here on we deal with the
expansion coefficients and mention arguments z and t only.

The fields’ growth in the linear stage reveals itself most effectively on frequencies,
closely approximating to roots of the DR and, simultaneously, to kVb (resonant
instability). The conditions (30) hold. In this connection it is reasonable to assume

that originated perturbations form a wave packet of following type (e.g. for E sð Þ
z z, tð Þ):

E sð Þ
z z, tð Þ ¼ E0 z, tð Þ exp �iω0tþ ik0zð Þ, (34)

where the carrier frequency ω0 and wave vector k0 satisfy the conditions (30).
We also assume that the amplitude of the wave train E0 z, tð Þ varies slowly in space
and time as compared to k0 and ω0 that is

∂E0

∂t

















< < ω0E0j j ;
∂E0

∂z

















< < k0E0j j: (35)

Thus, the problem of the initial pulse behavior reduces to determination of the
slowly varying amplitude (SVA) E0 z, tð Þ. The equation that E0 z, tð Þ satisfies can be
derived from the set of origin Eqs. (32). The expansions (33) reduce it to a set of the
equation for the amplitudes of expansions. In its turn the resulting set can be
reduced to one equation for E0 z, tð Þ. We write it in form similar to the DR

ω̂� k̂Vb

� �2
D0 ω̂, k̂
� �

E sð Þ
z z, tð Þ ¼ ω2

bγ
�3κ2E sð Þ

z z, tð Þ (36)

where ω̂ and k̂ are differential operators ω̂ � i ∂

∂t; k̂ � �i ∂

∂z. The DR in form (30)

follows from (36). To derive the equation for E0 z, tð Þ one should expanding (36) in
power series near resonant values of frequency ω0 and wave vector k0 by using the

relations ω̂ ! ω0 þ i ∂

∂t and k̂ ! k0 � i ∂

∂zwith account of OEB existence condition. As a

result we arrive to the following second-order partial differential equation for E0 z, tð Þ

∂

∂t
þ Vb

∂

∂z

� �

∂

∂t
þ Vp

∂

∂z
þ ν0

� �

E0 z, tð Þ ¼ δ2ovlE0 z, tð Þ (37)

where ν0 ¼ ImD0 ∂D0=∂ωð Þ�1, V0 ¼ � ∂D0=∂kð Þ ∂D0=∂ωð Þ�1
n o

ω ¼ ω0

k ¼ k0

and the

expression for δovl is obtained from the relation δ3ovl ¼ κ2ω2
bγ

�3
∂D0=∂ωð Þ�1 account-

ing the condition for OEB. It is important to emphasize that this denotation (as well
as V0) is introduced for reasons of simplicity of the resulting Eq. (36) only.

The solution of (37) is, actually, known. If one returns to the set (6) and trans-
forms it (under J z, tð Þ ¼ 0) to one equation for Ew z, tð Þ then the equation will
completely coincide to (37). This means that we already have the solution of (36)
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and its analysis. It only remains to rewrite the solution (12) in new denotations and,
where needed, re-interpret results. This shows that the instability in uniform cross-
section beam-plasma waveguide develops in space and time in the same manner as
the instability in weakly coupled beam-plasma system, and δovl is its growth rate in

limit ν ! 0, that is δovl � δ
ν¼0ð Þ
ovl . However there is a very important quantitative

difference. In present case the growth rate δ ν¼0ð Þ
ovl depends on the beam density as

� n
1=2
b (for the case of weak beam-plasma coupling the dependence is � n

1=4
b (see

(27)). The criterion for determining the type of DSI takes the form

δ
ν!∞ð Þ
ovl ¼ δ

ν¼0ð Þ
ovl

h i2
=ν0 � ω2

b=ν
0 (38)

Comparison of (38) with (22) indicates one more new type of DSI. It develops in
uniform cross section beam-plasma waveguide under over-limiting beam current
and high level of dissipation. Its growth rate depends on the beam density and
collision frequency as � nb=ν

0.

4.2 Substantiation of the second new DSI by conventional method

Now we substantiate the second new DSI by solving the DR (30). We look for its
roots in the form ω ¼ kVb þ δ, δ< < kVb. The DR (30) reduces to [1, 14].

x3 þ i
ν

ω0

ω2
pv0

Vbγ
2ω2

⊥

x2 þ αv0Vb

γ2c2
x ¼ α

2γ4
v0
Vb

(39)

where x ¼ δ=kVb, α ¼ ω2
b=k

2
⊥
V2

bγ
3, β ¼ Vb=c, ω

2
⊥
¼ k2

⊥
V2

bγ
2, v0 ¼ μVb= 1þ μð Þ, is

the group velocity of the resonant wave in the system without beam, μ ¼ γ2ω2
⊥
=ω2

0;

ω0 ¼ ω2
p � ω2

⊥

� �1=2
is the resonant frequency of the plasma waveguide.

The solutions of (39) depend on the beam current value that is on the value of
parameter α. If α< < γ�2 (under-limiting e-beams) one can obtain the growth rates
of conventional instability under ν ¼ 0 (first and right-hand side terms) and in limit
ν> > δund i.e. DSI

δund ¼
ffiffiffi

3
p

2

ω0

γ

ω2
b

2ω2
0 1þ μð Þ

� �1=3

; δ
νð Þ
und ¼ ω

3=2
0

2γ3=2ωp

ffiffiffiffiffiffi

ωb

ν

r

(40)

If the beam current increases and become comparable or higher than the limit-
ing vacuum current i.e. γ�2 ≤ α< < 1, the physical nature of the instability changes.
It becomes due to a-periodical modulation of the beam density in medium with
negative dielectric constant. The distinctive peculiarity of this instability is in
following: its growth rate attains maximum under exact Cherenkov resonance and
is equal to (31) [9, 11, 14, 15]. If, along with the beam current, dissipation also
increases the instability turns to DSI of over-limiting beam with growth rate [9].

δ
νð Þ
ovl ¼

β2

γ

ω2
b

ω2
p

ω2
0

ν
� ω2

b

ν
: (41)

We emphasize new dependences on ν and on the beam density. This, actually,
substantiates one more new type of DSI. It develops in uniform cross section beam-
plasma waveguide if the beam current is higher than the limiting vacuum current.
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5. The role of the new DSI in no-uniform-cross-section beam-plasma
waveguide

5.1 Statement of the problem. Dispersion relation

In this section we pay special attention to systems, the geometry of which is
similar to the geometry of plasma microwave sources and possible development
of the new types of DSI in such systems. The simplest theoretical model of
plasma microwave generators assumes relativistic e-beam propagating along axis
of a plasma filled waveguide of radius R. The beam and plasma are assumed to be
completely charge and current neutralized. In the waveguide cross-section the
plasma and beam are annular, with mean radii rp and rb. Their thicknesses Δp

and Δb are much smaller, than the mean radii. Strong external longitudinal
magnetic field is assumed to freeze transversal motion of beam and plasma
electrons.

For theoretical study of the problem we use an approach [10], which gives result
for arbitrary level of beam-plasma coupling. This condition is obligatory for
obtaining comprehensive results. The DR, which follows from the approach, has a
form, which clearly shows interaction of the beam and plasma waves. The approach
proceeds from equation for polarization potential ψ

∂

∂t
Δ⊥ þ L̂
� �

ψ ¼ �4π Jbz þ Jpz

� �

, L̂ ¼ ∂
2

∂z2
� 1

c2
∂
2

∂t2
(42)

Here Jbz r⊥, z, tð Þ ¼ pb r⊥ð Þ jbz z, tð Þ and Jpz r⊥, z, tð Þ ¼ pp r⊥ð Þ jpz z, tð Þ are perturba-
tions of the longitudinal current densities in the beam and plasma. Functions
pb,p r⊥ð Þ describe transverse density profiles of the perturbations of the longitudinal

currents in the beam and the plasma. For homogeneous beam/plasma pb,p � 1 for

infinitesimal thin pb,p � δ r� rb,p
� �

(δ is Dirac function), Δ⊥ is the Laplace operator

over transverse coordinates, z is the longitudinal coordinate, t is the time, c is the

speed of light. The longitudinal electric field expresses as Ez ¼ L̂ψ . The equations
for jbz and jpz are

∂

∂t
þ Vb

∂

∂z

� �2

jbz ¼
ω2
bγ

�3

4π

∂

∂t
Ez;

∂

∂t
þ ν

� �

jpz ¼
ω2
p

4π
Ez, (43)

where ωp,b are the Langmuir frequencies for plasma and beam respectively, ν is

the effective collision frequency in plasma, γ ¼ 1� V2
b=c

2
� ��1=2

, Vb is the velocity of

beam electrons.
The DR, which follows from the statement, is still very cumbersome (of integral

type). To reduce the DR to a simple algebraic form one should make following
expedient for theoretical model assumption: the plasma and the beam are not just
thin but infinitesimal thin. In this case the DR becomes

Dp ω, kð ÞDb ω, kð Þ ¼ Gκ4δεpδεb, (44)

where Dp,b ω, kð Þ ¼ k2
⊥p,b � κ2δεp,b, δεp ¼

ω2
p

ω ωþiνð Þ, δεb ¼
ω2
b

γ3 ω�kV2
bð Þ2,κ

2 ¼ k2 � ω2=c2,

k is the wave vector along axis, ω is the frequency, k⊥p and k⊥b play role of the zero
order transversal wave numbers for plasma and beam [11, 14].
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k2
⊥p,b ¼ rp,bΔp,bIl κrp,b

� � Kl κrp,b
� �

Il κrp,b
� � � Il κRð Þ

Kl κRð Þ

" #( )�1

(45)

(Il and Kl are modified Bessel and Mac-Donald functions, l ¼ 0, 1, 2… is the
azimuthal wave numbers). G is the coupling parameter. It depends on the overlap
of the plasma and the beam fields and shows efficiency of their interaction

G ¼

Il κrbð ÞKl κrp
� �

Il κRð Þ � Kl κRð ÞIl κrp
� �

Il κrp
� �

Kl κrbð ÞIl κRð Þ � Kl κRð ÞIl κrbð Þ rb ≤ rp

Il κrp
� �

Kl κrbð ÞIl κRð Þ � Kl κRð ÞIl κrbð Þ
Il κrbð ÞKl κrp

� �

Il κRð Þ � Kl κRð ÞIl κrp
� � rp ≤ rb

8

>

>

>

<

>

>

>

:

(46)

An important property of G is: G =1 for rp ¼ rb and G < 1 in other cases. In long

wavelength limit (for definiteness l ¼ 0 and rb ≤ rp) we haveG≈ ln R=rp
� �

= ln R=rbð Þ,
but in opposite limit G≈ exp �2κ rp � rb









� �

(for arbitrary l).

5.2 Growth rates

The DR (44) determines proper oscillations of transversally no uniform beam-
plasma waveguide. The changes of the physical character of beam-plasma interac-
tion must reveal themselves on its solutions. Dp,b ω, kð Þ ¼ 0 are the DR for wave-

guide with thin annular plasma and e-beam respectively. The spectra of fast (+) and
slow (�) waves are

ω� ¼ kVb 1þ x�ð Þ; x� ¼
ffiffiffi

α
p

=γ
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β4γ2αþ 1
q

� β2γ
ffiffiffi

α
p� �

; (47)

where β ¼ Vb=c. The parameter α ¼ ω2
b=k

2
⊥bV

2
bγ

3 is familiar (see above). It

determines the beam current value: α ¼ Ib= γ2I0ð Þ (Ib is the beam current, I0 is the
limiting current in vacuum waveguide). In the limit of under-limiting beams x� !
� ffiffiffi

α
p

=γ. In opposite limit of over-limiting beam xþ ¼ 1=2β2γ2 and x� ¼ �2β2α. If
one looks for solutions of (44) in form ω ¼ kVb 1þ xð Þ, x< < 1 it becomes

xþ qþ i
ν

ku

1� 2β2γ2x

2γ2

� �

x� xþð Þ x� x�ð Þ ¼ G
α

2γ4
1� 2β2γ2x
� �2

, (48)

where q ¼ k2
⊥pu

2γ2=ω2
p � 1

� �

=2γ2. The Eq. (48) presents sound way to study

instabilities in given system. First of all, it is easily seen that in conditions of
growing negative energy wave x≈x� and collective Cherenkov resonance q≈� x�
the role of dissipation increases. For under-limiting e-beams α≤ 1=γ2 and in case of
strong coupling G � 1 the DR (44) leads to the well-known conventional beam
instabilities of no-dissipative and dissipative type. The growth rates of these

instabilities have well-known dependencies on beam density � n
1=3
b and on dissi-

pation (� 1=
ffiffiffi

ν
p

). Both for these instabilities proper oscillations of the beam are
neglected. Only for explanation of the physical meaning of the DSI the conception
of NEW should be invoked. However, if G< < 1 (weak coupling) the growing of
the NEW plays dominant role. In this case the growth rate of no-dissipative
instability reaches its maximum under Collective Cherenkov resonance q ¼ ffiffiffi

α
p

=γ
and is equal
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Imωð Þ ν¼0ð Þ
und ¼ kVb=2γð Þ G

ffiffiffi

α
p

=γ
� �1=2: (49)

This expression coincides to (27). Dissipation coming into interplay transforms
this instability to DSI of new type with growth rate (coincides to (29))

Imωð Þ ν!∞ð Þ
und ¼ G

ffiffiffi

α
p

kVbð Þ2=2γν (50)

As it should be, this is the instability discovered under consideration of the
classical problem of the initial perturbation development in weakly coupled beam-
plasma systems.

Of particular interest are limit of high, over-limiting currents of e-beam
γ�2

< < α< < 1. In this case the DR (44) takes the form

xþ qþ i
ν

ku

1� 2γ2x

2γ2

� �

xþ 2αð Þ ¼ �G
α

γ2
1� 2γ2x
� �

(51)

For ν ¼ 0 the analysis of (51) leads to following. Under single particle resonance
we have either instability of negative mass type (under G � 1) with the growth rate
Imω ¼ ku

ffiffiffi

α
p

=γ, or stability (under G << 1). But under collective Cherenkov effect
q ¼ 2α the growth rate of developing instabilities is

Imωð Þ ν¼0ð Þ
ovl ¼

ffiffiffi

3
p

kVbα for G � 1

2kVbα
ffiffiffiffi

G
p

for G< < 1

(

(52)

The instability (52) under G � 1 has mixed mechanism: it is caused simulta-
neously (i) by a-periodical modulation of the beam density in media with negative
dielectric constant and (ii) by excitation of the NEW. But the lower expression is
the growth rate of instability caused only by excitation of the NEW of overlimiting
e-beam. The presence of dissipation intensifies the growing of the slow beam wave.
Instability turns to be of dissipative type with growth rate that again is inverse
proportional to dissipation.

Imωð Þ νð Þ
ovl ¼ 2 kuð Þ2Gα=ν � ω2

b=ν (53)

However, the dependence on the beam density is completely different. This is
the same DSI, which develops in uniform cross-section beam-plasma waveguide
under over-limiting currents. Instabilities of the same type may be substantiated for
finite thicknesses of the beam and plasma layers in waveguide. In this case one must
use perturbation theory based on smallness of coupling coefficient.

As follows from this section, in the geometry of microwave plasma sources, the
development of both new DSI is possible. Basic parameters of the both new DSI,
and the conditions of their development should be taken into account upon design
of the high power, high frequency plasma microwave devices.

6. Conclusion

Thus, based on very general initial assumptions, we have found out that the
number of DSI in the beam-plasma interaction theory is not limited by the only
previously known type. Two new, previously unknown types of DSI are presented.
The new DSI reveal themselves in the analysis of solution of the problem of initial
perturbation development. This problem is classical in the theory of instabilities.
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The first new DSI is the dissipative instability under weak beam-plasma coupling. In
absence of dissipation the instability in these systems is caused by the interaction of
the beam NEW with the plasma. With an increase in the level of dissipation this
instability gradually transforms to the new type of DSI. Its maximal growth rate
depends on the beam Langmuir frequency ωb and the frequency of collisions in
plasma ν as ωb=ν. This, more critical (as compared to conventional), inverse
proportional dependence on ν is a result of superposition of two factors those lead to
growth of the beam NEW: weak coupling and dissipation.

The second new type of DSI is dissipative instability of over-limiting e-beam in
uniform cross section waveguide. With increase in the beam current, its space
charge and inner degrees of freedom reveal themselves more efficiently. If the beam
current becomes higher than the limiting current in vacuum waveguide then the
instability mechanism changes. In uniform cross section beam-plasma waveguide
the instability becomes due to a-periodical modulation of the beam density in
medium with negative dielectric constant. In this case the increase in the level of
dissipation leads to one more new type of DSI with the maximal growth rate � ω2

b=ν.
The same types of DSI develop in systems having geometry, similar to micro-

wave sources: cylindrical waveguide with thin annular beam and thin annular
plasma. If the coupling between the beam and the plasma hollow cylinders is weak
and the beam current is under-limiting the first type of DSI develops, but under
over-limiting currents – the second. However, if the coupling of the beam and the
plasma cylinders is strong, conventional type of DSI develops with well-known
growth rate � ωb=

ffiffiffi

ν
p

.
Both new DSI are confirmed by conventional analysis of the respective DR.
Some words about the approach used. It has many advantages. First of all, it is

based on very general initial assumptions and gives results regardless on geometry
and specific parameters. The same approach is used for solving the same problem
for conventional beam-plasma instabilities of all types (Cherenkov type, cyclotron
type etc) [13], for the Buneman instability [22] etc. Obtained expressions for the
spatial–temporal distribution of growing fields clearly show that with increase in
the level of dissipation in background plasma, all these SI transform into DSI of
conventional type. In addition, the analysis of obtained expressions gives much
more detailed information on SI than other methods give. Part of the information
on SI is not available in any other ways. The coincidence of other information to the
results of conventional analysis confirms the validity of the approach (initial
assumptions, mathematics etc).

Also, the presented approach shows that the DR describing the SI of given type
can serve not only for solving of the initial/boundary problems and obtaining the
dispersion curves. This point of view is very simplified. The approach shows that
much more additional information is available from the DR. It, in fact, provides
results on the initial perturbation development.

Summarizing, one can state that the presented approach can serve as an inde-
pendent and very effective method for studying of any SI. There is no need to solve
the problem again. One should only substitute the parameters of given instability in
general expression for the field’s space–time distribution. The usage of this
approach instead of traditional initial/boundary problems gives complete picture of
the instability development. At first glance, it might seem that this method of
analyzing instabilities is more complicated. However, this complexity is only
apparent. In addition, this complexity, if any, is overlapped by the completeness of
the information received.
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