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Chapter

The Use of Computational Fluid
Dynamics in the Analysis of
Gas-Liquid-Liquid Reactors
Godfrey Kabungo Gakingo and Tobias Muller Louw

Abstract

Gas–liquid–liquid reactors are typically found in bioprocess setups such as those
used in alkane biocatalysis and biological gas stripping. The departure of such
reactors from traditional gas–liquid setups is by the introduction of a secondary
(dispersed) liquid phase. The introduction of the latter results in complicated
hydrodynamics as observed through measurements of velocity fields, turbulence
levels and mixing times. Similarly, changes in mass transfer occur as observed
through measurements of gas hold up, bubble diameters and the volumetric mass
transfer coefficients. The design and analysis of such reactors thus requires the
adoption of an approach that can comprehensively account for the various observed
changes. This chapter proposes Computational Fluid Dynamics as an approach fit
for this purpose. Key considerations, successes and challenges of this approach are
highlighted and discussed based on a review of previously published case studies.

Keywords: Gas–liquid–liquid reactors, stirred tanks, hydrodynamics,
mass transfer, Computational Fluid Dynamics, predictive modelling

1. Introduction

Multiphase systems comprising of more than two phases are a common occur-
rence in the fields of chemical and bioprocess engineering. Such multiphase systems
may be comprised of a gas phase, a liquid phase and a solid phase as is the case in
froth flotation processes in the minerals sector [1, 2]. Alternatively, such multiphase
systems may be comprised of a gas phase and two immiscible liquid phases as is
often found in biological gas stripping [3] or biocatalysis [4]. Irrespective of the
application field, a common expectation among such multiphase systems is that
they are characterised by more complex hydrodynamics than two phase systems
which are reasonably well understood [5, 6]. Similarly, mixing and mass transfer
effects are expected to be more complex in such systems.

Given the above considerations, the design and analysis of multiphase systems
requires the use of comprehensive frameworks that are capable of taking into
account the various mechanisms of action that are at play. Computational Fluid
Dynamics (CFD) has been proposed as one such framework since it is able to
describe the hydrodynamics of multiphase systems based on fundamental equations
of flows [7]. Furthermore, coupling of CFD simulations to sub-models of mass
transfer, mixing or flotation can enable the description of these effects at finer
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resolutions than can be obtained based on empirical modelling. Thus, significant
effort has been recently directed towards the development and application of CFD
techniques to simulate multiphase systems comprising of two phase reactors [8–10]
as well as those with more than two phases [2, 11–13].

This chapter builds upon recent work by presenting a discussion on the use of
CFD in the design and analysis of gas–liquid–liquid reactors within the context of
mass transfer. Key considerations informing the modelling approach have been
discussed with their implementation illustrated by the review of recently modelled
case studies [12, 13]. Furthermore, the successes and challenges attending the CFD-
based modelling of gas–liquid–liquid reactors have been highlighted and on the
basis of these, recommendations have been given on areas requiring further inves-
tigation. The chapter thus addresses itself to graduate students, academics and
industrial practitioners interested in a comprehensive modelling framework for the
design and analysis of gas–liquid–liquid reactors.

2. Considerations in gas–liquid–liquid systems

Gas–liquid–liquid reactors are a common occurrence in the bioprocess field (see
Table 1). Such reactors tend to be comprised of one continuous liquid phase
(primary liquid phase) and two dispersed phases (gas phase and secondary liquid
phase) as illustrated in Figure 1. The departure of such reactors from traditional
gas–liquid reactors is through the introduction of a secondary liquid phase within

Primary

liquid phase

Secondary liquid phase

(volume fraction)

Gas phase Reactor type

(objective)

Reference

Water n-C11–18 alkane cut (0–100%) Pure oxygen STR1 (oxygen transfer) [14]

Oleic acid (0–100%) Pure argon STR (argon mass
transfer)

Water n-C12–13 alkane cut (0–20%) Air STR (oxygen transfer) [15]

Water n-Dodecane (0–100%) Pure oxygen STR (oxygen transfer) [16]

n-Heptane (0–100%)

n-Hexadecane (0–100%)

Water Silicone oil (0–10%) Air BCR2 (oxygen transfer) [17]

Air dosed with
styrene

BCR (biological gas
stripping3)

Water Anisole (0–10%) Air BCR (oxygen transfer) [18]

2-ethyl-1-hexanol (0–10%)

Decyl alcohol (0–10%)

Toluene (0–10%)

n-Heptane (0–10%)

n-Decane (0–10%)

Dodecane (0–10%)
1STR – stirred tank reactor.
2BCR – bubble column reactor.
3For more on biological gas stripping, see [3].

Table 1.
Selection of experimental work on gas–liquid–liquid reactors.
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the system. The introduction of the latter modifies the system in a manner that
impacts mass transfer and this can be seen by changes in the gas hold up, the bubble
diameters and the overall volumetric mass transfer coefficients [4]. Underpinning
these observable changes, however, are modifications to the fluid properties, mass
transfer properties and pathways as well as the reactor hydrodynamics. A consider-
ation of these modifications is necessary for appropriate modelling and as such a
brief review on the same is presented herein. In-depth reviews are available
elsewhere [4, 19, 20].

2.1 Changes in fluid properties

The introduction of a secondary liquid phase into a traditional gas–liquid reactor
can result in a change of fluid properties. For example, the surface tension between
the primary liquid phase and the gas phase can change depending on the degree of
solubility of the secondary liquid phase in the primary liquid phase. To characterise
this, surface tension values based on mutually saturated liquids have been reported
in literature [16, 18]. Such values have generally been obtained by mixing the
primary liquid phase with the additional liquid phases for long periods followed by
a separation of the phases and surface tension measurements using a tensiometer
[18]. Table 2 illustrates selected results from literature.

The results in Table 2 generally point to a decrease in the saturated surface
tension (σsat) with addition of the secondary liquid phase. Furthermore, this change
in surface tension has been observed to be greater when the secondary liquid phase
is more soluble in the primary liquid phase [18]. As a decrease in the surface tension
results in smaller gas bubbles, an enhancement in mass transfer can be expected.
However, this is not always the case. For example, Kundu et al. [18] observed a
negative impact on mass transfer upon the addition of toluene, anisole, decyl alco-
hol and 2-ethyl-1-hexanol despite a decrease in σsat (refer to Table 2). This points to
the presence of additional factors that need to be taken into account for a proper
description of mass transfer in such systems.

Two additional points need to be highlighted with regard to surface tension.
First, discrepancies in the reported values of σsat exist as seen in Table 2. For
example, Ngo & Schumpe [16] measured an insignificant change in σsat (71.8
mN/m) upon the addition of n-Heptane whereas Kundu et al. [18] measured a
significant change (σsat = 65 mN/m). Such discrepancies point to a need for
additional experimental measurements of σsat.

Figure 1.
Illustration of gas–liquid–liquid stirred tank reactor.
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A second point to note is that researchers have also attempted to report on
dynamic values of the surface tension [21]. This was achieved by preparation of a
“stable” liquid–liquid dispersion followed by measurement of the surface tension
[21]. The values obtained were in the range of 17–26 mN/m for an n-C10-C13 alkane
cut mixed with water [21]. These values were lower than those reported in Table 2
and tended towards the surface tension values of pure alkanes (23.9 mN/m for
n-Decane, 25.41 mN/m for n-Dodecane [18]). Consequently, it may be suggested
that a degree of separation of the liquid–liquid dispersion occurred during surface
tension measurements despite the best efforts of the researchers. In this case, the
settled-out and less dense alkane phase would form an intervening layer between
the gas phase and the dispersion.

Besides the above changes to the surface tension, the presence of a secondary
liquid phase can lead to changes in effective fluid properties such as the effective
density, the effective viscosity as well as the effective solubility. The pre-qualifying
term, “effective”, is used in this case since such properties are defined based on a view
of the liquid–liquid dispersion as a single pseudo-homogenous liquid. This view
permits for a simplification of the 3-phase gas–liquid–liquid reactor to an effective
2-phase reactor. Consequently, correlations derived for traditional 2-phase reactors,
such as Eq. (1) with an empirical basis and Eq. (2) with a theoretical basis [5], can be
used as a starting point for the design of 3-phase reactors. In these equations, KLa
represents the overall volumetric mass transfer coefficients in a 2-phase reactor
whereas xg and dg respectively represent the gas hold up and the bubble diameters
(see Eq. (3) and (4)). Other variables are as defined in the Nomenclature.

KLa ¼ Γ � Pg

V

� �x

νs
y (1)

KLa ¼ Λ �
ffiffiffiffiffiffi

Dc

p Pg=V

μc

� �0:25

� 6xg
dg

� �

(2)

Primary liquid phase Secondary liquid phase Saturated surface tension,

σsat (mN/m)

Reference

Water — 72.8 [18]

Dodecane 71

n-Decane 67

n-Heptane 65

Anisole 65

Toulene 44

2-ethyl-1-hexanol 43

Decyl-alcohol 38

Water — 72 [16]

n-Heptane 71.8

n-Dodecane 68.2

n-Hexadecane 71.2

Deionised water — 71.69 �0.14 Author’s laboratory

n-C14-C20 alkane cut 60.85 � 0.50

Table 2.
Saturated surface tension for various liquid–liquid combinations.
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dg ¼ 0:7
σ0:6gc

ρc
0:2 Pg

V

� �0:4

0

B

@

1

C

A

μc

μg

 !0:1

(3)

xg
1� xg

¼ 0:819
νs

0:67N0:4T0:267

g0:33
ρc

σ

� �0:2 ρc

ρc � ρg

 !

ρc

ρg

 !�0:067

(4)

Effective fluid properties can be specified on the basis of simple mixing rules
such as Eq. (5) for the effective density (ρeff ). Such equations consider the contri-
butions of the individual liquid phases based on their volumetric proportions (xi)
but neglect non-ideal effects that may arise from molecular interactions, commonly
found in homogeneous mixtures, which may lead to excess volumes. This notwith-
standing, experimental evidence suggests that such equations are sufficient for the
effective density [22] and the effective solubility (see next section). This may be
due to the poor mutual solubility of liquid phases typically tested for gas–liquid–
liquid reactor applications: the properties of the individual liquid phases remain
unchanged by the presence of a second, immiscible phase and the bulk properties
can be estimated by simple volume averaging.

ρeff ¼
X

n

i¼1

xiρi (5)

With regard to effective viscosity (μeff ), models of a more complicated form
than that given in Eq. (5) are required. This is due to the need to account for the
perturbation of fluid flow in the presence of droplets of the secondary liquid phase.
Models varying in complexity have been proposed. For example, the Taylor model
(see Eq. (6)) has been proposed for dilute dispersions of spherical droplets [23].
Additionally, models such as those given in Eq. (7) and (8) have been proposed for
non-dilute dispersions where the hydrodynamic interactions among droplets need
to be accounted for [23, 24]. Besides these, however, models have also been pro-
posed to account for non-zero shear rates in the fluid which introduce effects such
as droplet deformation [23, 25].

μeff

μc
¼ 1þ 2:5xd

0:4þ μr

1þ μr

� �

; xd ! 0 (6)

μeff

μc

2
μeff

μc
þ 5μr

2þ 5μr

" #1:5

¼ exp
2:5xd

1� xd=xm

� �

(7)

μeff

μc

2
μeff

μc
þ 5μr

2þ 5μr

" #1:5

¼ 1� xd
xm

� ��2:5xm

(8)

In the equations above, μr refers to the ratio of viscosity of the secondary liquid
phase (μd) to that of the primary liquid phase (μc). Variables xd and xm, on the other
hand, refer to the volume fraction of the secondary liquid phase and the maximum
packing limit of its droplets respectively.
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2.2 Changes in mass transfer properties and pathways

Properties of interest affecting mass transfer include the solubility and diffusiv-
ity of a species within the liquid–liquid dispersion. Taking the liquid–liquid
dispersion as a pseudo-homogenous liquid, effective properties have been defined.
For example, it has been observed that the effective solubility of a species (C ∗

eff) can
be specified according to the volumetric proportions of the liquids involved, once
again recognising that the presence of immiscible phases has a negligible effect on
the solubilities associated with individual phases [22, 26]. This is illustrated in
Eq. (9) below, with C ∗

i representing the solubility in liquid phase i and n
representing the total number of liquid phases.

C ∗

eff ¼
X

n

i¼1

xiC
∗

i (9)

Given the application fields of gas–liquid–liquid reactors (such as biological
gas stripping), the effective solubility is usually higher than the solubility of a
species in the primary liquid phase (C ∗

eff >C ∗

c ). This implies that a longer duration is
required to saturate the liquid–liquid dispersion with a given species in comparison
to the time required to saturate the pure primary liquid phase [27, 28]. Conse-
quently, for a fixed mass transfer rate, lower values of the overall volumetric
mass transfer coefficients can be obtained upon the addition of a secondary liquid
phase [28, 29].

With regard to the molecular diffusion of a species, the effective diffusivity
Deff

	 


has been defined as illustrated in Eq. (10) for dilute liquid–liquid dispersions
[30]. This equation, being of a general nature, has also been used to describe the
effective diffusivity of solid–liquid suspensions [31]. The variable Dr in this equa-
tion represents the diffusivity ratio whereas Dd and Dc represent the diffusivity of
the species in the secondary and primary liquid phases respectively.

Deff ¼ Dc
Dr 1þ 2xdð Þ þ 2 1� xdð Þ
Dr 1� xdð Þ þ 2þ xdð Þ

� �

;Dr ¼
Dd

Dc
(10)

It should be noted that the effective properties defined by Eqs. (9) and (10) can
be, in a general sense, regarded as bulk properties. Appropriate as it may be to
define them, a full description of mass transfer in a liquid–liquid dispersion also
requires an examination of changes introduced by the secondary liquid phase at the
mass-transfer interface. Tied to this are the questions whether the secondary liquid
phase will be present at the interface and whether it is involved in active uptake of
dissolving species at the interface. Indeed, the concept of a pseudo-homogenous
liquid implies that the secondary liquid phase will be present, not only in the bulk of
the primary liquid, but also at the interface. Furthermore, homogeneity implies that
a similar distribution of the secondary liquid phase is found at the interface as is
found in the bulk of the primary liquid phase. However, researchers have consid-
ered different possible configurations of the interface as illustrated in Figure 2. In
this way, the requirement for homogeneity has been relaxed at the interface while
being maintained in the bulk.

Assuming active uptake by the secondary liquid phase, different possible pathways
of mass transfer have arisen. These have included, for example, parallel mass transfer
and series mass transfer with or without the shuttling of the droplets of the secondary
liquid phase [14, 30, 32, 33]. These various pathways have been associated with an
enhancement in mass transfer besides that occurring due to changes discussed earlier
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(refer to Eq. (9) and (10)). A review of these pathways as well as their associated
enhancement factors can be found in the work by Dumont & Delmas [19].

2.3 Changes in reactor hydrodynamics

The hydrodynamics of a reactor are taken to refer to the mean velocity field and
the turbulence field within a reactor. These affect mass transfer in various ways. For
example, the transport of gas bubbles within a reactor (and hence overall gas hold
up) is dependent on the magnitude and orientation of the mean velocity field.
Additionally, mass transfer at the interface between the gas bubbles and the liquid
phase will depend on the prevailing local turbulence. Consequently, a change in the
reactor hydrodynamics will lead to a change in the mass transfer.

The addition of a secondary liquid phase has been observed to change both the
mean velocity field and the turbulence levels in stirred tank reactors [34–36]. Direct
measurements of the velocity through techniques such as Particle Image
Velocimetry [34, 36] and Laser Doppler Anemometry [35] have revealed that a
secondary liquid phase can dampen the mean velocities [34, 35] while either
increasing or decreasing the turbulence levels [34–36]. Further evidence in litera-
ture for a change in the hydrodynamics has been largely indirect – inferred from
examining the change in, for example, mixing time upon addition of a secondary
liquid phase [37, 38].

Two schools of thought have been postulated to explain the interaction of the
secondary liquid phase with the hydrodynamics of a reactor. The first has been
focused on the change in effective fluid properties. In this line of thinking, it has
been suggested that a decrease in the effective density should lead to an increase in
the velocities [34]. On the other hand, it has been suggested that an increase in the
effective viscosity should have a dampening effect on both the mean velocities and
the turbulence levels [34, 35].

The second school of thought, on the other hand, has been focused on the
augmentation or dampening of turbulence by the droplets of the secondary liquid
phase [34, 35]. Various mechanisms have been suggested in this regard although
these are still the subject of active research [39–42]. For example, whether a particle
(solid, liquid or gas) augments or dampens turbulence has been traditionally asso-
ciated with the size of the particle (dp) in relation to the integral (or large) scales of
turbulence (l) [43]. Large particles dp=l>0:1

	 


with characteristically large parti-
cle’s Reynolds numbers Re p >400

	 


have generally been associated with turbulence
augmentation through mechanisms such as vortex shedding in the wakes behind
the particles [43, 44]. On the other hand, small particles dp=l<0:1

	 


have generally

Figure 2.
Mass transfer interface illustrating possible configurations – (A) parallel mass transfer, (B) series mass transfer
without shuttling and (C) series mass transfer with shuttling.
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been associated with a dampening of turbulent kinetic energy (TKE) that occurs as
the particles are accelerated/dragged by the flow [39, 43].

It should be noted, however, that the above observations do not represent a
fixed rule; exceptions have been observed. For example, it has been observed that
particles of a size dp=l<0:1 can both augment and dampen turbulence depending
on the flow’s Reynolds number [45]. Furthermore, it has been observed that turbu-
lence can be augmented by particles of a size in the order of the Kolmogorov
(smallest) scales of turbulence [46–50]. In the latter cases, however, the non-
uniform modification of the spectrum of TKE by particles was considered with the
augmentation of TKE observed to occur at the small scales of turbulence [46–50].
Mechanisms that were proposed for the turbulence augmentation included flow
forcing due to the inertia [50] or buoyancy [49] of small particles that were well
correlated with the fluctuating fluid flow.

3. Computational fluid dynamics for gas–liquid–liquid reactors

As illustrated in the previous sections, the introduction of a secondary liquid
phase into a traditional gas–liquid reactor can result in a variety of changes.
Consequently, the modelling of mass transfer in gas–liquid–liquid reactors requires
a comprehensive modelling framework that can account for the different changes.
An empirical approach, such as illustrated in Eq. (11) [51], may not suffice as the
numerous effects introduced by the secondary liquid phase are reduced into a single
term with an adjustable exponent requiring optimisation (compare to Eq. (1)). This
is not an easily generalizable approach.

KLa
0 ¼ Γ � Pg

V

� �x

νs
y 1� xdð Þz (11)

Computational Fluid Dynamics (CFD), on the other hand, offers a fundamental
framework that can be built upon to incorporate as much level of detail (or physics)
as necessary/desired. This is the case since CFD offers an approximate/numerical
solution to the fundamental equations of flow governing a system/reactor [7, 52].
Consequently, the hydrodynamics of a reactor are resolved in space and time and
such hydrodynamic data can be coupled to fundamental models of mass transfer so
as to predict parameters of interest such as the overall volumetric mass transfer
coefficient, KLa

0.
As CFD-based approaches are inherently computationally intensive, a major

constraint to such approaches is the computational resources available [7, 52]. Thus,
a compromise has to be made between the level of physics to be captured and
computational resources available [7]. For example, prior consideration must be
given as to the level of resolution to be employed for the flow field. Similarly, an
appropriate continuum description of the phases involved must be chosen a priori.
Such compromises notwithstanding, a higher level of detail, accuracy and generality
is still maintained with a CFD-based approach in comparison to empirical
approaches. This will be illustrated in Section 4.

3.1 Modelling frameworks for hydrodynamics

As noted in the introduction to CFD above, several prior considerations have to
be made with regard to the modelling approach. These considerations tend to give
rise to different modelling frameworks or techniques. For example, as relates to the
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resolution of flow fields, it is possible to simulate the usually turbulent flow in a
reactor at all length- and time-scales using Direct Numerical Simulations but the
associated computational expense is prohibitive [53]. Therefore, filtering or aver-
aging of the flow field is usually done [53]. Filtering techniques such as those used
in Large Eddy Simulations offer an enhanced resolution of the flow field as com-
pared to averaging techniques [53]. However, they are still considered computa-
tionally expensive and their use has been largely limited to single-phase reactors
[53]. Averaging techniques such as those used to generate the Reynolds-Averaged
Navier–Stokes (RANS) equations, on the other hand, lead to tractable simulations
[53] and are a practical choice for the modelling of multiphase reactors.

With regard to the description of the phases, an Eulerian framework is typically
used for the continuous phase (primary liquid phase) and it involves describing the
flow based on a fixed observer position [54]. For the dispersed phases (gas and
secondary liquid phase), on the other hand, either an Eulerian framework or a
Lagrangian framework can be employed [54]. The Lagrangian framework involves
the tracking of individual particles of the dispersed phase within the flow field of the
continuous phase [54]. The particles either follow the flow field without interaction
(one-way coupling) or interact with it thus modifying it (two-way coupling) [55].

The Lagrangian framework provides a greater degree of detail and as can be
expected, it is costly to implement [54]. Consequently, an Eulerian framework for
both the continuous and dispersed phases tends to provide a practical choice for
modelling. An Eulerian description of both phases assumes that the phases involved
can be treated as a continuum [56]. In this case, a phase indicator function is
introduced into the governing equations of flow to account for the possible realisa-
tion of a phase i at a given position and a given time [56]. Averaging of the
governing equations after decomposing the instantaneous flow field into its mean
and fluctuating components results in Eq. (12) and (13) [57].

D

Dt
αiρið Þ ¼ 0 (12)

D

Dt
αiρiV i

	 


¼ �αi∇pþ ∇ � ��τi þ αiρig þ
X

n

j¼1

Rji (13)

In Eqs. (12) and (13), subscripts i and j represent individual phases whereas α
represents the respective phase volume fraction. This volume fraction is based on
the total volume of all phases as opposed to the total liquid volume (see variable x in
earlier equations). The respective phases can be either the gas phase, the primary
liquid phase or the secondary liquid phase. Alternatively, if the liquid–liquid dis-
persion is treated as a pseudo-homogenous liquid, then the subscripts would refer to
either the gas phase or the pseudo-homogenous liquid.

Other variables in Eqs. (12) and (13) such as ρ and V represent the density and
the mean velocity of the respective phases whereas p represents the shared pressure
field. Additionally, g represents the gravitational acceleration while R represents the
interphase momentum exchange terms. These terms include the lift force, the drag
force, the turbulent dispersion force and the added mass force among others [56].

There are two key points to note regarding the interphase momentum exchange
terms. First, their significance varies with the set up being considered. For example,
the drag force has been observed to be the most significant interphase exchange
term in the bulk of a stirred tank reactor [58, 59]. On the other hand, terms such as
the lift force have been observed to significantly affect the flow in a bubble column
reactor [60]. Consequently, modelling can be simplified by only accounting for
significant terms.
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The second point to note touches on the various models that have been proposed
to specify the interphase momentum exchange terms. Such models chiefly consider
2-phase interactions, that is, gas–liquid or liquid–liquid interactions [61–63].
Though such models have been improved upon to consider effects such as particle-
particle interaction at high volume fractions of a single dispersed phase [61–63],
there is still a need for appropriate models that specify the interphase exchange
terms when more than two phases are present. To this end, work such as that by
Baltussen et al. [64, 65] investigating the effective gas–liquid drag in the presence of
an additional solid phase may provide direction.

Finally, ��τ in Eq. (13) represents the stress tensor accounting for both viscous and
turbulent (Reynolds’) stresses. The specification of the stress tensor is non-trivial
due to the Reynolds’ stresses that need to be solved directly or modelled. A direct
solution of the Reynolds’ stresses provides a greater amount of detail and is able to
resolve complex features of the turbulence field such as anisotropy [53, 54].
However, the computational costs associated with this approach as well as
reported solution difficulties favour the specification of the stress tensor using
alternative simplified approaches [53, 54]. Modelling of the stress tensor using
the Boussinesq hypothesis is one such alternative approach [53, 54]. In the
latter, the Reynolds’ stresses are related to the gradients of the mean velocity
with the eddy/turbulent viscosity (μt) arising as a proportionality constant
(see Eq. (14)) [57].

��τi ¼ αi μi þ μt,i
	 


∇V i þ ∇Vi
T

� �

� 2
3
αi μi þ μt,i
	 


∇ � Vi þ ρiki
	 


��I (14)

μt,i ¼ Cμρi
k2i
ϵi

(15)

The eddy viscosity can be modelled in various ways such as that illustrated in
Eq. (15) [53, 57]. In this case, it is related to the turbulent kinetic energy (k) and its
dissipation rate (ϵ), both of which need to be solved for. Various models have been
proposed for these latter parameters (k and ϵ) such as the dispersed k–ϵ turbulence
model, the mixture k–ϵ turbulence model and the per-phase k–ϵ turbulence model
[57]. These models represent an extension of the single phase k–ϵ turbulence model
to multiphase situations and their applicability depends on the expected/prevailing
type of flow [57]. For example, the mixture k–ϵ model is recommended for strati-
fied flow whereas the dispersed k–ϵmodel is recommended where there is one clear
continuous phase and the other phases are dispersed within it [57].

It should be noted that irrespective of the choice of turbulence model, one key
point to consider is the interaction of the dispersed phases with the prevailing
turbulence. As noted in Section 2.3, the dispersed phase can modify the prevailing
turbulence and this needs to be captured. To this end, various models have been
proposed in literature and these vary in complexity depending on the level of detail
captured. Various authors have recently examined the sufficiency of these models
and their work is recommended [66–71].

3.2 Modelling frameworks for mass transfer

Similar to the modelling of hydrodynamics, the modelling of mass transfer
involves the selection of appropriate frameworks prior to the actual simulation. The
choice of a particular framework involves a compromise between the level of detail
captured and computational cost involved. Furthermore, the choice of a modelling
framework for mass transfer tends to be influenced by choices made during the
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modelling of the hydrodynamics. For example, the use of an Eulerian description of
the phases together with averaged equations of flow offers a practical choice for the
modelling of a reactor hydrodynamics. However, this approach involves a loss of
specifics on the mass transfer interface thus necessitating the prescription of models
to approximate the expected mass transfer behaviour. On the other hand, a
Lagrangian tracking of particles coupled with interface tracking algorithms better
resolves the mass transfer interface but is unfeasible for reactors with a large
number of dispersed particles (droplets or bubbles). Consequently, the discussion
below focuses on the modelling of mass transfer within the context of an Eulerian
description of the phases and the modelling of hydrodynamics using averaged
equations of flow.

Mass transfer in a gas–liquid–liquid reactor can be solved for by tracking the
concentration of a species in each phase within the reactor. This results in three
equations as given in Eqs. (16)–(18). In these equations, C represents the concen-
tration of the species in the respective phase (subscripts g, c, d) whereas J and S
represent the diffusive flux and the interphase mass transfer source terms respec-
tively. Closure models are required for the interphase mass transfer source terms
depending on the expected mass transfer behaviour.

D

Dt
αgCg

	 


¼ �∇ � αgJg

� �

� Sgc � Sgd (16)

D

Dt
αcCcð Þ ¼ �∇ � αcJc

	 


þ Sgc � Scd (17)

D

Dt
αdCdð Þ ¼ �∇ � αdJd

	 


þ Sgd þ Scd (18)

In the most general case, mass transfer can be assumed to occur between the gas
phase and both the primary and the secondary liquid phases (Sgc 6¼ 0, Sgd 6¼ 0). This
would correspond to the case of parallel mass transfer as illustrated in Figure 2(A).
Evidence for this mass transfer pathway has been provided based on observations of
the formation by oil films on gas bubbles during “static” experiments [72]. The
question arises, however, as to whether sufficient time for film formation occurs in
a dynamic/agitated reactor [72, 73].

Series mass transfer is often taken to be the more probable mass transfer path-
way in an agitated reactor ðcases (B) or (C) in Figure 2 with Sgd ¼ 0) [34]. In
addition, the formation of small droplets of the secondary liquid phase with a large
interfacial area implies that mass transfer between the respective liquid phases is
usually faster than that occurring between the gas phase and the primary liquid
phase [72]. Thus, based on the timescale of mass transfer between the gas phase and
the primary liquid phase, it may be assumed that equilibrium conditions exist
between the respective liquid phases. Furthermore, one need only track the con-
centration of the species in two phases – the gas phase (Eq. (16)) and the primary
liquid phase (Eq. (17) with Scd ¼ 0). With these simplifying assumptions, the only
unknown left is the interphase source term between the gas phase and the primary
liquid phase (Sgc). Gakingo et al. [13, 28] proposed definitions for Sgc that account
for possible mass transfer pathways at the gas–liquid interface plus an apparent
decrease in the overall volumetric mass transfer coefficients that occurs due to a
larger total solubility of the species in the liquid–liquid dispersion (refer to Section
2.2). This illustrated in Eqs. (19)–(21) below [13, 28].

Sgc ¼ KLa
0 C ∗

c � Cc

	 


(19)
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KLa
0
≈E0 � Λ �

ffiffiffiffiffiffi

Dc

p ρcϵc

μc

� �0:25

� 6αg
dg

� �

(20)

E0 ¼ 1
1� αd þ αdmð Þφ (21)

In the equations above, KLa
0 represents the overall volumetric mass transfer

coefficient in the presence of the secondary liquid phase. The latter has been
expanded in Eq. (20) based on an eddy cell model [74] with Λ and E0 representing a
constant and the enhancement factor respectively. The enhancement factor is given
in Eq. (21) where m represents the solubility ratio (m ¼ C ∗

d =C
∗

c ) and the exponent
φ varies between 0.5 and 1. A value of φ ¼ 1 represents the series mass transfer
pathway without shuttling whereas a value of φ ¼ 0:5 represents the series mass
transfer pathway with shuttling [13, 28]. Other variables are as previously defined.

4. Case studies

Few studies have reported on the CFD-based modelling of gas–liquid–liquid
reactors. Two such studies are reviewed in this section with the one having focussed
on the modelling of mixing time [12] while the other focussed on the modelling of
mass transfer [13].

In the case studies of interest, stirred tank reactors were considered as illustrated
in Table 3. In addition, the modelling in both cases was done based on an Eulerian
description of the phases involved (refer to Eqs. (12) and (13)). There were certain
similarities in the modelling and these included, for example, a consideration of
drag force as the only interphase momentum exchange term. The latter was speci-
fied according to Eq. (22) [13] with different models for the drag coefficient (CD)
employed as illustrated in Table 4. Constant sizes were also assumed for both the
gas phase bubbles and the droplets of the secondary liquid phase and these were
predicted by Eqs. (3) and (23) respectively [12, 13]. Finally, turbulence was
modelled based on the dispersed k–ϵ model (see Eqs. (24) and (25)) though the use
of the Reynolds stress model was additionally considered in one study [12].

Experimental details Cheng et al. [12] Gakingo et al. [13]

Tank
dimensions

Tank diameter 0.24 m 0.177 m

Liquid height 0.24 m 0.22 m

Impeller diameter 0.08 m 0.059 m

Number of impellers 1 2

Aeration
system

Sparger diameter 0.08 m 0.05 m

Sparger holes (diameter) 16 (0.0015 m) 7 (0.001 m)

Operating
conditions

Agitation rates (rpm) 170, 220, 300, 400, 425, 500 600, 800

Aeration rates (L/min) 0.16, 0.24, 0.32, 0.4, 0.48,
0.64

4

Primary liquid phase Water Water

Secondary liquid phase
(volume fractions)

Kerosene (0%, 3%, 5%, 7%,
10%, 12%, 15%, 20%)

n-C10-C13 alkane cut (0%,
2.5%, 5%, 10%, 20%)

Table 3.
Details of experimental setups used in the studies of Cheng et al. [12] and Gakingo et al. [13].
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Rji ¼ �Rij ¼ Kji V j � Vi

	 


;Kji ¼
3
4
αiα jρi

CD

d j
V j � Vi

�

�

�

� (22)

dd
T

¼ Ω � 1þ γ � αo,aveð Þ σcd

ρcN
2T3

� �0:6

(23)

D

Dt
αcρckcð Þ ¼ ∇ � αc μc þ

μt,c

σk

� �

∇kc

� �

þ αcGk,c � αcρcϵc þ αcρcΠkc (24)

D

Dt
αcρcϵcð Þ ¼ ∇ � αc μc þ

μt,c

σϵ

� �

∇ϵc

� �

þ αc
ϵc

kc
C1ϵGk,c � C2ϵρcϵcð Þ þ αCρcΠϵc (25)

The above similarities, notwithstanding, there were some notable differences
between the two studies. For example, Gakingo et al. [13] tested two approaches
in the modelling of the liquid–liquid dispersion. The first approach involved the
treatment of the dispersion as a pseudo-homogenous liquid (herein referred to as
the P-HOM approach) and the mixture properties were obtained from Eq. (5) for
effective density or through experimental measurements for effective viscosity. The
second approach, also used by Cheng et al. [12], involved a consideration of the
heterogeneous nature of the dispersion and a modelling of each individual liquid
phase (herein referred to as the HET approach). In this second approach, there was
a need to specify models for turbulence modulation by the dispersed phases (Πkc in
Eq. (24)) and different models were employed as illustrated in Table 4. Last but not
least, mass transfer was considered in only one study [13] where the authors
employed the previously reviewed frameworks, that is, Eqs. (16) and (17) with
Sgd ¼ 0, Scd ¼ 0 and Eqs. (19)–(21). Further specifics on the implementation of the
modelling approaches (meshing, boundary conditions and solver settings) can be
found in the respective studies [12, 13].

Several key observations can be made from the reported modelling works
[12, 13]. First, it was observed that the hydrodynamics of a gas–liquid–liquid stirred
tank reactor were better captured based on the HET modelling approach as opposed
to the P-HOM modelling approach [13]. The failure by the latter approach was
attributed to the fact that the hydrodynamics in a turbulent stirred tank reactor are

Parameter Cheng et al. [12] Gakingo et al. [13]

Gas phase–primary
liquid phase drag
coefficient (with
correction for turbulence
effects)

CD,∞ ¼

max

2:667Eo
Eoþ 4

,

24
Re p

1þ 0:15Re 0:687p

� �

8

>

>

<

>

>

:

9

>

>

=

>

>

;

C
sph
D,∞ ¼ 24

Re p
1þ 0:1Re 0:75p

� �

;

Cell
D,∞ ¼ 2

3 dg
g∆ρ
σgc

� �0:5 1þ17:67 1�αgð Þ1:29
18:67 1�αgð Þ1:5

� �2

;

C
cap
D,∞ ¼ 8

3 1� αg
	 
2;

CD

CD,∞
� 1 ¼

6:5� 10�6 dg
λ

� �3

CD

CD,∞
¼

Θ� 1� 1:4St0:7 exp �0:6 Stð Þ
� 
�2

Secondary liquid phase–
primary liquid phase
drag coefficient

CD ¼ CD,∞ ¼

1þ α
1=3
d

� �

0:63þ 4:8
ffiffiffiffiffiffiffi

Re p
p

� �2

CD ¼ CD,∞ ¼
24
Re p

1þ 0:15Re 0:687p

� �

; Re p ≤ 1000

0:44; Re p > 1000

8

<

:

Turbulence modulation
by dispersed phases

Πkc ¼

0:02� Rci

�

�

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vi � Vc

	 
2
q

Πkc ¼
ρi

ρiþCAMρc
� Kic

αcρc
ζic � 2kc þ Vdr∙ Vi � Vc

	 
� 


Πϵc ¼ C1ϵ
ϵc
kc
Πkc Πϵc ¼ C3ϵ

ϵc
kc
Πkc

Table 4.
Sub-models used in the modelling work of Cheng et al. [12] and Gakingo et al. [13].
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dominated by turbulence as opposed to the effective (mixture) viscosity. To this
end, it was reported that the ratio of turbulence viscosity to mixture viscosity was in
the order of O 10� 100ð ) based on the P-HOM modelling approach [13]. Conse-
quently, a minimal change in the hydrodynamics was observed despite an almost
2-fold increase in the values of mixture viscosity [13]. This is illustrated through the
minimal change in gas hold up trends shown in Figure 3.

As pertains to the HET modelling approach, the better performance at capturing
the hydrodynamics and hence gas hold up trends (see Figure 3) was attributed to the
capture of turbulence modulation by droplets of the secondary liquid phase [13]. In
particular, it was reported that there was an increase in the turbulence viscosity
which served to dampen the mean velocity field (see Figure 4) thus reducing the
effective drag and dispersion experienced by the gas bubbles [13]. Cheng et al. [12],
on the other hand, did not make an explicit mention of changes in the turbulence
viscosity. Rather, they hypothesised that their mixing time was reduced at low vol-
ume fractions of the secondary liquid phase due to an increase in turbulence caused
by the droplets of the latter [12]. Furthermore, they hypothesised that an increase in
mixing time at high volume fractions of the secondary liquid phase was due to a
dampening of the turbulence arising from an increase in the effective viscosity [12].
This reference to notable changes due to the effective viscosity stands in contrast with
the findings on the P-HOMmodelling approach [13].

A recent study on a gas–liquid–solid reactor has reported similar gas hold up
trends as those reported for the HET approach [75]. Furthermore, the modelling of
such a reactor based on non-Newtonian models for the liquid–solid slurry has been
observed to result in the formation of regions of localised fluid motion near the
impeller (caverns) with stagnant fluid elsewhere in the tank [75, 76]. This corre-
sponds to the reports of a dampened mean velocity field according to the HET
approach as seen in Figure 4. Observations such as these suggest that the dampen-
ing of the mean velocity field may be a common feature in three-phase reactors.
However, questions arise as to the appropriate manner of describing such effects.
For example, the question may be posed as to whether liquid–liquid dispersions in
stirred tanks should be treated based on non-Newtonian models with a yield stress
and shear-thinning behaviour rather than equations of the type given in Section 2.1
(Eqs. (6)–(8)). It is to be noted that Eqs. (6)–(8) predict the effective viscosity of
the dispersion assuming no non-Newtonian behaviour. Furthermore, the

Figure 3.
Gas hold up versus volume fraction of secondary liquid phase at 600 rpm. P-HOM refers to the pseudo-
homogenous modelling approach whereas HET refers to the individual treatment of the liquid phases. Data
from Gakingo et al. [13].
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experimental effective viscosity values that were used for the P-HOM modelling
approach were in close agreement with those predicted by these equations [13].

Further observations made in the case studies of interest touched on the trends
of pumping capacity and power drawn by the impellers. It was observed that the
pumping capacity of the impellers decreased at high volume fractions of the sec-
ondary liquid phase [12, 13]. This was attributed to a decrease in the mean velocity
field as dissipated by an increasing turbulence viscosity [13]. As for the power
drawn, both an increase and a decrease in the power was reported. The decrease in
power, as noted by Cheng et al. [12], was attributed to a decrease in the effective
density upon addition of the secondary liquid phase. On the other hand, Gakingo
et al. [13] attributed a noted increase in power drawn to increased energy dissipa-
tion by the droplets of the secondary liquid phase. This latter effect was not
reported by Cheng et al. [12] and this could have been due to the use of different
models to capture turbulence modulation by the dispersed phases (see Table 4).
Cheng et al. [12] used a model by Katoaoka et al. [77] which considers only the
mean velocity differences Vi � Vc

	 


in computing the work done by interfacial
drag. Gakingo et al. [13], on the other hand, employed the model by Simonin et al.
[57, 78–80] which considers not only the effects arising from mean velocity differ-
ences but also the effects arising from the fluctuating velocities of the dispersed
phase particles. These latter effects were expected to become more significant than
the former as the size of the dispersed phase particles decreased
(Vi � Vc ! 0 as dp ! 0) [68]. Consequently, it may be suggested that the use of the
model by Simonin et al. [57, 78–80] was more appropriate as it is more
comprehensive.

With regard to mass transfer, it was illustrated that potentially accurate pre-
dictions can be obtained by using the HET modelling approach for hydrodynamics

Figure 4.
Velocity contours based on the HET modelling approach on a mid-baffle plane at 600 rpm. Left – 0% alkane
volume fraction (2-phase). Right �10% alkane volume fraction.
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and Eqs. (16), (17) and (19)–(21) for mass transfer with Sgd ¼ Scd ¼ 0 (see
Figure 5) [13]. These equations correspond to a case where the concentrations of a
species in the two liquid phases are at equilibrium and no direct uptake by the
secondary liquid phase occurs at the gas–liquid interface. Though this scenario
implied the occurrence of either series mass transfer or series mass transfer with
shuttling, minimal differences were reported based on a consideration of these two

Figure 5.
Comparison of predicted versus experimental overall volumetric mass transfer coefficients at 600 rpm and
varying alkane concentrations. Experimental measurements have been obtained by the pressure step method.
Data from Gakingo et al. [13].

Figure 6.
Contours of local KLa

0 values predicted based on the HET modelling approach on a mid-baffle plane at
600 rpm. Left – 0% alkane volume fraction (2-phase). Right �10% alkane volume fraction.
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alternatives [13]. Thus, it may be suggested that mass transfer in gas–liquid–liquid
reactors is less sensitive to the assumed configuration at the gas–liquid interface and
more sensitive to other varying parameters such as the energy dissipation rate and
the gas hold up. More evidence for or against this suggestion should, however, be
provided based on a re-examination of mass transfer using a different set of
modelling assumptions.

In conclusion, the usefulness of a CFD-based mass transfer model may be
glimpsed from the amount of detail that it can generate. For example, spatial
resolutions of variables of interest can be quickly generated as illustrated in
Figure 6 to support the visualisation of changes made during in situ reactor design.
This is indeed the chief advantage of a CFD-based approach over an empirical
approach. However, before the full potential of the CFD-based approach can be
realised, a number of areas will need improvement or further investigation. More
on this is presented in the subsequent section.

5. Areas requiring further investigation

The results reviewed in the previous section illustrate that the addition of a
secondary liquid phase can have a great impact on both the hydrodynamics and the
mass transfer in a reactor. In particular, the results suggest that turbulence modu-
lation by the secondary liquid phase is the key mechanism of action through which
changes in a reactor occur. A CFD-based framework that is able to capture this
mechanism of action has also been proposed and its potential has been illustrated.
This notwithstanding, care ought to be taken in generalising the results obtained
and the implications arising from them. This is because there still are a number of
issues that need further investigation. Two such pertinent issues are highlighted
below.

The first pertinent issue concerns the applicability of the obtained results to
different reactors. It is the view of the authors that the results reported above
should be taken as being particular to stirred tank reactors operating in the turbu-
lent regime. This would be in line with existing experimental evidence for turbu-
lence modulation by secondary liquid phases in turbulent stirred tank reactors
[34–37]. Different reactors, on the other hand, may have alternative mechanisms of
action. For example, recent studies in a gas–liquid–liquid–solid bubble column
reactor have illustrated that the addition of a secondary liquid phase did not signif-
icantly impact the hydrodynamics of the reactor [81, 82]. Rather, a greater impact
on the hydrodynamics was observed for the solid phase and this depended on the
type of the solid phase employed [81, 82]. Consequently, it may be suggested that a
pseudo-homogenous treatment of the liquid–liquid dispersion would suffice for
such a bubble column reactor contrary to what has been established in the case
study above.

The second point worth investigation is the sensitivity of CFD-based results to
the sub-models and simplifying assumptions employed. As noted in sections 3.1 and
3.2, quite a number of decisions have to be made prior to the actual simulations.
Though these decisions are necessitated by a need to keep the simulations tractable,
the quality of results obtained may be impacted. It is the view of the authors that
particular attention should be given to the sub-models used to capture turbulence
modulation. This is because of the seemingly large effects that turbulence modula-
tion had on the results presented in the case study. To this end, it is recommended
that comprehensive sets of experiments should be conducted on gas–liquid–liquid
reactors and these should involve a concurrent measurement of the mass transfer
and the hydrodynamics. Current literature is fragmented with authors who have
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investigated mass transfer not having measured the potential changes in the hydro-
dynamics and vice versa.
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Nomenclature

d Diameter (m).
g, g Gravitational acceleration vector, gravitational constant

(m/s2).
k Turbulent kinetic energy (m2/s2).
l Integral length scale of turbulence.
m ratio of concentration of a species dissolved in secondary liquid

phase to that dissolved in primary liquid phase at equilibrium.
n Total number of phases.
νs Superficial gas velocity (m/s).
xg Volume fraction of gas phase based on total volume in a gas–

liquid reactor.
xd Volume fraction of secondary liquid phase based on total vol-

ume of un-gassed reactor.
xm Maximum packing limit.
C Dissolved concentration of a species (mol/m3).
C ∗ Dissolved saturation concentration of a species (mol/m3).
CD Drag coefficient.
CD,∞ Drag coefficient in the absence of turbulence.
D Diffusivity of a species in a liquid phase (m2/s).
Dr Diffusivity ratio
E0 Enhancement factor.
Eo Eotvos number.
��I Identity tensor.

J Total diffusive flux of a species.
Gk,c Production of turbulent kinetic energy from mean velocity

gradients.
KLa Overall volumetric mass transfer coefficient in the absence of a

secondary liquid phase (s�1).
KLa

0 Overall volumetric mass transfer coefficient in the presence of
a secondary liquid phase (s�1).

Kji Interphase momentum exchange coefficient between phases i
and j.

N Impeller speed (rps).
Pg Gassed power (W).
Re Reynolds number.
St Stokes number.
T Impeller diameter (m).

18

Alternative Energies and Efficiency Evaluation



V Volume (m3).
V Velocity vector (m/s).
Vdr Drift velocity (m/s).
α Volume fraction based on total volume in a gassed reactor.
ϵ Turbulent kinetic energy dissipation rate (m2/s3).
ρ Density (kg/m3).
σ Surface/interfacial tension (N/m).
��τ Stress tensor (Pa).
μ Dynamic viscosity (Pa s).
μt Turbulent viscosity (Pa s).
μr Viscosity ratio.
λ Kolmogorov length scale.
ζic Covariance of fluctuating velocities between phase i and the

continuous liquid phase (subscript c).
Πkc Production (destruction) of turbulent kinetic energy by

motion of dispersed particles.
Πϵc Production (destruction) of turbulent kinetic energy dissipa-

tion rate by motion of dispersed particles.
x, y, z,φ Exponents.
Γ,Λ, γ,Ω,Θ,Cμ Constants.
σk, σϵ,C1ϵ,C2ϵ

C3ϵ,CAM

Subscripts/superscripts

c Continuous/primary liquid phase.
d Secondary liquid phase.
g Gas phase.
p Dispersed particle (gas, liquid or solid).
i, j Phases i, j.
cap Spherical cap.
ell Elliptical shape.
eff Effective.
sph Spherical shape.
sat Saturated.
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