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Chapter

Discretization, the Road to
Quantum Computing?

Jesiis Lacalle

Abstract

The main challenge we face in making quantum computing a reality is error
control. For this reason it is necessary to study whether the hypotheses on which the
threshold theorem has been proved capture all the characteristics of quantum
errors. The extraordinary difficulties that we find to control quantum errors effec-
tively together with the little progress in this endeavor, compared to the enormous
effort deployed by the scientific community and by companies and governments,
should make us reflect on the road map to quantum computing. In this work we
analyze error control in quantum computing and suggest that discrete quantum
computing models should be explored. In this sense, we present a concrete model
but, above all, we propose that Quantum Physics should be taken one step further,
in order to allow discretization of the quantum computing model.

Keywords: quantum computing errors, quantum threshold theorem, discrete
quantum computing errors, continuous quantum computing errors, discrete
quantum computing, quantum physics

1. Introduction

Quantum computing is a multidisciplinary research area with extraordinary
expectations in Computer Science [1, 2]. It proposes a radical change with respect to
the classical computing model, moving to a quantum one. To do this, change the
basic unit of classical information, the bit, for the quantum bit or qubit:

Bit : be{0,1} and

Qubit : A {a0|0> + 6(1|1> | ap,a; €C and ]ao|2 + ’(11’2 = 1}. D

The superposition principle of Quantum Physics makes the so-called quantum
parallelism possible. Working with # qubits, quantum parallelism allows 2" opera-
tions to be performed simultaneously. However, making this advantage effective by
getting algorithms faster is a difficult challenge. Another important consequence of
the superposition principle is the existence of entangled quantum states. The
smallest entangled state is built with 2 qubits and is called an EPR pair, because it
was first proposed by Einstein, Podolsky and Rosen in 1935:
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Another important feature of quantum computing is that it is a continuous
computing model. Change a bit, which can only take two discrete values, for a
qubit, which is a point on the 3—dimensional unit sphere centered at 0 in the real

space R*. This fact makes quantum error control the main challenge for the feasi-
bility of quantum computing. For this reason, one of the main research objectives in
the 1990s was to solve this stumbling block. To address the problem, two funda-
mental tools were developed: quantum error correction codes [3-8] in combination
with fault tolerant quantum computing [9-15].

The results obtained seemed to have theoretically solved the problem of quan-
tum error control. The quantum threshold theorem or quantum fault-tolerance
theorem was proved. This states that a quantum computer with a physical error rate
below a certain threshold can, through application of quantum error correction
schemes, suppress the logical error rate to arbitrarily low levels. Shor first proved a
weak version [9] and the theorem was independently proven by the groups of
Aharanov and Ben-Or [15], Knill, Laflamme and Zurek [13] and Kitaev [14].

All authors use the discrete errors introduced to define error-correcting quan-
tum codes as a key element to prove the quantum threshold theorem. And they do it
for two reasons: the constructed quantum codes allow correcting precisely those
discrete errors and, even more important, any 1—qubit unitary matrix is a linear
combination of those discrete errors. Indeed the discrete errors of a qubit are linear
combinations of the well-known Pauli matrices:

1 0 0 1 0 —i 1 0
=(y ) x=(7 o) 7=, o )maz=(y ) ®
0 1 1 0 i 0 0 -1

However, recent studies [16, 17] indicate that fault-tolerant quantum computing
does not cover all the loopholes through which quantum errors escape, accumulating
during quantum computations. Lacalle, Pozo-Coronado, Fonseca de Oliveira and
Martin-Cuevas model quantum errors as random variables, integrating the essentially
continuous character of quantum errors. The first two authors obtain the formula for
the variance of the sum of two independent quantum errors E; and E; [18]:

V(E1+ Ey) = V(E1) + V(E,) — w (4)

They prove it only for isotropic errors and conjecture that it is true in the general
case. The n—qubits are represented by points on a (2*™ — 1) —dimensional unit

sphere S centered at O in the real space R?"". Therefore, the variance of the
quantum errors of the n—qubits, unlike what happens in R”, is bounded because the
corresponding sphere is a closed and bounded set. In fact the variance always
belongs to the interval [0, 4].

The authors establish in [16, 17] that a quantum code fixes a quantum error if,
assuming that the code’s correcting circuit does not introduce new errors, the code
reduces the variance of the quantum error. Despite these weak requirements, the
authors find two types of quantum error that are not fixed by any quantum code.
Let C be the quantum code used, ® the pure quantum state that the »—qubit should
have if no error occurs, ¥ the real quantum state of the n—qubit generated by the
quantum error and ® the code state resulting from applying the code correction
circuit to the state ¥, assuming that this circuit does not introduce new errors. From
the point of view of the statistical study of errors, the disturbed state ¥ is a random
variable on the sphere §. The same holds for the state ® resulting from the
correction, in this case on the corresponding sphere of the subspace code of C (since
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the accuracy of the correction circuit we are assuming implies that ® belongs to C).
The variance of the quantum error is the expected value

V(¥) =E[|® - P|°] (5)

and the variance of the corrected state V(®) = E[||® — ®||*]. Then € fixes the
quantum error if:

V(D) <V(P). (6)

The authors say in [16] that a quantum error ¥ is isotropic if its density function
on the sphere § only depends on [|® — ¥|| (6o, the first angle in polar coordinates).
And they prove the following results:

1.If € detects an error the distribution of ® is uniform ([16], Theorem 3).
2.V(®) > V(¥) for common probability distributions ([16], Theorem 5).

The first of the above properties indicates that if an error is detected in the code
correcting circuit, all information has already been lost in computing. This result,
despite being very negative from the point of view of quantum error control, is not
surprising for isotropic errors.

The other type of quantum error studied by the authors in [17] is more impor-
tant: qubit independent errors. They are much more difficult to analyze because
they do not have as much symmetry as isotropic errors but they are errors that
occur in real quantum computers. To facilitate the analysis, the authors focus on the
5—qubit quantum code because of its high symmetry and argue that the behavior of
this quantum code shows a general pattern. Although these two types of errors are
very different (the dimension of the support of the isotropic errors is 2" — 1 while
that of the qubit independent errors is much smaller: 47), the main results are
surprisingly similar. In this case the authors prove the following results:

1.If C detects an error the distribution of ® has central symmetry ([17],
Theorem 4.2) and its variance is maximum ([17], Lemma 4.2).

2.V(®) > V(¥) for common probability distributions ([17], Theorem 4.4).

Note that the second property is the same for both types of quantum error. And,
as regards the first, there is not much difference between a uniform distribution on
a sphere and a centrally symmetric distribution, if they both approximate a point ®
on the sphere. Therefore, the results for both types of quantum error are similar and
this fact is very striking.

Some reviewers have questioned the result of [17] for not considering that
quantum states can be multiplied by a phase without physically changing their state.
However, the authors of this work introduce the quantum variance that considers
this fact,

V,(¥) = E| min (I¥ — %) |, 7)

and relate it to the most common error measure in quantum computing, fidelity
F(¥P):
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Vy(¥)
2

V(%)

K (®)

<F(¥)<y/1-

These inequalities show that quantum variance and fidelity are essentially
equivalent, since when quantum variance tends to 0, fidelity tends to 1 and,
conversely, when fidelity tends to 1, quantum variance tends to 0. Of the three
measures, the variance is the only one that allows to complete the complicated
calculations performed in [17]. Furthermore, the authors state that the variance and
the quantum variance have similar behaviors for continuous quantum computing
errors. Indeed, let ® = |0) be a qubit and suppose that @ is changed by error
becoming the state ¥ = W®, where W is the error operator given by Formula (5) in
[17] whose density function f(0y) only depends on the angle 0y. Then:

¥ = (cos(0g) +isin(0g) cos (61))]0)+

9)
(sin (8) sin (01) cos (67) + i sin (0) sin (61) sin (6,)) |1)
and, taking into account that
min (|[¥ - /) =2 - 2/(¥|o) (10)

and the Eq. (5) we obtain:

. 2 — sin
v =2 ] (1- 22T o (1)) s and

V(X)=2- 44:2 cos (0o) - f(8o) sin* (o) dby.

We observe that the difference between the quantum variance and the variance
are the weight functions of f () sin?(6) in the integral and that they have a similar
behavior for small errors, that is, for concentrated density functions f (o) around
0o = 0 (see Figure 1).

Even for large errors, for example a uniform distribution function f = #, we
have comparable values of the quantum variance and the variance:

0] /2 T
0o

Figure 1.
Weight functions for quantum variance (ved) and variance (blue).



Discretization, the Road to Quantum Computing?
DOI: http://dx.doi.org/10.5772/intechopen.98827

V,(¥) :g and V(¥) = 2. (11)

In [19], the study of isotropic errors is extended by analyzing the capacity of
quantum codes to improve fidelity, and similar results to those presented in [16] are
obtained: quantum codes do not improve the fidelity of uncoded quantum states for
this type of error.

The results presented in [16, 17, 19] remind us that the quantum computing model
is continuous and that the treatment of continuous quantum errors has many subtle-
ties and it is an extraordinarily difficult challenge. Right now we are at a crossroads:
extend fault-tolerant quantum computing to error models that include continuous
errors or search for a discrete model of quantum computing that allows easier error
control. The first road presents formidable difficulties: the fault-tolerant quantum
architecture is based exclusively on discrete quantum errors and there is no analogical
(continuous) system in the world comparable in complexity to a computer. The
second one includes two processes: defining a discrete quantum computing model
and finding a quantum system that allows the model to be implemented. It is difficult
to know which of the two approaches will lead us to real quantum computing and, for
this reason, both should be explored. In this work we study the second one.

A discrete quantum computing model has already been published [20] and, as
far as we know, it is the first. In this work Gatti and Lacalle present a discrete
quantum computing model based on the following basic requirements:

1.1t describes real states in Quantum Physics.

2.1t preserves the main characteristics of quantum states: superposition,
parallelism and entanglement.

3.1t allows to approximate general quantum states.
4.1t contains simple quantum states.

Of all the possible sets of discrete quantum states, there is one that, fulfilling the
first three properties, is the most outstanding in terms of simplicity of the states. It
is the set of Gaussian coordinate states, which includes all the quantum states whose

. . . N —k
coordinates in the computation base, except for a normalization factor v/2 ~, belong
to the ring of Gaussian integers:

Zli| = {a+bi | a,beZ}. (12)

To define the model they also need to introduce a set of quantum gates that
verify the following properties: it contains quantum gates that transform discrete
states into discrete states, and it generates all discrete quantum states. And they
includes two elementary quantum gates that verify the above properties, H and G.
The Hadamard gate H allows superposition, while the other one, G, is a 3—qubit
quantum gate. Two of them are control qubits, while the third is the target. If the
control qubits are in state |1), then the quantum gate V is applied to the third qubit:

1 0
vz<0 i). (13)

This quantum gate allows the construction of all Gaussian coordinate states
(discrete states) and it is because of this that they call it G.
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This model of discrete quantum computing is related to Number Theory since
discrete quantum states

(010 +1ibg,a1 +ib1, .. ay_1 + ibzﬂ_l)

® = (14)
k
V2
must verify the following diophantine equation:
a3+ by 4+ a2 +bi+ -+ ad  + by =2, (15)

where k €N and ag, bo, ... ,a2_1,b»_1 € Z. The above equation establishes deep
connections between the discrete quantum computing model and Lagrange’s four-
square theorem. The same authors analyze this relationship in [21].

However, we must go one step further with the model of discrete quantum
computing, so do not have the same error handling problem again. We need the
discrete quantum states to have a basin of attraction associated with them so that
any state that falls inside is automatically self-correcting, transforming into the
discrete state. This process is used in the manufacture of hardware for classic
computers with enormously satisfactory results.

However, Quantum Physics does not allow the application of this process. First
of all, self-correction is not a one-to-one transformation and therefore cannot be
unitary. And secondly, it cannot be the result of a quantum measurement either
because the probability that the result was not the associated discrete state would be
greater than zero. Consequently, we need Quantum Physics to go one step further
to have the control that discrete quantum computing requires. Is this possible? We
believe that this question should have an affirmative answer if the following one
does: Is quantum computing possible?

In the following sections we develop further the ideas presented in this intro-
duction.

2. Overview of quantum error control

Today’s quantum error control has two essential components: quantum error
correction codes [3-8] and fault-tolerant quantum computing [9-15]. There are
textbooks on this subject, such as Gaitan’s [22].

2.1 Quantum error correcting codes

Calderbank and Shor [3] and Steane [4] discovered an important class of quan-
tum error correcting codes. The Calderbank-Shor-Steane (CSS) codes are
constructed from two classical binary codes. Another approach to the subject orig-
inated the quantum stabilizer codes [5-8]. However, to better understand the role
of quantum codes in correcting errors, a general description of them is more useful,
without going into the detail of their internal structure.

An quantum error correcting code of dimension [z, m] is a subspace C of dimen-
siond = 2™ in the n—qubit space H", whose dimension is d = 2". The C quantum
code encoding function is a unitary operator C that satisfies the following properties:

C:H"QH"™ — H" and C=C(H"®]|0)). (16)

The C code fixesd” = 2" discrete errors: Eg, Ei, .., E, ;. Since the identity
I should be among these unitary operators, we assume that Eq = I. This process of
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discretization of errors allows to correct any of them if the subspaces S, = E;(C),
0 <s<d", satisfy the following property:

F* = So LSy LSp_,. (17)

That is, H" is the orthogonal direct sum of said subspaces. Note also that Sy =
Eo(C) =I(C) = C. In the stabilized code formalism, the code C is the subspace of
fixed states of an abelian subgroup of the Pauli group P, = {£1, +i} x {[,X,Z,Y}"
and discrete errors are operators of P, that anti-commute with any of the subgroup
generators, except for the identity operator E¢. If Formula (17) holds, the code is
non-degenerate.

Suppose that a coded state @ is changed by error, becoming the state Y. The
initial state is a code state, that is, ® € Sy, while the final state in general is not, that
is, ¥ & So. If the disturbed state belongs to the subspace W¢ = L(Eo®, ..., Ey_®),
that is, if it is of the form

¥ = aqoEg® + - 4+ ay Ep @ with |ao|* + - + oy 4[> =1, (18)

then the quantum code allows us to retrieve the initial state ®. To achieve this,
we measure ¥ with respect to the orthogonal decomposition of the Formula (17).
The result will be %ESCD for a value s between 0 and 4" — 1. The value of s is called

syndrome and allows us to identify the discrete error that the quantum measure-

T . -1 . a .
ment indicates. Then, applying the quantum operator E_~ we obtain 5; ®. This state

is not exactly @ but, differing only in a phase factor, both states are indistinguish-
able from the point of view of Quantum Mechanics. Therefore, the code has fixed
the error.

An error that does not satisfy Formula (18), that is, it does not belong to W,
cannot be fixed exactly. For example, if ¥ belongs to the code subspace C, the error
cannot be fixed at all since, being a code state, it is assumed that it has not been
disturbed. Therefore it is important to analyze the limitation in the correction
capacity of an arbitrary code, assuming that the code correction circuit does not
introduce new errors.

Finally, we want to highlight that discrete errors can be chosen so that, for
example, all errors affecting a single qubit are fixed. The best code with this feature
that encodes one qubit is the 5-qubit quantum code [23, 24]. This code is optimal in
the sense that no code with less than 5 qubits can fix all the errors of one qubit.

2.2 Fault-tolerant quantum computing

Fault-tolerant quantum computing was proposed with the aim of proving the
quantum threshold theorem or quantum fault-tolerance theorem: a quantum com-
puter with a physical error rate below a certain threshold can, through application
of quantum error correction schemes, suppress the logical error rate to arbitrarily
low levels. Shor first proved a weak version [9] and the theorem was independently
proven by the groups of Aharanov and Ben-Or [15], Knill, Laflamme and Zurek [13]
and Kitaev [14].

The essential elements of fault-tolerant quantum computing [9, 13, 15] are as
follows: the encoding of each of the qubits with quantum error-correcting codes, the
use of fault-tolerant quantum gates, the application of quantum gates on coded qubits
(encoded operations) and the concatenation of quantum error-correcting codes.

Another essential element for the proof of the quantum threshold theorem is the
quantum error model used. Shor [9] assumes that there is no decoherence error and
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considers that in a quantum gate an error occurs with probability p and that the
errors corresponding to different qubits are independent. Therefore the probability
that errors will occur in & qubits simultaneously is:

n

Prob(k errors) = (k ) (1—p)" " p~. (19)

Knill, Laflamme and Zurek [13] and Aharanov and Ben-Or [15] consider both
decoherence errors and errors in quantum gates and also assume the independence of
errors on different qubits. The first [13] analyze quasi-independent and monotonic
errors with error strength p and bound C: the total strength of the summands for

which at least a given & many error locations have failed is at most Cp*. Aharanov and
Ben-Or [15] use density matrices and model the error in a qubit as follows:

(1-p)I +pE. (20)

In all cases, the parameter p can be considered as the probability that an error
occurs in a qubit and therefore the probability that k errors coincide in different
qubits will be proportional to p*. This consideration is key in proving the quantum
threshold theorem and as such it appears in Gaitan’s textbook [22] (see for example
Table 1.1 on page 38). The errors associated with p are arbitrary and include what
Shor calls “fast” errors and also “slow” errors. In particular they include the errors
described by the Pauli matrices (3). This error model is the discretized quantum
error model or the stochastic quantum error model.

The discretized quantum error model together with the concatenation of error-
correcting quantum codes are the key elements in the proof of the quantum thresh-
old theorem. The effect of the conjugation of both is as follows (see for example
Figure 6 in [13]):

Uncoded Coded once Coded twice

Number of qubits 1 7 49 (21)

2 4

Error probability P 4 p

where we have used the 7—qubit CSS code. In each encoding the error in a qubit
is fixed by the code and only errors of order 2 or greater remain. This scheme makes
the error small, since p* tends to zero if k grows.

But this approach cannot be used in all cases, for example for the decoherence
error, since in this case the reality is different: the probability of errors occurring in
all qubits is 1, although on the other hand the errors with high probability are small.
In this situation the correcting code cannot handle a simultaneous error in all qubits
and neither can it correct the “lower order” errors. Here is the essential difference
between the discrete error model and the continuous one. The discrete error model
does not fit this situation, in which small errors are not controlled and, after the
application of the code correction circuit, become undetectable (because the
resulting state belongs to the subspace code) and accumulate during computation.

Another key to fault-tolerant quantum computing is to avoid quantum gates that
act on two qubits belonging to the same quantum code instance (implementation of
fault-tolerant quantum gates for the used quantum code). In this way, the impreci-
sion of the quantum gates only introduces error in at most one qubit of each
instance of the quantum code. However, the error in 2—qubit quantum gates is not
reduced to an error in each of the qubits. It also generates an error that affects both
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qubits simultaneously (entangled error) and the code instances to which the two
qubits belong are not designed to tackle it.

The use of an instance of an error correcting quantum code of dimension [z, 1]
on each of the qubits of a quantum circuit (algorithm) produces two additional
effects to consider. First, this multiplies the number of qubits in the circuit by n. As
a consequence, the decoherence per unit of time that occurs in the circuit is multi-
plied by #n. Second, the number of gates in the circuit is multiplied by at least
n(n + 1). Each encoded quantum gate requires a minimum of 7 quantum gates and,
after each one of them, the code correction circuit must be applied, that is, at least
another #» quantum gates or measurements are needed. The effect of this increasing
number of quantum gates is that the imprecision errors are multiplied by n(n + 1).
A total of at least n? of these quantum gates and measurements correspond to the
correction circuits and are therefore not protected. This fact remains even if we
concatenate quantum codes in the last application of the error correcting code. If
the number of quantum gates in an algorithm is # and the error correcting code is

) . ) ) )
concatenated k times, the final number of gates is at least n? . Then, the ratio of
quantum gates not protected from imprecision errors is at least

1

1——
k—1 °
n?

(22)

Finally, it should be noted that the use of quantum codes produces an additional
increase in decoherence by increasing the execution time of the algorithms.

Despite the difficulties raised above for the effective control of quantum errors,
the discrete quantum error model or stochastic quantum error model allows the
proof of the quantum threshold theorem. But unfortunately this model of quantum
computing errors does not allow a realistic analysis of continuous quantum com-
puting errors. These break the golden rule of error correction: all small errors must
be corrected. The road of fault-tolerant quantum computing goes through including
continuous errors in the quantum threshold theorem. This is a huge challenge and
for this reason it is interesting to investigate other possible roads.

3. Discrete quantum computing

We are interested in discrete quantum computing because it could lead us to a
quantum computing where error control was an easier challenge. In the literature there
are some works on discrete quantum computing. They generally intend to simplify or
better understand the quantum model: introducing modal concepts and finite fields for
the representation of quantum amplitudes [25-29], using discretization for the design
of algorithms [30], relating the structures of computation and the foundations of
physics [31-38] and studying universal sets of discrete quantum gates [39-43].

As we have already commented in the Introduction, a discrete quantum com-
puting model has already been published [20]. It is a model in which discretization
is applied both to quantum states and to quantum gates and that aims to become
independent from the standard quantum model (continuous model) and even, if
possible, from continuous hardware (Quantum Physics). The presented discrete
quantum computing model is based on the following basic requirements:

1.1t describes real states in Quantum Physics.

2.1t preserves the main characteristics of quantum states: superposition,
parallelism and entanglement.
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3.1t allows to approximate general quantum states.
4.1t contains simple quantum states.

Of all the possible sets of discrete quantum states, there is one that, fulfilling the
first three properties, is the most outstanding in terms of simplicity of the states. It
is the set of Gaussian coordinate states, which includes all the quantum states whose

. . . .. —k
coordinates in the computation base, except for a normalization factor v/2 *, belong
to the ring of Gaussian integers:

Zi)={a+bi | a,bel}. (23)

To define the model the authors introduce a set of elementary quantum gates that
verify the following properties: it contains quantum gates that transform discrete
states into discrete states, and it generates all discrete quantum states. This set
includes two quantum gates that verify the above properties, H and G. The
Hadamard gate H allows superposition, while the other one, G, is a 3—qubit quantum
gate. Two of them are control qubits, while the third one is the target. If the control
qubits are in state |1), then the quantum gate V is applied to the third qubit:

1 0
v (2 0) -

This model of discrete quantum computing is related to Number Theory since
discrete quantum states

(ao +1ibg,a1 + b1, ... ay_1+ ibzﬂ_1>

® = - (25)
V2
must verify the following diophantine equation:
ad 4+ by 4 a2 + bl + - +ad_ + by =2, (26)

where k €N and ag, b, a1, b1, ... ,a»_1,by_1 € L.

As we will see in the next subsection, the level of a discrete state is defined as the
lowest natural number k for which the previous diophantine Eq. (26) holds. The
superposition principle of Quantum Physics is satisfied in the following case: Given
orthogonal discrete states @, @, ..., ® ;1 belonging to levels ko, k1, ..., k ;1
respectively, then the following linear combinations are also discrete quantum states:

co +1ido)

\/2ko

o\

id ci1+id;_
(61+Z/1)q)1+“.+( j 1+, ji-1)
V2k 26
Wherekg, k’l, ey K

1€ N, kg + kg, kq + k’l,, ki 1+ k/jq have the same
parity, co,do, ¢1,d1, ..., j-1,d j1 €7Z and

Dy + q)j—l (27)

2
htdy d+di Gt

’ / 7 — 1. 28
2ko 2k 2k (28)

The superposition principle is also satisfied for non-orthogonal discrete states.
For example for the following two discrete states of level 4:

10
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®y=-(1+14,1+24,0,3) 5.9 349
g P

D1 =

N

(1+14,0,1424,3)

Discrete state ® has level 10, result of the sum of the levels of states ®q and @4, 4,
and of coefficients used in the combination, 6.

3.1 Discrete quantum states

The quantum gates H and G, along with two auxiliary qubit (ancilla qubits),
allow to perform a wide set of operations, for example, any permutation of the
states of the computational base B and adding a factor —1, i or —i to any subset of
coordinates of an n-qubit, with respect to the computational base B, where:

B =1[10),[1),2),13),4),15),16),17),[8), ..., [2* = 1)] or
(30)
B = [|0---00),]0---01),0---10), [0--+11), ..., [1---11)].

They also allow obtaining other quantum gates that are commonly used: X,
AX = Cnot, A*X = Toffoli, Z, AZ, A*Z, V and AV.

The set of discrete quantum states € is defined as follows: € is the smallest set of
quantum states which contains the computational base and is invariant under the
application of the conforming gates H and G. As a consequence of the properties of
H and G discussed above, the set € is also invariant by any permutation of
coordinates and by the addition of a factor —1, i or —i to any subset of coordinates.

The conforming quantum gates H and G have been chosen in order to generate
exactly the states whose coordinates are Gaussian integers (except for a normaliza-

tion factor of the form \/ifk where k € N) that is, elements of the set Z[i] defined in
Formula (23).
The set of Gaussian coordinate states E is defined by the following property: a

quantum state ® € E if and only if there exists k € N such that \/ikd) eZ[i]* . And, as
we have already commented before, the set of discrete states € and the set of
Gaussian coordinate states E are the same. Consequently every discrete state must
verify the Eq. (25), for a certain value k €N, and its coordinates without the
normalization factor the diophantine Eq. (26).

Discrete states are classified by levels. We say that a discrete state @ is at level

k € N if k is the smallest natural number for which it is verified that \/ikCD eZli]” .
From Eq. (25) it is concluded that there is a one-to-one relationship between the
discrete states and the integer solutions of the Eq. (26) in which at least one
component (real or imaginary part) of one coordinate is odd.

Given k € N, we call E}, to the set of discrete states of level k. These sets verify the
following properties: for all k €N Ej, is finite, in fact its size is bounded by the
number of solutions of the diophantine Eq. (26); and for all k1,k; €N, k1 # ks, it
holds Ey, NEy, = @.

Given a number k € N, the set of discrete states with a level less than or equal to
k, E <1, allows us to approximate a general quantum state with a precision of the

order of \/ifk. In this sense, the set of discrete states E allows us to approximate
general quantum states and, as the level of the discrete states increases, the approx-
imation is more precise. Finding the best approximation of a general quantum state
through a discrete state in E <, k > 0, is a natural problem that allows us to relate
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discrete quantum computing with quantum computing. This problem is also related
to Number Theory because the discrete states must verify the diophantine Eq. (26).

In discrete quantum computing, the parity and the parity pattern of the coordi-
nates are important. Given a coordinate a + ib € ZZ[i] these concepts are defined as
follows:

P(a +ib) =a+b mod 2 and

(31)
PP(a +ib) = (a mod 2,b mod 2).

From formula (26) it is easy to deduce that the number of coordinates with
parity 1in a discrete state of level £ >1 is even.

The proof that the set of discrete states € is the same as the set of Gaussian
coordinate states E illustrates well the structure of these sets and uses as key
elements the concepts introduced above. The non-trivial part of this proof consists
of giving a procedure (algorithm) to construct a state of E starting from a vector of
the computational base, |0) for example, and applying the quantum gates H and G
repeatedly. Gate H changes the level of all discrete state, most of the time increasing
it by 1. But they also reduce by 1 the level of the states that we call “reducible”. For
example, the gate H applied to the nth-qubit, H,, produces the following change in
the discrete quantum state:

1
— (610 + ibo,&ll —+ il’)l, ) —
\/ik
1 | . (32)
F((ao +aq) +i(bo + b1), (ag —a1) +i(bo — b1), ...).
2

Therefore, for the state to be reducible, all the coordinates of the state resulting
from the application of H, must be multiples of 2. In this case, the initial increment
by 1 of the discrete state level becomes a decrement by 1, by dividing the coordinates
by 2. This division by 2 is compensated by multiplying the normalization factor

V2 (k) by 2, that is, reducing its exponent by 2. Consequently, a state is reducible
by applying H,, if its coordinates, taken two by two, have the same parity pattern:

Pattern (0,0): (even,even) — (even,even),

Pattern (0,1): (even,odd) — (even,odd),

Pattern (1,0): (odd,even) — (odd,even), 1)
Pattern (1,1): (odd,odd) — (odd,odd).

The proof starts from a discrete state of level k € N and, applying the quantum
gates H and G, its level is reduced, one by one, to level 0 and, once this is done, it is
transformed into a state of the computational base. Then the construction of the state
consists of writing this product of quantum gates in reverse order and substitute G for
its inverse G°. The keys of the proof are as follows. First, all the coordinates with the
parity pattern (0, 1) are multiplied by 7, so that all coordinates with parity 1 have the
parity pattern (1, 0). Secondly, the coordinates are permuted so that the parity pat-
terns (1, 0) appear at the end of the vector and, just before, the largest possible even
number of patterns (1, 1) and the largest possible even number of patterns (0, 0).

If all the coordinates are already placed, the state is reducible. Otherwise the first
two coordinates will have parity patterns (0, 0) and (1, 1) and the application of the
quantum gate
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R = V1H,V1H,, (34)

where V7 multiplies the second coordinate by 7 and H,, is the application of the
quantum gate H to the last qubit, will solve the problem:

R® =

1 ao—bo+a1+b1  .ag+by—ai+ b
7 > +1 5 >
V2
ag—byg—a1—b1 .ao+bo+ar— by (35)
2 1 2

N5} —f—ibz, )

The quantum gate R plays an important role in discrete quantum computing. It
modifies (rotates) the parity patterns of the first two coordinates of the #-qubit as
shown in Figure 2.

3.2 Discrete quantum gates

The introduced discrete quantum computing model satisfies some properties
that the authors did not expect to hold. They define discrete quantum gates as the
quantum gates that leave the set of discrete states invariant. This means that a
quantum gate is discrete if applying it to any discrete state produces another dis-
crete state as a result.

Discrete quantum gates are characterized by a simple property: a quantum gate
is discrete if and only if the columns of its matrix, with respect to the computational
base, are discrete states with levels of the same parity. This characterization is also
tulfilled by substituting the columns of the matrix for the rows, since the matrix is
unitary.

The number of discrete gates of one-qubit is finite because the number of
discrete states of one-qubit is also finite: 8 discrete states of level 0, 24 of level 1, 16
of level 2 and none of level greater than or equal to 3. In this case all discrete gates
can be generated from H and G.

Like discrete states, discrete gates are classified by levels. The level of a discrete
gate is defined as the highest of the levels of its columns, considered as discrete

[(0.,0),(1,1)]
[(1.1),(0,0)]

[(0.1),(1,0)]
[(1,0),(0,1)]

[(0,0),(0,0)]

[(1,D),(1,1)]

[(0,1),(0,1)]
[(1.0).(10)]

Figure 2.
Rotation of the parity patterns by the quantum gate R.
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states. Obviously if we defined the level of a discrete gate using the rows instead of
the columns, the result would be the same.

To proof that a discrete gate can be obtained as a product of gates H and G, it is
enough to show that its level can be reduced, one by one, by left and right multi-
plying by these gates. This is possible only if we can make the discrete states of all its
columns simultaneously reducible. And this surprisingly is possible!

Gatti and Lacalle prove it for discrete two-qubit quantum gates and conjecture
that the result is true for any number of qubits. To do this, they generalize the
properties of the parity patterns already introduced to the discrete gates (see
Figure 3). They introduce the following concepts:

1.Simple match: Given two columns of a discrete gate, we will say that there is a
simple match, when there exist elements in both columns, corresponding to
the same row, with the real parts or the imaginary parts both odd.

2.Cross match: Given two columns of a discrete gate, we will say that there is a
cross match, when there exist elements in both columns, corresponding to the
same row, with the real part of one and the imaginary part of the other both

odd.

From this definition and taking into account that the columns of a discrete gate
are orthogonal discrete states, we can observe:

1.The number of odd elements in any column of a discrete gate is even.

2.Given two columns of a discrete gate, the number of simple matches and the
number of cross matches are even.

We remark that every result about the columns of a quantum gate is also valid
for the rows, since the matrix is unitary.

As it happened with the quantum states, we need to appeal to the gates R and R
(transpose of R), which will act on the left and on the right, respectively. The gate
R’ also produces a rotation of the coordinate parity patterns, analogously to the way
R does (see Figure 2). However in this case the rotation is in the opposite direction.

The proof that discrete two-qubit quantum gates can be generated from gates H
and G is much more technical than that described for discrete states. The parity
constraints of the rows and columns of the discrete gates, derived from their
unitarity, are sufficient tools to complete the proof. Readers interested in the details
of this demonstration can refer to the original article [20]. The techniques used in
the proof do not generalize for discrete gates of more than two qubits, but authors
believe that the result is true in general.

Conjecture 1. For all # > 3 every dicrete #n-qubit quantum gate can be
decomposed into a product of H and G quantum gates.

[r.oy — [ror  [rop ol [rop  [L1]  [LI]  [LI1]

1 simple match 0 simple matches 1 simple match 2 simple matches
0 cross matches 1 cross match 1 cross match 2 cross matches
Figure 3.

Odd coordinate component matches.
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4. Discrete quantum computing and Lagrange’s four-square theorem

Conjecture 1 can be generalized as follows.

Conjecture 2. Given a set of n—qubit discrete states of levels of the same parity
and orthogonal two by two, it is possible to build all of them simultaneously
(applying a given circuit to different states of the computational base), using the
conforming gates H and G.

Observe that the conjecture also makes sense for 2—qubits, since in the previous
subsection it has only been proved for sets of 4 discrete states. The conjecture is also
interesting in the non-discrete case, since it asks about the possibility of simulta-
neously constructing up to 2" quantum states simultaneously. In this case the
conjecture is obviously true. Simply complete the orthonormal base, for example
using the Gram-Schmidt method, and decompose the resulting unitary matrix into
product of basic quantum gates. Therefore, it makes sense to ask if it is in the case of
discrete quantum computing.

Before continuing, let us relax the discrete state level definition given in the
previous section to any value of k for which the discrete state verifies Eq. (26). We
will call these values widespread levels. Note that if k is a widespread level of a
discrete state then k + 2 is also. Then, a discrete state has widespread level k if and
only if it is of the form kg + 2j, where kg is the level of the discrete state and j a
natural number. This property allows to write all discrete states (with levels of the
same parity) at the same widespread level.

Let us see that, somehow, building a set of orthogonal discrete states is equiva-
lent to completing the set to an orthonormal base. For this reason we will focus in
the following problem:

Problem 1. Given a natural number k and ¥4, ..., ¥ ;n—qubit discrete states with
widespread level £, 1 <j <2, such that (¥;|¥,,) = 0 for all 1 <7 <m <j, then is there
an n—qubit discrete state with widespread level k, P, such that (¥;|¥) = 0 for all
1<i<jp?

Considering that every discrete 2—qubit quantum gate can be built from gates H
and G, the following can be easily proved: for 2—qubits Conjecture 2 is true if and
only if Problem 1 has an affirmative answer. Then the resolution of Problem 1
would allow us to build bases with special characteristics and it would help us to
demonstrate the conjecture that any n—qubit discrete gate, with n > 3, can be
generated from quantum gates H and G.

The fact that establishes the connection between discrete quantum computing
and Lagrange’s four-square theorem is that the discrete states have to satisfy
Eq. (26). Lagrange’s four-square theorem [44] says that every natural number is a
sum of four squared integer numbers and, consequently, guarantees that there exist
discrete states for any level £ > 0 and for any number of qubits z > 1.

Problem 1 is an orthogonal version of Lagrange’s four-square theorem, i.e. the
discrete state ¥ must verify the Diophantine Eq. (26) and the following orthogo-
nality conditions:

(P;|]¥) =0 for all 1<i<j. (36)

Note that given a value of k, if the Eq. (26) has a solution for a 1—qubit, then it
has a solution for every number of qubits # >2. Nevertheless, this generalization is
not necessarily true for the Problem 1, because of orthogonality conditions.
Therefore the problem has its own entity for any number of qubits .

Problem 1 turns out to be a difficult question in Number Theory and has deep
implications. For this reason we begin with the following simplification that most
resembles Lagrange’s four-square problem: n = 2, integers as coordinates instead of
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Gaussian integers and normalization factor ,/p, being p a prime number, instead

of V2.

Problem 2. Given a prime number p and v4, ..., v, € Z*,1<k <3, such that
|lv;||> = p for all 1 <i <k and <vi|v]~> = 0 for all 1 <i <j <k, then is there a vector
v = (x1,%2,%3,X4) € Z* such that (vilv) = 0 for all 1<i <k and lvlI? = x% +x% +
x3 + x5 =p?

Given a natural number 1<k <4 and a set of vectors vy, ...,v), € Z* such that
|lv;||> = p for all 1 <i <k and <vi]vj> = 0 for all 1<i<j <k, we will say that S =
{v1, ..., v } is a p—orthonormal system and, if k = 4, that S is a p—orthonormal base.

Given a p—orthonormal system S, we will call support of S, supp(S), to
{i | Fj {such that the} i-{coordinate of } »; # 0} and we will say that |supp(S)| is
the support size of S.

In this context, the problem we are dealing with (Problem 2) is stated as follows:
given a prime number p and a p—orthonormal system S = {1, ...,v; }, 1<k <3,
prove that there exists v € Z* such that (v;[v) = 0 for all 1<i <k and ||v||* = p.

To prove the result, the authors consider four cases. Three of them are solved
with basic linear algebra techniques. However the fourth case is much more diffi-
cult, and requires the use of lattices and some Number Theory results.

Case 1: one vector p—orthonormal systems.

If the p—orthonormal system S has a single vector v1 = (x1, %2, x3,x4), the solution
(valid for all p > 1) is trivial: the required vector is, for example, v = (x2, —x1, x4, —X3).

Case 2: two vectors p—orthonormal systems with support size 2.

If the p—orthonormal system S has two vectors with [supp(S)| = 2, the solution
(valid for all p >1) is as well trivial. Suppose, without loss of generality, that
supp(S) = {1,2}, v1 = (x1,%2,0,0) and v, = (yl,yz, 0, O). Then, the required vector
is, for example, v = (0, 0,x1,x2).

Case 3: three vectors p—orthonormal systems.

If the p—orthonormal system S has three vectors, their exterior product allows
us to obtain the required vector (valid for all p >1). It is enough to prove that all the
coordinates of the exterior product are multiples of p and divide this vector by p to
obtain the vector we are looking for.

So far, attempts to extend the proof of Problem 2 to arbitrary values of the natural
number p have been unsuccessful, despite having been proven with a computer that the
result is true up to p = 10000. This fact shows that the problem has a deep relationship
with Number Theory. For discrete quantum computing the affirmative answer to Prob-
lem 1, as well as the proof of Conjectures 1 and 2, are very important. It would mean that
discrete quantum computing maintains the most important properties relative to
orthogonal and orthonormal vector systems and unitary transformations.

If we generalize Problem 2 by applying it to other dimensions, we see that
counterexamples can be found for every dimension # that is not a multiple of 4.
Thus, from Problem 2, we arrive at the following conjecture.

Conjecture 3. Givenz = O0mod4 (#>1) and p >1 and a p—orthonormal system
inZ", S, then S can be extended to a p—orthonormal base.

In all the problems raised and the conjectures established, the parities of the
coordinates are important and, where appropriate, their parity patterns. It is also
interesting to note that if we only want orthogonal systems, without specifying the
norm or level of the vector with which we want to extend the system, all problems
and conjectures are solved affirmatively.

Finally, we want to comment that the authors of the work in which discrete
quantum computing is related to Lagrange’s four-square theorem [21], conjecture
that Problem 1 has an affirmative answer.
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5. Does quantum physics allow discrete quantum computing?

Discrete quantum computing could in principle make error control easier. But in
order to take advantage of the fact that quantum states are discrete, Quantum
Physics must allow the construction of self-correcting systems. A system with these
characteristics associates a basin of attraction with each discrete state so that when-
ever the n—qubit falls into said basin of attraction, the system automatically corrects
it, transforming it into the associated discrete state. However, this process does not
fulfill the Schrédinger equation because it is not unitary. And it cannot be the result
of a quantum measurement either because the probability that the result was not
the associated discrete state would not be zero. Then, how can Quantum Physics
implement discrete quantum computing?

We believe that Quantum Physics can take one step further in the description of
physical systems. Quantum Physics still fails to explain fundamental physical con-
cepts, to the point that physicists as relevant as Feynman said “I think I can safely
say that nobody understands quantum mechanics” and Quantum Mechanics has a
reputation for being especially mysterious.

An example of a surprising result is the the no-cloning theorem [45-47], which
states that it is impossible to create an independent and identical copy of an arbi-
trary unknown quantum state. This result of Quantum Physics contrasts with the
self-reproducing systems of nature and is also derived from the Schrédinger equa-
tion, that predicts a unitary evolution of physical systems.

Quantum Physics has so far failed to explain the concepts for which it has
acquired the fame of mysterious. We must assume that these mysteries are intrinsic
to the nature of physical systems or that there is a road for Quantum Physics to
explain them and open new paths for its development. Next we are going to analyze
some of the less understandable concepts of Quantum Physics.

The first concept that is difficult to understand is the wave-particle duality.
These concepts are inherently incompatible and nevertheless both are necessary to
explain many results of Quantum Physics. If we assume that physical systems have
a coherent physical description, we must conclude that elementary particles are
neither waves nor particles. Therefore they must be something else.

On the other hand, the postulates of Quantum Physics introduce two processes
to describe the evolution of physical systems: the Schrédinger equation and quan-
tum measurements. The first predicts a unitary evolution of physical systems while
the second seems to violate the prediction of the first. Many researchers assume that
the result of the measurement of a quantum system is a random process whose
probabilities depend on the measured system and not on the device that performs
the measurement, and that the result is random, that is, there are no hidden vari-
ables that determine the result deterministically. In this interpretation the mea-
surement process violates the Schrédinger equation. Other interpretations regard
quantum states as statistical information about quantum systems, thus asserting
that abrupt and discontinuous changes of quantum states are not problematic,
simply reflecting updates of the available information. These reinforce the mysteri-
ous character of Quantum Physics and change its objective of describing physical
systems for that of only obtaining information.

Finally, we want to comment on the interpretations made of the wave function
obtained by solving the Schrodinger equation. It is common to hear that the wave
function, for example of an electron, does not indicate that the particle is at all
points where the wave function is not zero and that it is not an indicator of our
ignorance of the position of the particle. On the one hand we give all the credit
to the Schrédinger equation and on the other we take it away from the wave
function.
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As we see the controversy continues to haunt Quantum Physics. From our point
of view, Quantum Physics has found a prediction system for the results of the
measurements of physical systems, but it does not describe them. This prevents
Quantum Physics from advancing in the deductive knowledge of physical systems,
leaving only the advance based on experimentation. Does Quantum Physics really
describe everything we can know about physical systems? We do not believe it.

What can be done to get out of this loop? We believe that we should focus on the
initial problem: the wave-particle duality. As we have indicated before, this
dilemma indicates that elementary particles are neither waves nor particles. There-
fore the first objective is to determine its nature. To do this, we must look for
questions that can be answered through the design of experiments and that shed
light on the nature of elementary particles. In our opinion the first important
question is the following: In how many points of space can an elementary particle be
simultaneously?

Physics, in addition to the problems of Quantum Physics already mentioned,
also has serious problems to combine two of its most notable theories: General
Relativity and Quantum Physics. Undoubtedly, any theory that goes in the direction
of discretizing space must also consider the discretization of time. In our study we
only intend to contribute ideas so that Quantum Physics can overcome the contro-
versies that it is not able to explain. We do not start from the hypothesis that
Quantum Physics must be a discretized theory, but we believe that it must be a
theory that allows self-correction and that this property must allow the implemen-
tation of a discrete quantum computation.

In Quantum Physics, different types of discretization have been proposed,
in addition to the one presented in this article. Thus, in [48] a discretization of
the quantum state space is proposed in order to explain Born’s rule for
probabilities. The proposal, despite being very similar to the one we have
presented in this article, has very different objectives. In [48] it is used to try to
explain two of the most important interpretations of Quantum Physics: Many
Worlds and Copenhagen interpretation. In our case the objective is to define a
discrete quantum computing model allowing effective control of quantum errors.
And this objective leads us to pose an important question, aimed at explaining the
wave-particle duality: In how many points of space can an elementary particle be
simultaneously?

5.1 Hypothesis on the nature of elementary particles

Elementary particles cannot be in only one position in space because they cannot
explain their behavior as waves. Then, in how many positions can they be simulta-
neously? The answer can be a finite number greater than one, a countable infinite
number, or even an uncountable infinite number. Due to the principle of simplicity,
we are inclined to take as a working hypothesis that the answer is a finite number
greater than one.

And what does it mean for a particle to be simultaneously at various points in
space? In our hypothesis the particle orbit between all its possible positions but
being in only one at each time. Therefore simultaneity must be taken in a non-strict
sense. That a particle orbits in different points means that it disappears from one
point and appears in another and so on. The particle does not travel from one point
to another through ordinary space and, in this sense, it may violate the special
relativistic principle of speed limitation. Colloquially speaking the particle travels
through a “wormhole”, without deforming space through large concentrations of
mass.
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And, why do we choose this elementary particle model as a hypothesis? Because
as we have said, the particle must be able to be in more than one point simulta-
neously and there are already experimental results of quantum nonlocality [49-53].
As far as we know, quantum nonlocality does not allow for faster-than-light com-
munication and it is generally assumed that is compatible with special relativity and
its universal speed limit of objects. We believe that quantum nonlocality in some
sense violates the aforementioned principle of special relativity. We do not believe
that the physical characteristics of the systems should be subordinated to the ability
to transmit information.

From our point of view, the multi-position structure of the particles generates
nonlocality in the usual space and breaks its Euclidean behavior. In this way phys-
ical systems can interact non-locally in space through their multi-position structure.

Another question that arises naturally from our working hypothesis is how
scattered can the points that define an elementary particle be in space? Non-point
particles can naturally explain their intrinsic angular momentum and this, in turn,
give us information about the structure of the particles. For example, a particle that
could be in three points in space would have an angular momentum proportional to
the area of the triangle determined by its positions. This would indicate that the
dispersion of the particles would occur on typical scales of Quantum Physics.

The multi-position particle hypothesis would again bring up some problems that
originated Quantum Theories, such as, for example, the stability of atoms. This
problem would be solved by the spatial scattering of the electrons around the
nucleus. In this case the far electromagnetic field generated by the electrons would
decrease faster than the inverse of the square of the distance and this would prevent
the electrons from losing their energy in the form of electromagnetic radiation.

Our hypothesis would force us to readapt Quantum Theory. Therefore, we
should plan experiments that allow us to contrast it. Is this possible?

5.2 How to test the hypothesis experimentally?

We would like to propose a couple of experiments that could theoretically
provide information on our hypothesis about the structure of elementary particles.
The first is a variation of the flagship experiment in which the wave-particle duality
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Figure 4.
k-slit experiment.
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of elementary particles is tested: the double-slit experiment. The second uses a
known quantum effect: the quantum tunneling.

Experiment 1. k-slits. We launch, one by one, elementary particles towards a
barrier orthogonal to the direction of the movement of the particles (see Figure 4). In
the barrier there are k parallel slits at a distance d one from the following: s1, 52, ..., Sk.
Behind we place a screen parallel to the barrier and at a distance D from it. On this
screen we place the detectors to obtain the interference pattern of the particles.

The objective of this experiment is to determine if the particles, according to our
hypothesis, can be simultaneously in exactly k — 1 positions. If this hypothesis is
true, a particle cannot pass through the & slits. It can pass through k& — 1 slits at most.
Therefore, the interference pattern will depend on whether the hypothesis is true.

We start the experiment by choosing k& = 3. If the hypothesis that the particles
are in exactly & — 1 positions simultaneously is not corroborated, we increase the
value of & by 1 and carry out the experiment again. And when is our hypothesis
confirmed? When the interference pattern obtained is P(true) instead of P(false):

1P(true) _ P(Sl, ,Sk_1)+P(S1, ’]ik_z’Sk)+m+P(52’ ,Sk).

2.P(false) = P(s1,525 «e 5Sk)-

It would be necessary to estimate if the measurements can be precise enough to
distinguish the two patterns and, in the first, if the probability of the & possible
cases is the same or not.

Experiment 2. Quantum tunneling. We launch, one by one, elementary
particles towards a potential barrier orthogonal to the direction of the movement of
the particles (see Figure 5(a)). The energy of the particles is insufficient to jump
the potential barrier and its width is small enough to allow the particles to have
an appreciable probability of passing the barrier by tunneling. The particles are
prepared in two different states. In the first state the intrinsic angular momentum of
the particles is parallel to the direction of motion and, in the second state, it is
orthogonal.

The objective of this experiment is to determine if the state of the particles
influences the probability of quantum tunneling. If this influence is confirmed, it
would mean that the orientation of the intrinsic angular momentum of the particles
determines in some way the internal structure of the particle against the potential
barrier. This could be explained quite understandably with the hypothesis that the
particles are in exactly 3 positions at the same time. In this case the particle is always
in a plane and the intrinsic angular momentum can orient that plane. If the three

itrinsic angular

momentum preparer T
——— I -----------
particle source potential barrier  potential barrier potential barrier
a) b) c)
Figure 5.

Quantum tunneling experiment.
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positions that define the particle reach the barrier simultaneously, the particle will
not be able to pass (see Figure 5(b)). But if one of the positions arrives earlier, this
position could cross the barrier while the particle orbits in the other positions (see
Figure 5(c)). Thus, when the particle orbits in this position it will already be on the
other side of the barrier.

We believe that it is not difficult to design more experiments that can shed light
on our hypothesis of elementary particles. At this moment we are studying the
dynamics of these multi-position particles.

6. Conclusions

In this article we introduce the discrete quantum computing as an alternative
road to real quantum computing. The discrete quantum computing model is of great
interest in itself both because, while maintaining all the important properties of
quantum computing, it is an especially simplicity model and because error control is
theoretically easier in this model. The introduced discrete quantum computing
model satisfies some surprising properties that the authors believed would not hold
and has deep connections to Number Theory.

The reason we set out on this alternative road to quantum computing is because
error control in quantum computing is an extremely difficult challenge. The fact
that the quantum computing model is continuous means that the golden rule of
error control cannot be used: small errors are exactly corrected. A quantum com-
puter is a very complex system from the point of view of error control. It allows
reaching any quantum state (solution to the instance of a problem) by any path
(algorithm). Doing this while keeping the error (entropy?) controlled is certainly an
impressive challenge. As a consequence of the difficulty of controlling errors in
continuous systems, there is no analog (continuous) device remotely comparable in
operational complexity to a computer.

However, Quantum Physics does not allow the implementation of a discrete
quantum computing model that allows self-correction of errors. To overcome this
difficulty we ask Quantum Physics to go one step further in describing physical
systems, beyond the prediction of measurement results. For this we propose a
hypothesis about the nature of elementary particles that tries to overcome the
never-understandable principle of wave-particle duality.

Summarizing, we propose an alternative road to quantum computing that passes
through the discretization of this computing model and overcoming the interpreta-
tion gaps of Quantum Physics relative to the physical systems.
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