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Abstract

Pharmacology is the predominant first-line treatment for most pathologies. 
However, various factors, such as genetics, gender, diet, and health status, signifi-
cantly influence the efficacy of drugs in different patients, sometimes with fatal 
consequences. Personalized diagnosis substantially improves treatment efficacy but 
requires a more comprehensive process for health assessment. Pharmacometabolomics 
combines metabolomic, genomic, transcriptomic and proteomic approaches and 
therefore offers data that other analytical methods cannot provide. In this way, 
pharmacometabolomics more accurately guides medical professionals in predicting an 
individual’s response to selected drugs. In this chapter, we discuss the potentials and 
the advantages of metabolomics approaches for designing innovative and personalized 
drug treatments.

Keywords: Personalized Medicine, Pharmacometabolomics, Metabolomics, NMR, 
metabolites

1. Introduction

Conventional drugs are developed as standard treatments for all patients 
diagnosed with particular diseases regardless of any differences between those 
patients. Consequently, this universal approach comes with a high degree of 
uncertainty regarding the treatment outcome. It is well-established that individu-
als can be differentially affected by the same disease due to factors such as general 
health status, genetics, gender, diet habits, smoking, alcoholic intake, etc. [1, 2]. 
The global COVID-19 pandemic has demonstrated clearly that a single disease can 
have different outcomes in different people, and the choice of therapeutic strategies 
needs to be calibrated to an individual rather than using a standard protocol for 
heterogenous populations. Indeed, the increasing incidence of treatment failure, 
especially with life threatening diseases such as cancer relapse, evidences a need for 
personalized drug regimens.

Each pathological state in humans affects multiple organs/systems and leads to 
the perturbation of metabolites and protein concentration levels. Thus, analysis 
of biomarkers (such as unique metabolites or proteins) is an effective way to 
monitor human health [3, 4]. Biomarkers can be used for disease prediction, 
diagnosis, and to screen the efficacy of treatment intervention. For example, 
the glucose level in blood is a biomarker of diabetes and can be used to monitor 



Metabolomics - Methodology and Applications in Medical Sciences and Life Sciences

2

drug efficacy [5–7]. Table 1 summarizes the most prominent examples of protein 
biomarkers discovered recently.

Among all ‘-omics’ approaches, metabolomics is the most effective of qualify-
ing and quantifying the perturbation of metabolite concentrations under external 
and internal factors. Thus, joining metabolomics with other ‘-omic’ sciences (e.g. 
genomics) is essential for a comprehensive understanding of disease onset and 
pathogenesis, and provides a better diagnosis and treatment.

The total number of endogenous metabolites (although it is not completely 
determined yet) in human bio-fluid and tissues are lower than the total number of 
expressed proteins, giving metabolomics an extra advantage in monitoring disease 
pathology. Moreover, the perturbation of metabolite levels in human bio-fluids is 
usually greater than that of protein concentrations, providing an easy and clearer 
bio-marker role [18–20]. For instance, cancer leads to changes in affected cells, 
which cause an up-regulation in metabolite concentration levels during carci-
nogenesis [21]. For example, increased lactate levels have long been associated 
with different types of cancer [22]. Recently, the development of computational 
methods, such as bioinformatics and human metabolome databases establishing 
large scale bio-banks and computer programs, have facilitated the employment of 
metabolomics in stratified medicine. Pharmacometabolomics is a new subset of 
the metabolomics field aiming to predict the response of an individual to a drug or 
to develop optimized treatment strategies based on previous knowledge of subject 

Protein biomarkers Useful for: Ref

Apolipoprotein H, ApoCI, Complement C3a, 

Transthyretin, ApoAI

Prediction of recurrence-free survival 

in women with estrogen receptor-

negative tumors

[8]

S100 calcium-binding protein B, Neuron-specific 

enolase, Glial fibrillary acidic protein, Ubiquitin

Carboxy-terminal hydrolase-L1, Tau, 

Neurofilament-light

Prediction of outcome and severity in 

traumatic brain injury patients

[9]

S100A9, ThioredoxiN, Cadherin-related family 

member 2

Diagnosis (presence) of 

cholangiocarcinoma

[10]

TFF1, ADAM (male only), BARD (female only) Early diagnosis of gastric cancer [11]

Acidic nuclear phosphoprotein 32 family member 

B, Thrombospondin-4, Cardiac muscle troponin 

T, Glucocorticoid-induced TNFR-related protein, 

NAD-dependent deacetylase sirtuin-2

Creating new utrophin modulation 

strategies that could help patients with 

Duchenne muscular dystrophy

[12]

C-reactive protein, S100A8, S100A9, S100A12 Prognosis of the severity of 

rheumatoid arthritis.

[13]

S100A4, S100A8, S100A9, Carbonic anhydrase I, 

Annexin V

Diagnosis of urinary bladder cancer 

and prognosis of patient outcome.

[14]

Gelsolin, Fibronectin, Angiotensinogen, 

Haptoglobin

Detection of lymph node metastasis of 

oral squamous cell carcinoma.

[15]

Neurotrophic factor, Angiotensinogen, Insulin-like 

growth factor binding protein 2, Osteopontin, 

Cathepsin D, Serum amyloid P component, 

Complement C4, Prealbumin (transthyretin)

Diagnosis of Alzheimer’s disease in 

Han Chinese.

[16]

Alpha-2-macroglobulin, Chromogranin-A, 

Glutathione pertidase 3

Obtaining qualitative and quantitative 

assessments of radiation exposure.

[17]

Table 1. 
Examples of biomarkers and their use in medicine.
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metabolomics information (individual’s metabolic profile). One should keep in 
mind that aerosolized treatment would never lead to the discovery of a novel drug 
for each individual subject. Indeed, the number of new drugs is almost constant in 
the last decades (Figure 1).

In this chapter, we briefly introduce metabolomics along with common metabo-
lomics analytical platforms regarding the development of a personalized medicine 
approach and factors that will empower advances in personalized medicine.

2. FDA approved drugs since 1975

Over the past few decades, pharmaceutical product intervention has improved 
significantly resulting in more saved lives and enhanced public health. The annual 
number of newly approved drugs applicable for human use has varied greatly over 
the years (Figure 1). The Food and Drug Administration (FDA) is an agency within 

Figure 1. 
Number of novel drugs approved annually by the FDA between 1993 and 2020 with graphical representation.
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the United States. One of its primary responsibilities is the approval of human 
pharmaceutical products based on safety and efficacy. Regulating and managing the 
human pharmaceutical industry and the approval of new drugs is the responsibility 
of the Center for Drug Evaluation and Research (CDER) [23].

The FDA catalog contains most of the approved drug products since 1939. 
However, since 1998 a complete human drug database is available, known as the 
Orange Book, which includes patient information, drug labels, and drug reviews. 
The Orange Book is considered a comprehensive detailed list of all pharmaceutical 
products approved in the U.S. by the FDA. However, studying the number of phar-
maceutical products approved annually is not straightforward. First, the number 
of approved human drugs was not accurate before 1981, as the Orange Book did not 
report pharmaceutical drug approval data until after 1981, including new molecular 
entities (NMWE), the pharmaceutically active ingredient, drug dosage form, combi-
nation, formulation, and indication [24]. In addition, the Orange Book excludes any 
withdrawn drug or ‘no-longer marketed’ pharmaceutical products due to either drug 
efficacy concerns or safety concerns. Below, the reader can find Figure 1 summarizing 
the number of FDA-approved novel human drugs per year from 1993 to 2020 [24, 25].

As is apparent from Figure 1, the year 2020 represents the second-highest num-
ber of FDA-approved novel human drugs over the past twenty years (53 drugs), 
while 2018 was the year when the highest number of drugs were approved by the 
FDA (57 drugs). In 2017, only 46 drugs were approved [26].

The average rate of new drug approvals by the FDA has increased over the 
years (Figure 2). Before 1950, the average annual drug approval was less than four, 
while the average annual drug approval in the 1960s and 1970s was 10. However, in 
the 1980s the average approval rate increased to more than twenty per year. It has 
continued to increase to reach more than twenty-five approvals per year from 2000 
to 2010. Over the last several years there have been further increases, reaching an 
average of more than 39 approved compounds per year from 2010 till 2020 [26, 27]. 
The average novel drug approval by the FDA over the decades is listed in Figure 2.

3. Metabolomics

Metabolomics is defined as “the measurement of metabolite concentrations and 
fluxes and secretion in cells and tissues in which there is a direct connection between 
the genetic activity, protein activity, and the metabolic activity itself” [28]. It is a 

Figure 2. 
Average numbers of novel drug approvals by the FDA over the last five decades with graphical representation.
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relatively new field and is employed in a wide range of applications that monitor 
biological systems [3, 29, 30]. Integrating metabolomics with other ‘-omics’, includ-
ing proteomics, transcriptomics, and genomics, provides an exhaustive description 
of the biological system under study. Metabolomics provides a snapshot of the 
metabolite dynamics, and is a powerful tool when investigating numerous perturba-
tions in biological systems, including pathophysiological events, environmental 
stimuli, and genetic modifications [31–34]. Moreover, metabolomics investigates 
every perturbation in metabolite compositions and/or concentrations, and it has 
already been applied in different fields such as biomedicine, environmental science, 
nutrition and diet studies, microbiology, and drug toxicology, as well as marine and 
plant sciences [35–39].

Metabolomics is usually classified into two main categories: (1) untargeted, and 
(2) targeted. Untargeted metabolomics is focused on the entire pool of “detectable” 
metabolites in a biological sample and makes no assumptions about metabolite(s) 
or class of metabolites, nor their concentrations. Untargeted metabolomics relies 
on fingerprinting approaches, where a group or different classes of samples (e.g., 
healthy control vs. pathological samples) are compared, and where absolute 
metabolite quantifications are not necessary. In contrast, targeted metabolomics 
focuses both on the identification and quantification of a specific number of 
metabolites. Targeted metabolomics approaches are relevant for drug development, 
where the drug mechanism (including drug absorption and drug distribution) 
needs to be precisely monitored.

The choice of proper analytical technique(s) in metabolomics is the crucial step, 
and particularly targeted metabolomics requires accurate metabolite quantification. 
Metabolomics applies different analytical techniques, including mass spectrometry 
(MS), nuclear magnetic resonance (NMR) spectroscopy, Fourier transformed 
infrared (FT-IR) spectroscopy, and high-performance liquid chromatography 
(HPLC). Among them, NMR spectroscopy and MS spectrometry are the most com-
mon and powerful analytical tools [40, 41].

3.1 Analytical techniques in metabolomics

Similar to other ‘-omics’ disciplines, metabolomics uses different analytical plat-
forms, separately or in combination (two or more techniques) [32, 42]. Although 
several analytical platforms are employed in metabolomics studies, including FT-IR 
spectroscopy [43–45], HPLC [46, 47], NMR spectroscopy [48–53], and MS [54–57] 
combined with gas or liquid chromatography [58–62], MS and NMR are the most 
common approaches [3, 50, 63–65]. There is no single optimum analytical technique 
that can elucidate all metabolites equally. Each analytical method has its advantages 
and limitations. For example, NMR is a non-destructive and highly reproducible 
technique where metabolic pathways or metabolic flux can be studied by using 
isotopic nuclei (such as 13C and 15N NMR), thus monitoring the flow of compounds 
through metabolic pathways [66–69].

Nevertheless, it has two main drawbacks that must be kept in mind: inher-
ently low sensitivity and potential signal overlap. Different technical approaches 
have been developed to overcome these two drawbacks, contributing to the 
development of new and more efficient NMR techniques. For example, dynamic 
nuclear polarization (DNP) can be used to increase the NMR signal enhancement 
[70, 71], and the use of cryoprobes and the introduction of ultra-high magnetic 
fields (e.g., 1GHz) helps to overcome the low sensitivity limitation [72, 73]. The 
peak overlap problem can be minimized by the use of the highest magnetic fields 
and multi-dimensional NMR methods such as HSQC, TOCSY, COSY, and HMBC 
techniques [66, 74–78].
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As stated, no singular analytical technique can perform a complete quantifica-
tion and identification of all the metabolites in one analysis. Therefore, in addition 
to one and two-dimensional NMR experiments, different complementary tech-
niques are required, such as liquid chromatography-mass spectrometry (LC–MS) 
and gas chromatography–mass spectrometry (GC–MS), which help to maximize the 
number of identified and quantified metabolites [32, 65, 79, 80].

For instance, the human urine metabolome was analyzed by Wishart et al. with 
several different analytical tools (ICP-MS, NMR, GC–MS, DFI/LC–MS/MS, HPLC) 
to facilitate the detection of the highest possible number of human urine metabo-
lites. Among all metabolites, 209 were identified by NMR, 179 by GC–MS, 127 by 
DFI/LC–MS/MS, 40 by ICP-MS, and 10 by HPLC [81].

Based on the ability to separate and detect a wide range of metabolites, LC–MS 
is one of the most widely used tools for carrying out metabolite profiling stud-
ies [82–86]. LC–MS combines HPLC and mass spectrometry, and provides a 
powerful analytical tool for the separation, identification, and quantification of 
metabolites in a studied sample [65, 87–90]. HPLC separates molecules based on 
different physical and chemical properties such as charge, polarity, molecular size, 
and affinity towards column matrices [91–94]. Thus, different successful chro-
matography methods have been developed, such as reversed-phase (RP) gradient 
chromatography [85, 86, 95, 96]. To obtain the best separation, and presumably 
the highest number of detected metabolites, each sample can be analyzed twice 
using RP and normal phase chromatography. Moreover, the column switching 
approach of 2-dimensional analysis in an “orthogonal” combination of hydrophilic 
interaction liquid chromatography (HILIC) and RP-L, in conjunction with utilizing 
different electro spray ionization (ESI) modes can also be used [85, 86, 97–99]. In 
addition to using different separation methods and/or ionization methods, LC–MS 
is inherently far more sensitive than NMR and enables researchers to detect sec-
ondary metabolites at lower concentrations [100, 101]. The drawback occurs with 
the consistency of the separation performance. For example, columns can degrade 
non-linearly over time, requiring constant monitoring, determination of effect(s), 
and compensation in the final analysis. Solvent purity, pump performance, and 
injector consistency can all come into play. The inclusion of quality control samples 
at the beginning, end, and randomly inserted into the experimental samples should 
allow the compensation and quality control of any introduced confounder(s), but 
adds material costs, extends batch run times, and introduces complexity to the 
analyses.

3.2 Development of ‘-omics’ in personalized medicine approach

Over the last decades, various fields of bioresearch (genetics, genomics, pro-
teomics, and metabolomics) have quickly evolved and revealed mechanisms of 
diseases, and most importantly delivered new therapeutic outcomes. Although the 
current tenet regarding the uniformity of the drug response seems to be widely 
accepted, it does not take into account the individual differences. Individuals may 
not respond in the same way to the pharmacological treatments or present minor 
and serious side effects. For example, antidepressants [102], statins [103, 104], or 
antipsychotic drugs [105] have been shown to have reduced effects on some indi-
viduals, even to the extent that only a quarter of patients can achieve a functional 
remission of the disease [105]. Pharmaceutical treatments are ineffective for 30 
to 60% of patients [106]. Moreover, a significant number of patients may develop 
adverse drug reactions (ADR) related to their treatment, with the incidence of fatal 
ADR being 0.32% [107]. In order to minimize the negative effects of pharmaceuti-
cal treatments, and at the same time optimize the drug therapy in terms of its 
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efficiency, a more personalized approach has been proposed, which assesses various 
factors prior to the treatment through the application of the different ‘-omics’ [108].

This approach is not entirely new, as some characteristics (age, weight, co-
morbidity, family history, and biochemical parameters) are already commonly 
considered. However, technological progress allows us to analyze individuals in 
more detail – from different genes, and single-nucleotide polymorphism (SNPs) 
genomics, to small, biologically active molecules (proteomics, metabolomics) and 
even the metabolic pathways of individuals (metabolomics, fluxomics) [109, 110]. 
In addition, personalized medicine not only takes into account the physiological 
status of a person’s body - it also considers the unique, psychosocial situation of the 
individual, which may have a direct effect when a given health condition manifests 
in that individual and how he/she will respond to treatment [111]. Although these 
aspects are taken into consideration for a more complete picture of a person’s medi-
cal status, separate approaches could also be used to focus on precise problems. For 
example, a fairly new field called pharmacogenomics tries to assess and validate 
the impact of human genetic variation on drug responses [112, 113]. Currently, 
we know that inherited variations in approximately 20 genes can affect around 80 
medications and the way the body responds to them [114]. Another young field that 
has become a prominent branch of metabolomics is pharmacometabolomics, which 
is the subject of this review.

Personalized medicine has already shown its value in therapies to combat diabe-
tes and cancer [115–119]. For example, the management of blood glucose in diabetes 
requires proper medication, for which the dosage and efficiency is suited to the 
individual patient. The efficacy of one of the drugs used in type 2 diabetes, metfor-
min, has been associated with polymorphisms in several genes, specifically solute 
carrier family (SLC) 22 (an organic cation transporter) member 1 (SLC22A1), 
SLC22A2, SLC47A1, organic cation transporter 1 and 2 (OCT1 and OCT2), and the 
gene encoding for multidrug and toxin extrusion 1 protein [MATE1] [115, 120]. 
Sulfonylureas which are another class of drugs used to treat type 2 diabetes, have 
been shown to have a variable response effect depending on the genomic profile 
of the patient, e.g., the variant ‘TT’ at rs12255372 in the TCF7L2 gene results in a 
weaker response compared to the ‘GG’ version [116, 121]. Those genetic factors are 
usually not considered when therapy is administered, despite the fact that the infor-
mation they provide can have direct and substantial effects on therapy optimization 
and the success of treatment.

Similar benefits from personalized medicine have been observed in the treat-
ment of various types of cancer. One of the best examples that highlights recent 
progress is breast cancer. Based on the biomarkers present in tumors, such as the 
estrogen receptor, progesterone receptor, antigen Ki-67, human epidermal recep-
tor 2 [122], and mutations in genes such as Breast cancer gene 1 and 2 (BRCA1, 
BRCA2), which are related to carcinogenesis [123], breast cancer can be divided 
into different subgroups [122]. Each of the cancer types has its own characteristics 
and requires a specific, more personalized approach to maximize treatment efficacy 
while minimizing the adverse effects [122, 124]. The decision regarding which 
therapy to choose becomes even more complicated when we also consider the 
genetic profile of an individual (the susceptibility to the treatment) [118, 122, 125]. 
For example, different variants of CYP2D6 (cytochrome P450, family 2, subfamily 
D, polypeptide 6), which interacts with tamoxifen (a standard drug used in steroid 
receptor positive breast cancer) have been shown to have direct impacts on the 
treatment. The impaired version of the protein could also be associated with the 
recurrence of breast cancer [118, 122]. On the other hand, a personalized approach 
could also be used in a preventive way. As an example, genetic testing with a focus 
on the identification of potential, carcinogenic mutations in the BRCA1 and BRCA2 
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genes could be used to create a proactive strategy (MRI, chemoprevention, bilateral 
mastectomy), thus significantly decreasing the chances of developing a more severe 
disease [126].

3.3 Metabolomics databases

The demand for functional and inclusive metabolomics databases is driven by 
the need for fast data analysis including metabolite identification, quantification, 
and subsequent interpretation of complex metabolite data, and possibly from 
multiple instrument sources. As a result of collective efforts in this area, several dif-
ferent databases have been established, including the Human Metabolome Database 
(HMDB) (https://hmdb.ca/) [127, 128], Platform for RIKEN Metabolomics 
(PRIMe) [129], Biological Magnetic Resonance Data Bank (BMRB) [130], and 
the Madison Metabolomics Consortium Database (MMCD) [131]. The existing 
information on the human urine metabolome was published recently with detailed 
information on each reported metabolite, including concentration perturbation at 
normal and disease-related levels (http://www.urinemetabolome.ca). The human 
urine metabolome along with the human serum metabolome represent a significant 
development and resource for researchers, which may be critical when employing 
metabolomics approaches in clinical applications including stratified medicine. 
Furthermore, the human metabolome database serves as a cross-referencing and 
benchmarking tool for general metabolomics studies, including metabolite identi-
fication, quantification, and newly discovered disease biomarkers. The Madison-
Qingdao Metabolomics Consortium Database (http://mmcd.nmrfam.wisc.edu/) 
contains information on more than 20,000 compounds, including NMR and MS 
data that are valuable in the identification and quantification of metabolites present 
in biological samples [131]. Among different freely available metabolomic data-
bases, the HMDB (www.hmdb.ca) [128, 132] (University of Alberta, Canada, David 
Wishart group) is becoming the de-facto standard reference for the metabolomics 
community. The HMDB contains information on 74,462 metabolite entries gath-
ered and summarized from literature-derived data and also contains an extensive 
collection of experimental metabolite concentration information compiled from 
hundreds of MS and NMR metabolomics analyses performed on urine, blood, and 
cerebrospinal fluid samples. The data entries encompass a wide range of informa-
tion, including structural, chemical, clinical, and biological information for many 
of the reported metabolites.

In 2012, the MetaboLights database (http://www.ebi.ac.uk/metabolights) [133] 
was established for the online storage of metabolomic experiments, associated raw 
data, and metadata, to interrogate databases of collected experimental information 
in publications. This database was first developed and maintained by the European 
Bioinformatics Institute [134], and later it has been endorsed and developed by 
the COSMOS consortium [135]. The continuous development of metabolomics 
databases alongside the uninterrupted advancements in software and supercom-
puter capabilities may lead to better clinical practices, including diagnosis, disease 
prognosis, and, ultimately, effective personalized treatments.

3.4 Biobanks and their impact on personalized medicine studies

Over the past decade, several high-capacity biobanks have been established to 
serve as baseline research and clinical studies tools in use by scientific institutions, 
clinics, private companies, and regulators at both national and international levels, 
encompassing a high number (i.e., millions) of samples necessary for medical 
research. Furthermore, the standardization of sample collection and storage 
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conditions will help reduce sample collection bias and overcome the limitations 
afforded by variations between different studies, protocols, and practices. Biobanks 
usually also collect relevant data, such as whole-genome, genotype, geographic 
location, dietary preference(s), proteomic, and medical image information 
[136–138]. In addition to national registries, the incorporation of existing electronic 
health records (EHRs) is becoming more common, making large biobank datasets 
more applicable for a greater number of users [139, 140]. The availability of this 
additional information, combined with the collection of multiple samples over lon-
ger periods from the same individual, facilitates improved interpretation of experi-
mental data and provides controls for possible confounders. Establishing large scale 
national and international biobanks therefore is an essential step and a valuable 
resource for clinical practitioners and in the development of public health policies, 
in addition to being crucial for the development of personalized treatments. These 
megabanks have the capacity to store samples from the same person over the course 
of many years, which in the future may be collected from childhood and followed 
up with the periodic collection of new samples throughout life [141].

As biobanks represent a major resource in large-scale global studies, we believe 
that the impact of metabolomics approaches will become ever more important in 
future medical research and public health efforts, including personalized health 
care and stratified medicine.

3.5 Pharmacometabolomics

As mentioned, pharmacometabolomics is a fairly new addition to the ‘-omics” 
family of studies. One of the pioneering works that helped create this novel field 
of science was carried out in 2006 by Clayton et al. on paracetamol [142]. Their 
main goal was to check if the metabolite profile of an animal, prior to the admin-
istration of a drug, would allow for the prediction of the metabolism of a drug as 
well as its toxic effects on an animal. For this purpose, the team collected urine 
samples from 65 rats, both before and after the administration of paracetamol. 
Later, samples were analyzed by 1H 1D NOESY NMR spectroscopy. After analyzing 
the spectra, researchers identified four paracetamol-related metabolites, specifi-
cally paracetamol sulphate, paracetamol glucuronide, mercapturic acid derived 
from paracetamol, and paracetamol. Compared to the histopathological results 
obtained from the same rats, a substantial model for predicting post-dose histology 
of the liver could not be established, but they discovered a relationship between 
the pre-dose metabolic profile of urine and the histological outcome. The main 
factors predicting that relationship were identified as taurine, trimethylamine-
N-oxide (TMAO), and betaine, where higher pre-dose levels of taurine indicated 
less damage to the liver while higher levels of TMAO and betaine were associ-
ated with greater damage [142]. This pioneering work paved the way for the 
establishment of organizations focused on pharmacometabolomics, such as the 
Pharmacometabolomics Research Network (PMRN), where the main aim is to 
“integrate the rapidly evolving science of metabolomics with molecular pharmacol-
ogy and pharmacogenomics” [143]. So far, PMRN has produced numerous publica-
tions, many of them pertaining to lifestyle disorders and diseases. One example 
concerns the lipidomic response to treatment with simvastatin [144]. The authors 
of this paper identified metabolites that could predict the outcome of treatment 
with simvastatin – phosphatidylcholine, including 18 carbon fatty acids with 
two double bonds at the n6 position, cholesterol esters with 18 carbon fatty acids 
with one double bond at the n7 position, and 18 carbon-free fatty acids with three 
double bonds at the n3 position [144]. Additionally, the authors discovered a group 
of metabolites that may help to predict the changes of C-reactive protein (CRP) 
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after the treatment - five of them were plasmalogens (a specific group of glycero-
phospholipids containing a vinyl ether moiety at the sn-1-position of the glycerol 
backbone) [145], and the others were phosphatidylcholines and cholesterol esters 
[144]. Another interesting study worth mentioning is related to changes in lipids 
levels in schizophrenia and upon treatment with antipsychotics [146]. The authors 
measured the changes in the lipid profiles of patients before and after treatment 
with olanzapine, risperidone, and aripiprazole. They discovered that treatment 

Type of Biomarker Definition Example

Diagnostic Biomarker Biomarker used to detect 

or confirm the presence 

of disease or to identify 

individuals with a 

subtype of the disease.

Sweat chloride can be used to 

confirm cystic fibrosis [148].

Monitoring Biomarker Biomarker measured 

constantly to assess the 

status of the disease or 

for evidence of exposure 

to (or effect of) a 

medical product or an 

environmental agent.

HIV-RNA can be used as a 

monitoring biomarker to measure 

and guide treatment with 

antiretroviral therapy (ART) [149].

Pharmacodynamic/Response 

Biomarker

Biomarker used to show 

a biological response of 

an individual exposed to 

a medical product or an 

environmental agent.

Serum LDL cholesterol can be used 

for evaluating response to a lipid- 

lowering agent in patients with 

hypercholesterolemia [150].

Predictive Biomarker Biomarker used to 

identify individuals who 

will experience positive 

or negative outcome 

from exposure to a 

medical product or an 

environmental agent.

Mutations in BRCA 1/2 genes can 

be used to identify women with 

platinum-sensitive ovarian cancer 

that will most likely respond to 

PARP inhibitors [151].

Prognostic Biomarker Biomarker used to 

identify the likelihood 

of a clinical event such 

as disease recurrence or 

progression.

Mutations in BRCA 1/2 genes can 

be used to evaluate the likelihood 

of a future second breast cancer in 

patients currently diagnosed with 

one [152].

Safety Biomarker Biomarker used for 

indicating the likelihood 

or presence of a toxic 

effect, measured before 

or after the exposure to 

a medical product or an 

environmental agent.

Hepatic aminotransferases and 

bilirubin can be used to evaluate 

potential hepatotoxicity [153]

Susceptibility/Risk Biomarker Biomarker used for the 

estimation of a chance 

of disease or other 

medical condition in an 

individual who currently 

does not have clinically 

apparent disease or 

condition.

Mutation in BRCA 1/2 genes can be 

used to identify individuals with 

a predisposition to develop breast 

cancer [154].

Table 2. 
Types of biomarkers with examples of practical applications. Based on the BEST (Biomarkers, EndpointS, and 
other Tools) resource by the FDA-NIH Biomarker Working Group [147].
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with olanzapine and risperidone increased the levels of 50 lipids, raised the con-
centration of triacylglycerols and generally decreased free fatty acids. Moreover, 
the concentration of phosphatidylethanolamine that is suppressed in patients with 
schizophrenia was raised by all three drugs [146].

Presently, most of the pharmacometabolomics studies focus on identifying spe-
cific biomarkers related to administered medications. Those biomarkers can provide 
information ranging from predicting patient treatment response, to monitoring the 
changes during the treatment, or evaluating the end effects of treatment (i.e., if the 
patient responded positively or negatively to the therapy) (see Table 2 and Figure 3). 
Examples of pharmacometabolomic studies are shown in Table 3.

The successful isolation of a metabolite that may become a biomarker depends 
on the type of sample and the approach. In addition to easily and commonly 
accessed samples like urine and blood serum, pharmacometabolomics studies can 
also utilize feces, saliva, human breast milk, and even breath [175–177]. Samples 
are usually collected before, during, and after the treatment, and can be further 
divided by type of response from an individual (e.g., mostly positive, mostly nega-
tive, or intermediate) [175, 178]. After obtaining data from a set of samples using 
various techniques adapted to the particular type [36, 175, 178], a database for each 
individual is created, with metabolites detected and identified before and after 
the treatment [178]. Lastly, a statistical analysis is applied to obtain information 
ranging from differences that can distinguish good and poor responders prior to the 
treatment, to changes in metabolites due to drug application that can be correlated 
with response phenotypes and assumptions of pathways connected to variants of 
response [178].

For example, Wikoff and colleagues [179] investigated atenolol-induced 
changes in Caucasians and African Americans. Atenolol is a beta-adrenergic 
receptor blocker used in a first line antihypertensive treatment. However, vari-
ous patients responded quite differently. The main objective of this study was to 
obtain metabolic signatures of atenolol treatment that provided insight into racial 
differences in response to beta blockers. They found that atenolol has a strong 
impact on fatty acids in blood serum, but the results were different for differ-
ent groups (e.g., effects of treatment were highly significant in Caucasians but 
minimal in African Americans). Furthermore, the authors examined associations 
between oleic acid and SNPs on the 16 genes encoding lipases. They discovered 
that a SNP in the LIPC (rs9652472) and PLA2G4C (rs7250148) genes were 
associated with the change in oleic acid concentration in Caucasians and African 
Americans, respectively [179]. Another example of utilizing a combined approach 

Figure 3. 
A brief description of biomarkers of specific use in the drug development process. Based on “Context of use 
(COU) for a biomarker” by U.S. Food and Drug Administration [155].
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Chemical 

Compound

Goal of the study Main changes in metabolites post exposure Conclusions Ref

Aspirin To investigate the mechanism of 

aspirin resistance.

↑ Inosine, adenosine, guanosine

↓ Hypoxanthine, xanthine

• Higher levels of adenosine and inosine were 

observed in the group categorized as “poor 

responders”.

• A pharmacogenomics approach pinpointed 

an SNP in the adenosine kinase (ADK) 

intronic variant - rs16931294, where the G 

allele of this variant was associated with 

poor response to the treatment.

[156]

To define pathways implicated in 

variation of response to treatment 

with a focus on metabolites 

containing an amine functional 

group.

↑ O-Phosphoethanolamine, serotonin

↓ Glycylglycine, L-aspartic acid, L-glutamic acid, L-leucine, 

L-phenylalanine, L-serine, ethanolamine, glycine, ornithine, 

taurine, L-asparagine, L-valine, beta-alanine, L-lysine, 

L-histidine, L-tyrosine, L-glutamine

• The changes in metabolite profiles of 

healthy individuals treated with low dosage 

of aspirin cannot be directly attributed to 

COX-1 inhibition.

• Increased levels of serotonin correlated 

with higher post-aspirin platelet reactivity.

[157]

To investigate:

• The effects of low-dose aspirin 

therapy on the oxylipid metabolic 

pathways,

• the sex differences in aspirin-

induced oxylipid changes, and

• potential association of oxylipid 

on aspirin-induced inhibition of 

platelet aggregation.

↑ 13,14-dihydroPGF2

↓ TXB2, 12-HHTrE, 11-HETE, 5-HETE, 12-HETE, 8-HETE, 

15-HETE, 9-HODE, 13-HODE, 5-HETrE, 5-HEPE, 12-HEPE, 

15-HEPE, 9-HOTrE, EpOMEs, DiHOMEs, DiHETrEs, 

20-HETE.

• Aspirin does not show any sex-specific 

effects on oxylipid levels.

• Aspirin decreases almost all of the oxylip-

ids measured in the samples.

• Several LA-derived oxylipid (3-HODE, 

9-HODE, 12,13-DiHOME, and 12,13-

EpOME) metabolites might contribute 

to the variability of non-COX1-mediated 

response to aspirin.

[158]

To assess the metabolic pathways 

affected by aspirin administration 

that are potentially involved in 

cardiovascular and antitumoral 

protection.

↑ 3-methylglutarylcarnitine

↓ L-histidine, hydantoin-5-propionate, 4-imidazolone-

5-propanoate, N-formimino-L-glutamate, xanthosine, 

L-glutamine, 5-aminoimidazole-4-carboxamide-1-β-D 

ribofuranoside, butyryl-L-carnitine, tiglylcarnitine, 

isovalerylcarnitine, heptanoylcarnitine,

• Aspirin decreases the levels of glutamine 

and metabolites involved in histidine and 

purine metabolism.

• The ability of aspirin to increase the 

β-oxidation of fatty acids and decrease 

glutamine levels implicates reduced synthe-

sis of acetyl-Co-A that could help explain 

aspirins potential anticancer effects.

[159]
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Chemical 

Compound

Goal of the study Main changes in metabolites post exposure Conclusions Ref

Aspirin eugenol ester 

(AEE)

To evaluate the protective effect 

of AEE on paraquat-induced acute 

liver injury (ALI) in rats.

↑ L-histidine, D-asparagine, L-phenylalanine, pipecolic 

acid, acetylglycine, N-(2-methylpropyl)acetamide, 

inosine, xanthosine, melatonin radical, ophthalmic acid, 

glutamylarginine, S-(PGJ2)-glutathione, L-octanoylcarnitine, 

lysoPC(P−16:0), argininic acid, N-undecanoylglycine, 

chenodeoxyglycocholic acid,

↓ Glycerophosphocholine, hypoxanthine, nonyl isovalerate, 

glutamylleucine, pipecolic acid, deoxycholic acid glycine 

conjugate, dephospho-CoA, taurochenodesoxycholic acid, 

lysoPC(14:1), PA(22:2), cholic acid, 5,9,11-trihydroxyprosta-

6E,14Z-dien-1-oate, lysoPE(18:2), lysoPE(20:4), lysoPE(16:0)

• AEE shows protective effects against 

PQ-induced ALI.

• The mechanisms in which aspirin 

eugenol ester protects against the effects 

on PQ-induced ALI are correlated with 

antioxidants that regulate amino acid, 

phospholipid, and energy metabolism 

metabolic pathway disorders and attenuate 

liver mitochondria apoptosis.

[160]

To identify the different proteins 

and small molecules in plasma to 

explore the mechanism of action of 

AEE against thrombosis.

↑ Oleamide, palmitic amide, linoleic acid, L-acetylcarnitine, 

creatine, proline betaine, arachidonic acid

↓ L-carnitine, L-methionine, L-proline, L-pipecolic acid, 

allantoin, palmitic acid, citric acid, L-tryptophan*

• Metabolomics results suggested that the 

therapeutic mechanism of action of AEE 

(as well as for aspirin and eugenol) could 

be involved with energy metabolism, 

amino acid metabolism, and fatty acid 

metabolism.

• A total number of 38 (AEE), 41 (aspirin) 

and 54 (eugenol) proteins were differen-

tially regulated in rats treated with those 

compounds.

[161]

Busulfan To investigate biomarkers for 

predicting busulfan optimal dosage.

↑ Deferoxamine-derived metabolites

↓ Carnitine C9:1, carnitine C12:1-OH, phenylacetylglutamine**

• Busulfan metabolism is decreased in 

patients with high ferritin levels and 

reduced liver function.

[162]

Gemcitabine To investigate potential predictive 

biomarkers for the efficacy of 

gemcitabine-based chemotherapy 

while obtaining the most optimal 

therapeutic results in patients with 

pancreatic cancer.

A total number of 38 and 26 different metabolites were 

identified between the gemcitabine resistant and gemcitabine 

sensitive pancreatic carcinomas from whom four of them: 

3-hydroxyadipic acid, D-galactose, lysophosphatidylcholine 

(LysoPC) (P-16:0) and tetradecenoyl-L-carnitine, were 

significantly different between the carcinoma types.

• 3-hydroxyadipic acid, D-galactose, 

lysophosphatidylcholine (LysoPC) (P-16:0) 

and tetradecenoyl-L-carnitine could be 

used as biomarkers for evaluating the 

efficacy of chemotherapy in pancreatic 

carcinoma.

[163]
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Compound

Goal of the study Main changes in metabolites post exposure Conclusions Ref

Isoniazid (INH), 

Rifampicin (RIF), 

Pyrazinamide (PZA), 

Ethambutol (EMB) 

- DOTS treatment 

program

To identify metabolites that describe 

the changes related to tuberculosis 

therapy

↑ Dodecyl acrylate, pyrazinamide, 1,6-hexylene glycol, ribitol, 

1-decene, 2,4-dimethylbenzaldehyde, 2,6-dimethylnonane, 

3,4-dihydroxybutyric

acid, 5-hydroxyindoleacetic

acid, alfa-isosaccharinic

1,4-lactone, beta-Isosaccharinic

1,4-lactone, decane, fumaric acid, hippuric acid, 

N-formylglycine, sebacic acid, threonic acid, undecane, urea, 

3-ethyl-4-methyl-1Hpyrrole-

2,5-dione, D-lyxose, phosphoric acid,

↓ Pyrazinoic acid, ethylene glycol, oleic acid, 5-oxoproline, citric 

acid, ethyl ester, cumene, hemimellitene, hexadecane, indane, 

isocumene, o-ethyltoluene, oxalic acid, p-ethyltoluene, sorbose, 

vannilic acid, cyclobutanamine***

• Metabolite markers that are associated with 

oxidative stress decline between weeks 

2 and 4 of treatment – a sign of patient 

recovery.

• During the tuberculosis therapy several 

enzymes (CYP2E1, CYP3A4, alcohol 

dehydrogenase, aminocarboxymuconate-

semialdehyde decarboxylase) undergo 

inhibition in a time-dependent manner.

• During treatment, the urea cycle is 

upregulated, and the production of insulin 

is altered.

[164]

Paclitaxel To investigate the association 

between pretreatment metabolome, 

early treatment-induced metabolic 

changes, and the development 

of paclitaxel-induced peripheral 

neuropathy for breast cancer 

patients.

↑ Pyruvate, alanine, threonine, phenylalanine, tyrosine, 

asparagine, lysine, o-acetylcarnitine, proline, lactate, glutamine, 

leucine

↓ 3-hydroxy-butyrate, 2-hydroxybutyrate****

• Pre-treatment levels of histidine, phenyl-

alanine, and threonine may predict severity 

of potential peripheral neuropathy.

[165]

To investigate metabolite signatures 

prior to the treatment, in order to 

explain the variability of paclitaxel-

induced pharmacokinetics.

↑ Creatinine, glucose, lysine, lactate

↓ Betaine

• Pre-treatment levels of creatinine, glucose, 

lysine, lactate and betaine could be associ-

ated with variability of paclitaxel-induced 

pharmacokinetics

[166]



15 P
harm

a
com

etab
olom

ics: A
 N

ew
 H

orizon
 in

 P
erson

a
lized

 M
ed

icin
e

D
O

I: h
ttp

://d
x.d

oi.org/10.5772/in
tech

op
en

.98911

Chemical 

Compound

Goal of the study Main changes in metabolites post exposure Conclusions Ref

Irinotecan To identify metabolite changes that 

could have potential implications on 

the mechanism of action of irinote 

and could serve as biomarkers for 

efficiency of a treatment.

↑ N-α-acetyllysine, 2-aminoadipic acid, asymmetric 

dimethylarginine, cystathionine, propionylcarnitine,L-

acetylcarnitine, malonylcarnitine, valerylcarnitine, thymine, 

uracil, xanthine

• The increased levels of purine and pyrimi-

dine nucleobase metabolites could be the 

result of purine/pyrimidine nucleotide 

degradation (break of double stranded 

DNA in cancer cells) as a response to the 

treatment with irinotecan.

• The increased levels of acylcarnitines 

and amino acid metabolites could reflect 

dysfunction of mitochondria and oxidative 

stress in the liver.

[167]

Docetaxel (DTX) To evaluate the response of MCF7 

tumor cells to high (5uM) and low 

(1 nM) doses of DTX.

For high dosage (5uM):

↑ Phosphoethanolamine, cytidinediphosphocholine,

polyunsaturated fatty acid,

↓ Phosphatidylcholine, glycerophosphocholine, 

glycerophosphoethanolamine, total glutathione, glutamate, 

arginine, lysine, lactate, acetate,

For low dosage (1 nM):

↑ Phosphoethanolamine, cytidinediphosphocholine, 

homocysteine, aspartate,

↓ Phosphatidyl-choline, glycerophosphocholine, hypotaurine, 

taurine, total glutathione, arginine, alanine, threonine, lysine, 

acetate,

• Both dosages result in inhibition of phos-

phatidylcholine biosynthesis and decreased 

levels of glutathione.

• The mechanisms responsible for decreased 

glutathione levels are different. At high 

dosage, the extensive consumption and 

precursor starvation was the main reason, 

while for low dosage, it was the inhibi-

tion of trans-sulfuration that inhibited 

glutathione biosynthesis.

[168]

Metformin To identify urinary markers of 

metformin responses in patients 

with type 2 diabetes mellitus.

↑ Myoinositol, hypoxanthine

↓ Citric acid, pseudouridine, p-hydroxyphenylacetic acid, 

hippuric acid*****

• Citric acid, myoinositol and hippuric acid 

have the potential to become biomark-

ers that could predict the response to 

metformin in patients with type 2 diabetes 

mellitus.

[169]
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Goal of the study Main changes in metabolites post exposure Conclusions Ref

Simvastatin To investigate the metabolic changes 

connected with the increased risk 

of developing hyperglycemia as an 

adverse response to simvastatin.

↑ Glucose, glutamic acid, alanine,

↓ Lauric acid, myristic acid, linoleic acid, glycine¸ palmitoleic 

acid, 3-hydroxybutanoic acid¸ aminomalonate, oleic acid, 

N-methylalanine******

• Patients showing a mild resistance to insu-

lin tend to develop full insulin resistance 

after simvastatin treatment.

• Branched-chain amino acids, and other 

metabolites such as ketoleucine, hydrox-

ylamine and ethanolamine could predict 

type 2 diabetes mellitus risk following 

simvastatin therapy.

[170]

Olanzapin To reveal the pharmacodynamics 

and mechanism of action of 

olanzapine.

↑ Tyrosine, succinic acid semialdehyde, homovanillic acid, 

3,4-dihydroxyphenylacetic acid, L-asparagine

↓ 5-hydroxytryptamine, −5- hydroxyindoleacetic acid, L-3,4-

dihydroxyphenylalanine, γ-aminobutyric acid, kynurenine, 

kynurenine acid, tryptophan, glutamic acid, taurine, 

acetylcholine

• Olanzapin alters glycerophospholipid 

metabolism, sphingolipid metabolism and 

the citrate cycle.

[171]

Losartan To predict inter-individual 

variations in the metabolism of 

losartan.

↑ Lipid CH3 (LDL/VLDL), lipid CH2 (LDL), lactate, citrate, 

creatine, α-glucose

↓ Lipid CH3 (HDL), creatinine, choline, glycine, 

phosphorylcholine

• Identification of 11 potential biomarkers 

from whom lactic acid, creatinine, glucose, 

and choline showed a good score for pre-

diction of metabolic processes of losartan.

[172]

Midazolam, 

Ketoconazole, 

Rifampicin,

To predict biomarkers related to 

midazolam sum of the clearance 

related to the induction and 

inhibition of CYP3A.

↑ 6β-hydroxycortisol/cortisol, 6β-hydroxycortisone/cortisone, 

16α-hydroxy-DHEA/DHEA, 16α-hydroxyandrostenedione/

androstenedione, 4-hydroxyandrostenedione/androstenedione, 

7β-hydroxy-DHEA/DHE,6β-hydroxyandrostenedione/

androstenedione, 2-hydroxyestrone/estrone, 

2-hydroxyestradiol/estradiol, 11β-hydroxyandrosterone/

androsteron, 11β-hydroxyandrostenedione/androstenedione

↓16α-Hydroxytestosterone/testosterone, 

11β-Hydroxytestosterone/testosterone*******

• Urinary DHEA levels, 7β-hydroxy-

DHEA:DHEA ratios, 6β-hydroxycortisone: 

cortisone ratios could be used to predict 

sum of the clearance for midazolam

[173]
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Goal of the study Main changes in metabolites post exposure Conclusions Ref

DA-9701 (extract 

from Pharbitis nil 

seed and Corydalis 

yanhusuo tube)

To monitor the changes of 

endogenous metabolites in order to 

understand better the mechanism 

of action.

For 0–4 h after exposure:

↑ Uric acid, L-acetylcarnitine

↓ Azelaic acid, ophthalmic acid, suberic acid, ε-(γ-glutamyl)-

lysine, pimelic acid

For 12–24 h after exposure********:

↑ Ophthalmic acid, pimelic acid, suberic acid, azelaic acid,

↓ Uric acid, ε-(γ-glutamyl)-lysine, L-acetylcarnitine

• Application of DA-9701 affects purine met-

abolic pathway, lipid, fatty acid metabolism 

and lipid peroxidation. DA-9701 improves 

gastrointestinal motility.

[174]

*Rats treated with AEE versus model.
**Patients from high busulfan concentration-time curve (high-AUC) compared with low-AUC group.
***The differences between 2 weeks and 4 weeks of treatment.
****Pre-treatment levels of metabolites compared to 24 hrs after the first infusion.
*****Differences between responders and non-responders.
******Type of association between post-treatment metabolites levels and post-treatment insulin measures.
*******Fold change of mean urinary metabolite ratios in the induction phase.
********When compared to mean fold-changes of 0–4 hours exposure.

Table 3. 
Examples of pharmacometabolomic studies.
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is the evaluation of aspirin response variability during antiplatelet therapy [180]. 
Lewis and colleagues identified that metabolites related to aspirin (salicylic acid 
and 2-hydroxyhippuric acid) were significantly increased, but exposure to aspirin 
also changed the levels of purines, fatty acids, glycerol metabolites, amino acids, 
and carbohydrate-related metabolites. Moreover, a substantial difference could be 
observed between good and poor responders in purine metabolites - higher levels 
of inosine and adenosine were observed in poor responders after aspirin inter-
vention. Later, the authors identified 51 SNPs in the ADK gene region that had 
associations with platelet aggregation in response to aspirin exposure, the stron-
gest of which was the rs16931294 variant. To confirm their findings, the authors 
compared their results to previously obtained metabolomic data and observed 
that rs16931294 was significantly associated with adenosine monophosphate, 
xanthine, and hypoxanthine levels before aspirin exposure. When compared with 
post-exposure results, this SNP was strongly associated with levels of inosine 
and guanosine [180]. The examples presented above [142, 144, 146, 179, 180] as 
well as other available literature [36, 175, 178] demonstrate the importance of 
pharmacometabolomics in drug design studies. Combined with other approaches, 
e.g., pharmacogenomic, pharmacometabolomics can greatly contribute to our 
understanding of individual differences in responses to drug treatment and thus 
directly aid us in the development of new generations of drugs. There is also 
potential for significantly extending our understanding of health sustenance and 
disease development, and thus reduce drug-dependent therapies. Perhaps not the 
most profitable news for the pharma industry, but good news for health workers 
and the general population who will be able to identify at risk individuals and 
indeed tailor health management strategies to prevent and/or reduce the impact 
of disease.

4. Future perspectives

An intense research on ‘-omics’ approaches, devoted to human health, led to the 
development of pharmacometabolomics, which is a new horizon in personalized 
medicine. Numerous research data on metabolomics, genomics, and transcrip-
tomics can be combined and compared with health records around the world due 
to potent databases and biobanks collecting data and samples. Nowadays, software 
and informatics systems with sophisticated algorithms of artificial intelligence 
allow for deeper analyses of pharmacometabolomics data, and transform general 
medicine into a personalized approach.

The analytical techniques, databases, and biobanks presented here are the 
general trends, which need to be further developed. The sensitivity of the analytical 
platforms needs to be improved, and additional ameliorations related to time and 
overall costs must be done. Particular attention must be paid to the standardization 
of study protocols. The number of data and samples deposited in databases and 
biobank must be extended.

Up to now, major efforts in pharmacometabolomics have been concentrated 
on research aspects and method validation for medical applications. The results 
presented here show undoubtedly that pharmacometabolomics is key for personal-
ized medicine and needs to be transferred ‘from bench to bedside’. Nevertheless, 
medical personnel can source from pharmacometabolomics only if the data are 
presented in a simple and comprehensive way. In the future, more effort is needed 
to increase the broad awareness of pharmacometabolomics among patients and 
healthcare system staff, and to introduce the benefits of pharmacometabolomics 
into clinical practice.
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5. Conclusion

Human genetics and lifestyle variation directly influence pharmacological treat-
ments, whose effect can be enhanced positively or negatively in some individuals 
over the statistical population used in clinical trials.

This chapter has described pharmacometabolomics as an innovative tool capable 
of assisting researchers and frontline medical personnel in establishing personal-
ized therapeutic strategies. Pharmacometabolomics can be used to personalize 
treatment type, dosage, duration, and to monitor metabolites’ profiles during 
pharmacotherapy. The existing ‘-omics’ and health records databases, and biobanks 
of human fluid samples and tissues are a precious resource for pharmacometabo-
lomics, which identify biomarkers of therapeutic effects over a disease course. 
The metabolomics databases are increasing their data pool every day, and are 
priceless for researchers combining ‘-omics’ knowledge for better and personalized 
pharmacotherapy.
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