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Chapter

The Immune System of 
Mesothelioma Patients:  
A Window of Opportunity for 
Novel Immunotherapies
Fabio Nicolini and Massimiliano Mazza

Abstract

The interplay between the immune system and the pleural mesothelium is 
crucial both for the development of malignant pleural mesothelioma (MPM) and 
for the response of MPM patients to therapy. MPM is heavily infiltrated by several 
immune cell types which affect the progression of the disease. The presence of 
organized tertiary lymphoid structures (TLSs) witness the attempt to fight the 
disease in situ by adaptive immunity which is often suppressed by tumor expressed 
factors. In rare patients physiological, pharmacological or vaccine-induced 
immune response is efficient, rendering their plasma a valuable resource of anti-
tumor immune cells and molecules. Of particular interest are human antibodies 
targeting antigens at the tumor cell surface. Here we review current knowledge 
regarding MPM immune infiltration, MPM immunotherapy and the harnessing of 
this response to identify novel biologics as biomarkers and therapeutics through 
innovative screening strategies.

Keywords: Malignant pleural mesothelioma (MPM), Immunotherapy, Fully human 
antibody, Tertiary lymphoid structure (TLS), BCR repertoire

1. Introduction

Malignant pleural mesothelioma (MPM) is an aggressive neoplasm principally 
due to asbestos exposure with a poor prognosis and a median overall survival (OS) 
of only 14 months [1]. Heavy asbestos utilization during earlier decades in Europe is 
the cause of actual disease incidence [2] and, despite many countries have banned 
asbestos use in recent years, a peak of MPM incidence is expected for 2020s due to a 
long latency and delayed disease onset [1, 3–5]. On the contrary, other countries that 
still make use asbestos are very likely to observe a substantial increase of asbestos-
related disease and MPM in the future. BRCA1 associated protein-1 (BAP1) protein 
is an important player in DNA repair mechanisms, cell cycle control, carcinogenesis 
and apoptosis and almost 60% of MPM patients have BAP1 mutation [6–13]. BAP1 
mutational status determines the insurgence of MPM [9, 10, 12–15], and influences 
the response to chemotherapy [16] and patient’ s clinical outcome [17]. When other 
gene alterations are coupled to BAP1 mutation, synthetic lethality approaches could 
be evaluated as therapeutic options [18, 19]. Other frequent mutations are in the 
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genes NF2, LATS2, TP53, SETD2 and TERT promoter as recently reported and are 
associated with different histotypes of MPM with epithelioid, biphasic and sarco-
matoid features [20]. MPM is characterized by a lack of early and specific symptom-
atology and few reliable biomarkers and screening tools are available causing a late 
prognosis. As we recently reviewed [21], current therapies in clinical practice consist 
of surgery, radiotherapy and chemotherapy and innovative therapeutic approaches 
are being explored. From this survey emerged that new therapeutic modalities and 
prognostic biomarkers are urgently needed in order to grant a fair chance of survival 
to all MPM patients. Here we describe the interplay of the immune system and MPM 
at the tumor tissue level and envision strategies to take advantage of it and derive 
novel fully human MPM-targeting antibodies to be used as biomarkers and for the 
design of novel immunotherapies.

2. Inflammatory response and carcinogenesis in MPM

MPM’s development is intertwined with the inflammatory response provoked 
by asbestos exposure. Asbestos fibers and fluid enter the pleural space where they 
reach the outer pulmonary parenchyma inducing an inflammatory response [22]. 
Later steps see macrophage infiltration guided by the presence of the chemokine 
CCL2 generated by mesothelial cells in response to asbestos fibers contact. Reactive 
oxygen species (ROS) and nitrogen species are produced by macrophages that, 
together with already present nitrogen and oxygen species generated from iron 
particles associated with the fibers, create reactive and dangerous free radicals 
responsible for mutagenic events and genomic instability [23–25].

Normally, cells which suffer genotoxic DNA damage undergo PARP-dependent 
apoptosis. Despite that, an in vitro study [26] demonstrated that damaged human 
mesothelial cells could be rescued and skip apoptosis by TNF-alfa produced by 
macrophages and by other intracellular pathways activated in mesothelial cells, 
such as NFkB [26–28]. Conversely, TNF-alfa receptor knock-out mice are protected 
from fibroproliferative lesions when exposed to asbestos fibers [29]. In summary, 
among innate immune system players, macrophages contribute to genomic altera-
tions as well as survival of mesothelial cells in a context of inflammatory response 
to asbestos fibers.

3. Immune cell infiltrate in MPM

3.1 Tumor-Associated Macrophages

Tumor-Associated Macrophages (TAMs) are the most abundant cells infiltrating 
the pleural effusions [30–33] and are associated with poor prognosis [32, 34, 35]. In 
vitro and in vivo experiments support TAMs as potential targets for MPM treatment. 
Chemokines released by mesothelioma cells such as CCL4, CCL5, CXCL12 and, in 
particular, CCL2, are chemoattractants for monocytes [36–38]. CCL2 concentration 
is particularly high in malignant pleural effusions with respect to benign lesions 
or lung adenocarcinoma pleural effusions [39, 40] and affects CCR2-expressing 
monocyte trafficking in MPM [41]. When recruited to MPM lesions, monocytes 
and macrophages switch to immunosuppressive cells under the influence of growth 
factors such as M-CSF, IL-34, MCSF [41, 42] and cytokines such as IL-10 and 
TGF-β released by MPM cells. Those cytokines act both on monocyte and macro-
phage development and activation but also exert autocrine feedback loop functions 
on MPM cells [42, 43]. Also, the macrophage checkpoint marker and “do not eat 
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me” signal CD47 is found to be highly expressed in the majority of patients with 
epithelioid mesothelioma [44]. In mesothelioma, TAMs show an immunosuppres-
sive phenotype, characterized by CD14midCD16hi expression, reduced phagocytic 
activity and increased IL-10 production [45]. In addition, in vitro co-culture of 
TAMs with MPM cells boosts tumor proliferation and concomitantly reduces 
sensitivity to chemotherapy treatment [41]. Pro-tumoral activity of TAMs is also 
evident in mesothelioma mouse models where the removal of macrophages reduces 
the number of tumor nodules, metastases and tissue invasiveness [46].

3.2 Myeloid-Derived Suppressor Cells

Granulocytes and neutrophils are also present in MPM microenvironment and 
recruited by CXCR2 or CXCL5 and CXCL1 chemokines, respectively [36, 47]. Also, 
polarization and phenotype of granulocytes are affected by growth factors from 
the mesothelioma secretome which increases their expression of CD11b, CD15 and 
CD66b markers. These cells function as Myeloid-Derived Suppressor Cells (MDSC) 
and negatively affect T-cell proliferation via the production and release of ROS [48]. 
Also, the presence of consistent neutrophilic infiltrate as well as high numbers of 
neutrophils in the peripheral blood is associated with poor prognosis in epithelioid 
mesothelioma [49, 50]. However, MDSC targeting in MPM is still debated and 
controversial and requires further investigations.

3.3 T-lymphocytes

CD4+ and CD8+ T-lymphocytes are present in MPM microenvironment but in 
lower numbers compared to macrophages [32, 51–53]. T-regulatory cells (Tregs) 
are also present in MPM tissue but are less abundant compared to other solid 
tumors [54]. Principal chemokines present in mesothelioma secretome involved in 
T-cell trafficking are CXCL12, CXCL10 and CCL5. CXCR3, the receptor of CXCL10 
chemokine, is upregulated in mouse models of MPM [47]. CCL5 concentration 
is high in MPM patients’ peripheral blood with respect to asbestos workers and 
healthy individuals [55] while its receptor CCR5 is expressed on T-cell infiltrating 
pleural effusions [56]. As discussed in the following chapters, T-cells activation and 
programming is determined by the presence of neo antigenic stimuli [57, 58] and 
immune checkpoint expression [59, 60] in specialized immune structures organized 
in situ.

4.  Tertiary lymphoid structures in solid tumors and MPM: where the 
anti-tumor response begins

Secondary lymphoid organs (SLOs) are lymphoid regions wherein dendritic cells 
(DCs) present antigens to T-cells in a major histocompatibility complex (MHC)-
dependent way acting an efficient adaptive response against cancer, requiring the 
migration of DCs from the tumor site to the SLOs [61]. Consequently, B-cells are 
also activated in the SLOs by CD4+ T-cells, begin to proliferate and form a secondary 
follicle that will be converted to a germinal center (GC). This process induces T and 
B-lymphocyte proliferation and differentiation into effector T-cells and memory 
B-cells (MBCs), respectively, that migrate into the tumor contributing to cancer 
cells elimination, unless unfavorable/antagonizing events or exhaustive signals are 
in place. However, studies on the role of the immune system in tumors revealed that 
anti-tumor mechanisms can take place also at the tumor site within organized lym-
phoid aggregates similar to SLOs [62] called tertiary lymphoid structures (TLSs) [63].
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TLSs are also present in the stroma, at the invasive margin and/or in the core of 
different tumor types [63, 64]. TLSs are composed of a T-cell-rich zone together with 
mature DCs but also by B-cell rich-GC surrounded by plasma cells (PCs). Inside TLSs 
tumor antigens are presented to T-cells by DCs. and both T- and B- cells are activated, 
begin to proliferate and to differentiate to effector memory T helper (TH) cells, 
effector memory cytotoxic T-cells, MBCs or antibody-producing PCs [53, 65–69]. High 
numbers of CD8+ and CD4+ T-cells in tumors determine TLS density [70] and evi-
dence indicates a positive correlation of TLS density on OS and disease-free survival 
in lung cancer [66, 70–72], colorectal cancer [73, 74], pancreatic cancer [75, 76], oral 
squamous cell carcinoma [77] and invasive breast cancer [65, 78–80].

Importantly, its prognostic value is independent of tumor–node–metastasis 
(TNM) staging in most malignancies suggesting TLS can induce a systemic long-
lasting anti-tumor response. High endothelial venules (HEVs) similar to those 
that allow entry of lymphocytes into SLOs could be detected near TLSs [65]. In 
this context HEVs allow lymphocytes to enter into tumors. Therefore, therapeutic 
approaches that enhance HEV formation would be beneficial to improve anti-
tumor immune responses. Tregs negatively regulate HEV formation and their 
absence in cancer murine models promotes T-cell activation and tumor infiltra-
tion, favoring the eradication of the lesions [81, 82]. Also other immunosup-
pressive cell types, such as MDSCs, regulatory B-cell (Bregs) and cytokines, like 
TGFβ and IL-10, play a part in the development of an immunosuppressive tumor 
microenvironment (TME).

Tumor-resident Tregs co-express high levels of CTLA-4, OX-40 and GITR 
compared to effector T-cells and In murine models of MPM, the combination 
of anti-OX-40 and anti-CTLA-4 antibodies has synergistic effect on CTLA-4+, 
OX-40+ tumor resident T-regs and contributing to a clear tumor regression when 
compared to single-antibody treatment [83]. Coherently with this point, combined 
anti-angiogenic and anti-PD-L1 therapies favor HEV and TLS formation in murine 
models of breast cancer and neuroendocrine pancreatic tumors [84] suggesting 
that a powerful anti-tumor systemic response by ICIs is sustained, if not triggered, 
by the presence of TLSs in situ. TLS heterogeneity among human cancers has been 
analyzed via a pan-cancer gene expression analysis of TME cellular composition on 
The Cancer Genome Atlas (TCGA) data and MPM, as well as lung adenocarcinoma 
and lung squamous cell carcinoma, display high expression of a 12-chemokine gene 
signature associated with TLS presence [85] suggesting TLSs are frequent, but also 
heterogeneous [86].

Seventy percent of MPM cases contain lymphoid aggregates and about 30% 
of them contain GCs [31]. These aggregates are functionally similar to TLSs, in 
which T- and B- lymphocytes are apart in two adjacent regions surrounded by 
HEV, as already shown for ovarian and prostate cancer [87, 88]. Intratumoral CD8+ 
T-lymphocytes in high numbers are an independent good prognostic marker for 
MPM patients [68]. Additionally, structural inter- or intra-chromosomal rearrange-
ments and single nucleotide variants have been recently reported from mate-pair 
and RNA sequencing-based analyses on mesothelioma specimens predicting the 
expression of potentially-targetable neoantigens [58]. Moreover, some of these neo-
antigens bind patient-specific MHC and specific tumor-infiltrating T-cell clones are 
expanded as observed through TCR repertoire analysis [58]. Indeed, TCR diversity 
and mutation/neoantigen load are inversely correlated, but both active and suppres-
sive TME immune components, such as Treg and CD8+ T-cells, were present and 
equally balanced suggesting a scenario where activated anti-tumor CD8+ T-cells 
are counteracted by pro-tumoral immune suppressive molecules and Treg cells [57] 
or activated CD8+ T and CD4+ T-helper cells displaying phenotypic markers of 
exhaustion like PD-1, TIM-3 and LAG3 [59].
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5. The importance of B-cell infiltration in solid tumors and MPM

B-cell follicles in TLS from non-small cell lung cancer and ovarian cancers 
contain bona fide Ki67+ GC B-cells expressing the activation-induced deaminase 
(AID) gene, that codes a critical enzyme in somatic hypermutation and class switch 
recombination processes typical of immunoreceptor genes, as well as, of BCL-6, 
the transcription factor involved in the late stage of B-cell maturation [66, 89]. 
Additionally, the presence of CD38+ CD138+ PCs around the follicle is highly sugges-
tive of antibody production in situ [90]. Indeed, micro-dissected follicles subjected to 
BCR repertoire analysis revealed clonal amplification compared to peripheral B-cells, 
supporting the idea that locally presented antigens can elicit specific B-cell responses 
in several malignancies [87, 89, 91–94].

Additionally, PCs isolated from dense aggregates in tumor stroma [90], produce 
anti-tumor antibodies of the immunoglobulin G (IgG) isotype in vivo whose mech-
anism of action has not been yet determined. One possibility is that anti-tumor IgGs 
produced locally increase antigen presentation by DCs and/or directly promote the 
activity of specific subsets of CD4+ T-cells endowed with Fcγ receptors (FcγRs) 
[95]. The presence of IgG deposits in TLS, the spatial organization of TLSs that may 
favor DC priming by locally produced IgGs and the observation that tumor-derived 
immune complexes increase the expression of the co-stimulatory molecule CD86 
on DCs in vivo [87] suggest that these mechanisms take place. In favor of the latter 
are the results of a meta-analysis in a large set of human cancers showing that the 
prognostic effect of T-cells is generally stronger when tumor-infiltrating B-cells or 
PCs are present, supporting the hypothesis that a coordination between cellular and 
humoral adaptive immune responses is crucial for effective anti-tumor adaptive 
responses [96].

The role of B-cells and the association of B-cell rich TLSs with survival and 
anti-PD-1 immunotherapy response in sarcoma and melanoma have been recently 
established [97, 98]. Interestingly B-cells are the strongest prognostic factor even 
in the context of low CD8+ T-cells [97] in sarcoma and class-switched MBCs are 
specifically enriched in melanoma ICI-treated responders [99]. In murine models 
of MPM treated with immunotherapy, the presence of B-cells is essential for good 
prognosis, indicating that antibodies are generated and contribute significantly and 
essentially to the therapeutic effect [100]. Consistently, B-lymphocyte infiltration 
in MPM tissue positively correlates with prognosis [38] although variable in its 
extent [101]. Moreover clinical [52] and preclinical data on B-lymphocytes con-
tribution to MPM prognosis suggest that they elicit an adaptive cytotoxic immune 
response rather than acting directly as antigen presenting cells (APCs) [100, 102]. 
In this respect MPM and other solid tumors share many similarities and provide a 
solid opportunity to develop novel immunotherapies via the identification of MPM 
targeting molecules in patients.

6. Immunotherapy in MPM

Immune checkpoint (IC) proteins, such as cytotoxic T-lymphocyte-associated 
antigen 4 (CTLA-4), programmed death 1 (PD-1) and PD-L1, are regulators of 
the immune system that preserve homeostasis and hinder autoimmunity in physi-
ological conditions [103]. ICs overexpression in MPM keeps anti-tumor immune 
response in check contributing to the creation of a local immunosuppressive TME 
[31, 104]. IC inhibitors (ICIs), i.e. antibodies targeting ICs, are used as immuno-
modulatory agents to interfere with the CTLA-4/B7.1/2 or PD-1/PD-L1 axes thereby 
helping to overcome tumor-immune escape [95, 105, 106].
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Recently, PD-L1 expression in MPM has been assessed on tissue microarrays 
using two different FDA-approved antibodies and 22–27% of cases were posi-
tive for PD-L1 (1% cut off) [107]. PD-L1 is expressed in a high proportion of 
biphasic and sarcomatoid MPM cases and its positivity >1% is associated with 
a significant 10-months reduction in median OS compared to PD-L1 negative 
tumors [108, 109]. Similarly, high PD-L1 expression (>50%) in epithelioid 
MPM patients correlates with shorter PFS (6.7 vs. 9.9 months) [108]. Despite its 
prognostic value [59, 60, 110], PD-L1 expression is not a valid predictive marker 
of response to anti-PD-L1 therapies for several tumor types [111, 112], includ-
ing MPM [113]. Anti-PD-1/PD-L1 therapies were tested in different trials in 
MPM patients [114–121]. Combination of pembrolizumab with PPC in first-line 
treatment compared to pembrolizumab or PPC alone, is currently being evalu-
ated in the phase III trial NCT0278417, while nivolumab is being investigated 
in the randomized phase III trial CONFIRM (NCT03063450) in comparison 
with placebo [119]. Durvalumab activity, a PD-L1 inhibitor, in combination 
with first-line CCP was tested in the DREAM study (ANZ clinical trial registry 
number: ACTRN12616001170415). This combination resulted in an ORR of 61% 
using mRECIST and 53% using iRECIST criteria and in a 6 months PFS of 71% 
(mRECIST). On the basis of these observations a randomized phase 3 trial will 
be started [122].

ICs expression is controlled at different stages of T-lymphocyte activation and 
variable in tumor cells. For these reasons, a combination strategy employing two 
different ICIs in addition to chemotherapy has been proposed to achieve a syner-
gistic effect by overcoming immune-resistance observed in some MPM patients. 
Encouraging results observed for different ICIs in combination [113, 123, 124] 
prompted the investigation of the nivolumab plus ipilimumab combination in 
comparison to standard PPC alone as first-line option in the phase III clinical trial 
Checkmate-743 (NCT02899299). Checkmate-743 has clearly demonstrated the 
benefit of nivolumab in combination with ipilimumab in first line mesothelioma 
treatment and based on those results obtained approval from FDA from October 
2020. On 22 April 2021, the Committee for Medicinal Products for Human Use 
(CHMP) adopted a positive opinion recommending a change to the terms of the 
marketing authorization for the medicinal product Opdivo (nivolumab) in combi-
nation with ipilimumab for the first line treatment of adult patients with unresect-
able malignant pleural mesothelioma in Europe as well.

At present, efficacy and safety of adoptive T-cell therapies, in particular 
chimeric antigen receptor-transduced T-cells (CAR-T), in MPM and other solid 
tumors are under investigation [125, 126]. CAR-T-cells directed against mesothelin 
(MSLN), a glycoprotein expressed on MPM and other solid tumor cells, with a 
limited presence on normal tissues [127], represent a promising therapeutic option 
[128, 129]. Recently, Adusumilli and colleagues reported the outcome of a phase I 
clinical trial, NCT02414269, [130, 131] on MPM patients with pleural metastases 
from lung or breast cancer treated with anti-MSLN CAR-T-cells. Of note, the 
inclusion of anti-PD-1 therapy was crucial to elicit clinical efficacy and avoid T-cell 
exhaustion since no patient had an objective response before pembrolizumab addi-
tion showing the importance of conditioning the immune suppressive features of 
the TME also in this therapeutic setting.

Pembrolizumab plus anti-MSLN CAR-T-cell combination showed the best clini-
cal outcome with an ORR of 63% (10/16) and a DCR of 75% (12/16). No evidence of 
on-target, off-tumor or therapy related toxicities higher than grade 1 was observed. 
Although applied to a limited number of patients so far, CAR-T therapies against 
MPM have shown really impressive results highlighting the different efficacy for 
advanced cell therapies compared to small molecule drugs or antibodies. Recently, 
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a comprehensive review about immunotherapy in MPM has been published [132]. 
However, the limited availability of therapeutic targetable antigens hinders the 
efficacy of CAR based strategies for MPM patients. More targets are needed for 
MPM treatment in the future.

7. Making a hot tumor microenvironment

ICIs effectiveness in MPM treated patients highlight the presence of poten-
tially active immune cells in situ that if properly unleashed can elicit anti-tumor 
responses. However, to achieve this goal, TME must be modified in order to abolish/
interfere with specific immune suppressive cues. Interestingly, Barsky and col-
leagues recently reported a case of a man with MPM treated with a combination 
of palliative radiation and immune-gene therapy (GM-CSF) [133]. The outcome 
of this treatment combination was outstanding, resulting in a so-called “abscopal 
effect”.

The abscopal effect is observed when a localized radiation induces an anti-
tumor response at distant sites. RT can trigger an immunogenic cell death (ICD) 
[134, 135] and can stimulate antigen-specific, adaptive immunity [136]. ICD sets 
the stage for anti-tumor immune responses which include the release of tumor 
antigens by irradiated tumor cells, the cross-presentation of tumor-derived 
antigens to T-cells by antigen-presenting cells (APCs), and the migration of 
effector T-cells from the lymph nodes to distant tumor sites, suggesting that 
irradiated tumors can act as an in situ vaccine if appropriate conditions are in place 
[137–139]. The overall incidence of the abscopal effect of RT alone is low with 46 
clinical cases reported from 1969 [139]. Those poor numbers witness the insuf-
ficiency of RT alone to overcome the immune resistance of malignant tumors. 
Immunotherapy can lower host immune tolerance towards tumors, therefore 
the combination of RT and immunotherapy can amplify the anti-tumor immune 
response, a hypothesis currently under investigation in the trial NCT02959463 
where adjuvant pembrolizumab after RT in lung-intact MPM patients is tested. 
In a murine model of MPM, the abscopal effect can be induced by local RT and 
enhanced by immune suppressive CTLA-4 blockade as infiltrated T-cells, both 
in primary and secondary tumor sites, are predominantly cytotoxic CD8+ T-cells 
while Tregs are reduced [140]. Those observations corroborate the idea that a 
systemic tumor response can be unleashed by a local treatment thereby modifying 
the features of the TME.

8.  The quest for specificity in malignant mesothelioma: how can we fill 
this gap?

Adoptive cell therapies in combination with ICIs are showing promising results 
for MPM patients. Their specificity or preference of targeting is granted almost 
exclusively by the use of antibodies or their derived fragments that are directed to 
tumor specific/associated antigens. First attempts of therapy using murine mono-
clonal antibodies (mAbs) in cancer patients failed due to neutralizing antibodies 
generation and to mismatch with components of the human immune system. These 
results highlighted the importance of using human or human compatible/tolerable 
biomolecules and prompted the design of novel screening platforms to find them. 
Antigen unbiased screening methods (Figure 1) can be used to this end to test a 
priori the targeting ability of antibodies to cells postponing the identification of 
antigens to lead candidates only.
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Figure 1. 
Schematic representation of 4 antigen-unbiased screening strategies to obtain fully human tumor targeting 
antibodies. Panel A: Patient derived scFv phage display libraries can be generated from MPM patient 
peripheral blood B cells. Those libraries are used to screen for novel specificities. Phage displayed scFvs undergo 
selection through consecutive rounds of panning on tumor cells to enrich for specific binders. NGS analysis 
allows the prediction of scFv sequences enriched on tumor cells. Panel B: de novo formed sequences, like those 
codifying the BCRs of infiltrated immune cells in tumor tissue can be retrieved using specific bioinformatic 
tools. Combinations of different heavy (VH) and light (VL) variable chains are used to generate candidate 
antibodies to be screened on cell or tumor tissues. Panel C: Analysis of BCR repertoire could be performed from 
memory B-cells from MPM patients. Enriched or de novo formed sequences could be monitored before and after 
a specific treatment in order to identify specific clones. Panel D: Memory B-cells from MPM patients can be 
immortalized through EBV infection and the immunoglobulins released in the medium of clonal cell cultures are 
tested on tumor cells by FACS or ELISA assays.
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9. From today’s patients the future cures for MPM

As explained above, patients develop an immune response against MPM that, 
if unleashed, can be very effective. The presence of TLSs and the development of 
oligoclonal families of B-cells inside or at the border of MPM tissue are positive 
prognostic features and constitute a window of opportunity to capture human 
therapeutic antibodies. Now the next question is: how can we exploit this power-
ful reservoir of biologics to isolate or design targeting drugs? In other words: what 
technologies are available to take up this challenge?

10. BCR repertoire from sequencing data

Bulk RNA-Seq data from tumor tissue contain a hitherto overlooked picture of 
tumor and its ecosystem. Typically, data are analyzed to assess the expression of 
known transcripts, while de novo formed sequences, like those generated by T- and 
B-cells in the assembly and generation of their specific receptors, are usually dis-
regarded since they fall off from the comparison with the reference transcriptome. 
However, these sequences can be retrieved from raw data and employed to extract 
the sequence of TCRs and BCRs from tumor tissue infiltrated immune cells using 
specific bioinformatic tools. One of them is MiXCR [141], a universal tool which 
takes raw sequencing data, including RNA-seq, as input and profiles TCR and BCR 
repertoires. As a reference, it uses a built-in library of V, D, J and C gene sequences 
from the human or mouse genome. MixCR output provides a list of clonotypes 
derived by assembling identical and homologous reads, corrected for sequenc-
ing errors.

V’DJer is another software that can process RNA-seq data for this purpose [142]. 
It can be run on BCR light and heavy chain data and employs unmapped paired end 
short reads aligning them against a reference transcriptome. Then, V’DJer detects 
VDJ rearrangements, generates contigs and quantifies the ones that represent 
the most abundant portions of the BCR repertoire. When the expression levels of 
BCR are low, there is an option to increase sensitivity of the algorithm at the cost 
of increasing the demand for computational resources. V’DJer has been used, for 
example, to retrieve antibodies from RNA sequencing data of melanoma patients 
from TCGA repository [142, 143]. At present, TCGA contains expression analyses 
of 87 MPM patients (TCGA-MESO) that could be used for this purpose. In addi-
tion, RNA can be obtained from FFPE samples containing TLSs in prospective and 
retrospective patients’ cohorts.

It is possible to infer the sequence of resident B-cell clones by applying bio-
informatic tools to RNA-Seq or by sequencing amplicons for immunoglobulin 
chains using specific sets of degenerate universal primers from whole tissue DNA 
or RNA/cDNA. The latter approach is implemented by the immunoSEQ platform 
(Adaptive Biotechnologies, Seattle, WA). In contrast to profiling using bulk RNA-
Seq data, it is more precise since the experimental design is optimized to identify 
the BCR repertoire through the ImmunoSeq Analyzer software which is specific 
for this purpose. Its starting material can be both genomic DNA (gDNA) and 
cDNA: in order to assess clonal expansion of B-cells in tissues, gDNA is the best 
solution since each cell contains the same copy number, while mRNA transcripts 
can be very different among cells, depending on cellular activation and even the 
retrotranscription procedure can add other confounding factors. However, cDNA 
is a better choice if the goal is to find the most abundantly produced antibodies 
in situ, since there is a difference in the mRNA expression between activated and 
naive B-cells. Finally, independently of the method employed for their derivation, 
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identified immunoglobulin heavy and light chain sequences can be assembled to 
produce candidate antibodies and test them for MPM target cells binding.

11. Memory B-cell receptor repertoire in MPM patients

A second powerful approach to obtain human antibodies targeting MPM cancer 
cells exploits directly the immune system of patients. Individuals exposed to viral 
agents, parasites and tumors develop an adaptive response against non-self and 
neoantigens. Anti-cancer treatments such as vaccines and ICIs elicit impressive 
clinical responses (reviewed in [95]) and an immunological memory in subgroups 
of cancer patients (“elite responders”) has been reported. MPM is not character-
ized by high mutational burden [15] an important determinant of the response to 
checkpoint blockade.

The efficacy of the anti-PD-1 pembrolizumab was shown by Alley and col-
leagues in KEYNOTE-028 [116]. In addition, ipilimumab in combination with 
anti-TGFβ and anti-CD25 antibodies of syngeneic MPM in BALB/c animals resulted 
in: i) disease eradication in treated mice; ii) elevated levels of tumor-specific IgG 
antibodies in healed animals; iii) failure to regrow tumors in cured mice when 
re-challenged with the same tumor; iv) importantly, no response in the absence of 
B-cells, suggesting that antibodies generated upon treatment contribute signifi-
cantly to the curative effect [100]. Besides that, CD20+ B-cells infiltration in MPM 
tumor tissue is a positive prognostic factor as previously discussed [38].

Therefore, the immune system of elite responders can be mined to isolate 
MBCs producing targeting antibodies. MBCs derive mostly from affinity matured 
and somatically hypermutated B-cells arising in the germinal centers [144] and 
constitute a reservoir of high-affinity antibody producers. These features make the 
MBC pool very attractive so biotech and pharma companies invest in the design 
of screening platforms to exploit it. For example, Oncoresponse, a company that 
developed a proprietary, clinically validated human-antibody discovery platform 
in partnership with MD Anderson Cancer Center follows this paradigm and 
identifies therapeutically relevant antibodies from patients showing elite response 
against cancer after immunotherapy. MBCs are easily accessible from the periph-
eral blood of donors and are suitable for viral immortalization to generate lym-
phoblastoid cultures for high throughput screens. MBC immortalization is usually 
performed by infection of peripheral MBCs by Epstein Barr Virus (EBV) [145] or 
by BCL-6/BCL-XL expressing vectors [146]. Those procedures generate cells that 
express BCR on the membrane and release their antibody into culture medium at 
the same time. BCR presence is exploited to isolate cells binding to labeled soluble 
antigens by cell sorting [146] so that subsequently immunoglobulin sequences 
from isolated cells can be cloned into expression vectors for large-scale antibody 
production. Companies like Humabs and AIMM therapeutics exploit those strate-
gies to raise antibodies against specific targets. However, the same technology can 
be used to isolate targeting antibodies in an antigen unbiased manner as shown 
for melanoma via cell-based screenings of EBV immortalized B-cells [147]. In 
addition, human plasmablasts and MBCs can be cultured for a limited time using 
specific cytokines [147–152].

Importantly, these approaches to retrieve targeting antibodies do not rely on 
a prior knowledge of the target. Target identification in this case is postponed, 
initially drawing on the demonstration of efficacy and specificity towards MPM 
cancer cells. MBCs receptor repertoire can be obtained also from peripheral blood 
or draining lymph node purified MBCs by RNA-Seq mining for de novo formed or 
highly enriched variants after treatment in elite responders [142]. Advantages and 
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drawbacks of the different screening strategies for fully human antibody selection 
are summarized in Table 1.

12.  Phage display screening using patient-derived scFv antibody 
libraries

A useful strategy to select human antibody fragments (Fabs and scFvs) against 
specific antigens or cells is phage display (reviewed in [153]). The importance of 
phage display has been restated in 2018 by the award of Nobel Prize in Chemistry 

Approach Antigen 

display

Advantages Disadvantages

Phage-display 

technology with 

patient derived scFv 

antibody libraries

Antigen 

on cell 

surface

• Cheap instrumentation

• Used with any cell type

• Established technology

• Fastest strategy to lead 

candidates

• NGS driven selection of 

candidates

• Affinity maturation step is 

often needed

• Reformatting in IgG 

format, if needed

• Binding to normal human 

tissues to establish specific-

ity a posteriori

BCR repertoire from 

the peripheral blood 

of elite responders 

pre and post therapy

Antigen 

on cell 

surface

• Availability of blood 

samples from elite 

responders

• Antibodies are derived from 

affinity matured human 

immunoglobulins

• Possible downsampling

• Cloning and production 

of candidate antibodies is 

required

• VH and VL pairs are not 

known (unless single cell 

sequencing is used)

• Requires a test of binding 

specificity to normal 

human tissues a posteriori

Bioinformatic 

analysis of BCR 

repertoire in tumor 

tissue

Antigen 

on cell 

surface

• Availability of large number 

of FFPE samples

• Applicable to retrospective 

case series

• Applicable to any RNA-Seq 

dataset

• Requires cloning and pro-

duction of the antibodies

• Possible downsampling due 

to low quality or limited 

sample material

• VH and VL pairs cannot be 

known

• Requires a test of binding 

specificity to normal 

human tissues a posteriori

MBC 

immortalization

Antigen 

on cell 

surface

• Easy availability of elite 

responder samples (blood/

PBMCs)

• Established protocols

• Isolation of in vivo 

high-affinity matured 

and human compatible 

immunoglobulins

• Basic technical expertise on 

viral manipulation

• Requires a BSL2 area

• Identification of the 

antigens can be technically 

challenging

• Requires a test of binding 

specificity to normal 

human tissues a posteriori

Table 1. 
Advantages and drawbacks of antigen-unbiased screens to obtain fully human antibodies.
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to George P. Smith and Sir Gregory P. Winter”for the phage display of peptides and 
antibodies”. Phage display has allowed the production of clinically relevant antibod-
ies (reviewed in [154]). The presence of BCRs in TME, SLOs and in the peripheral 
blood of MPM and other tumor patients allows for the generation of patient derived 
scFv phage display libraries [155] that can be used to screen for novel specificities. 
Phage displayed scFvs undergo selection through consecutive rounds of panning 
on tumor cells to enrich for specific binders (Figure 1). Identified antibodies can be 
reformatted to fully human antibodies or used as fragments or building blocks for 
CAR constructs.

Importantly those antibodies will derive from the permutation of original VH 
and VL sequences of the B-cell repertoire during library preparation while for 
EBV immortalized cells VH and VL pairs will be the original ones as in the patient. 
Classically single bacterial clones were selected and grown to produce antibodies 
or phages displaying specific antibodies in order to test individually their targeting 
of a cell of interest. Nowadays, next generation sequencing provides an efficient, 
quantitative and quick analytical tool to assess the evolution of complexity of phage 
antibody-display libraries during consecutive biopanning enrichment stages. Phage 
clonal evolution during screening can be studied and used to identify putative 
candidate antibodies and promote their cloning and production for further testing 
their binding to cells [156].

An unbiased phage display approach has been used to identify tumor-targeting 
scFvs for both sarcomatoid and epithelioid MPM. In this study, 95 mesothelioma-
targeting scFvs were identified and 21 candidates were characterized for binding 
by FACS and IHC and for their in vitro internalization capacity by MPM cells with 
the goal to deliver conjugated anti-tumor drugs directly inside tumor cells [157]. 
Further analyses identified MCAM/CD146 as one of the antigens. CD146 had been 
previously described as a marker in advanced melanoma [158] and other tumors 
[159, 160], it is expressed in all MPM histotypes and by a limited spectrum of 
normal human adult tissues [161]. The clinical utility of MCAM/CD146 detection in 
pleural effusion fluid and peripheral blood samples as a diagnostic and prognostic 
marker for MPM [162] is under evaluation. The generation of a phage antibody-
display library from the entire antibody genes repertoire of a cancer patient has 
been also attempted. Rare cancer targeting antibodies have been identified by this 
strategy [163]. However, the immunodominance phenomenon typical of certain 
cancers [153, 164, 165] has hindered a wider use of this strategy in early attempts.

13. Conclusions

Despite amazing efforts made by the scientific community and the therapeutic 
options developed over the last decades, the discovery of a curative treatment 
for MPM is still elusive and constitutes an unmet clinical need. To-date, the most 
promising therapeutic approaches comprise immunotherapies and CAR-based 
therapies that have shown impressive although preliminary clinical results. The 
field needs to bet on and implement these novel approaches towards novel targets 
and antigens to cope with tumor heterogeneity and to provide effective treatments 
to be used in combination. The most innovative screening technologies for the 
generation of fully human antibodies are in place and combine elements from 
fields of science that started far apart and came together to serve the purpose. 
These include protein engineering, next-generation sequencing (NGS), virology 
and cell biology providing an opportunity to find novel and unknown therapeutic 
targets for MPM and cancer in general. Based on these premises, we believe that 
a future breakthrough in MPM management will come from the design of novel 
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