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Chapter

Aspergillus-Human Interactions: 
From the Environment to Clinical 
Significance
Arsa Thammahong

Abstract

Aspergillus species are ubiquitous fungi found in the environment worldwide. 
The most common Aspergillus species causing diseases in humans are A. fumigatus, 
A. flavus, A. niger, and A. terreus. However, species causing human infections 
are also depending on human immune status. Host immune status and previous 
underlying diseases are important factors leading to different clinical manifesta-
tions and different disease spectra of Aspergillus infections. The most severe form 
of Aspergillus infections is invasive aspergillosis in human tissue, especially invasive 
pulmonary aspergillosis (IPA), which has high morbidity and mortality in immu-
nocompromised patients. ICU patients with influenza infections and COVID-19 
infections are recently risk factors of invasive pulmonary aspergillosis. New diag-
nostic criteria include galactomannan antigen assays, nucleic acid amplification 
assays, and lateral flow assays for early and accurate diagnosis. Voriconazole and the 
newest azole, isavuconazole, are antifungals of choice in IPA. Nevertheless, azole-
resistant Aspergillus strains are increasing throughout the world. The etiology and 
spreading of azole-resistant Aspergillus strains may originate from the widespread 
use of fungicides in agriculture, leading to the selective pressure of azole-resistant 
strains. Therefore, there is a necessity to screen Aspergillus antifungal susceptibility 
patterns for choosing an appropriate antifungal agent to treat these invasive infec-
tions. In addition, mutations in an ergosterol-producing enzyme, i.e., lanosterol 
14-α demethylase, could lead to azole-resistant strains. As a result, the detection of 
these mutations would predict the resistance to azole agents. Although many novel 
azole agents have been developed for invasive Aspergillus infections, the rate of 
novel antifungal discovery is still limited. Therefore, better diagnostic criteria and 
extensive antifungal resistant Aspergillus screening would guide us to better manage 
invasive Aspergillus infections with our existing limited resources.

Keywords: Aspergillus, Aspergillus-human interactions, invasive aspergillosis, 
antifungal susceptibility test, azole, voriconazole, amphotericin B, influenza-associated 
pulmonary aspergillosis, COVID-19-associated pulmonary aspergillosis

1. Introduction

Aspergillus species are saprophytic ubiquitous filamentous fungi [1]. They are 
in Phylum Ascomycota with both sexual and asexual forms [1]. In their sexual 
form, they produce asci and ascospores within the appropriate environment, 
while they produce conidia, or asexual spores, on phialides surrounding their 
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vesicles at the tip of conidiophores in their asexual form [1]. Aspergillus conidia 
are different in size and shape depending on Aspergillus species, which affects the 
dispersion and infectivity properties of Aspergillus [1]. Their conidia can be found 
in the soil, decomposed piles, air, animals, and humans. They cause diseases 
in immunocompromised hosts, e.g., patients with acquired immunodeficiency 
syndrome (AIDS), allogenic hematopoietic stem cell transplant or solid organ 
transplant candidates, patients with immunosuppressive drugs, patients with 
prolonged neutropenia, and patients with other underlying diseases [2]. The 
common pathogenic Aspergillus species are A. fumigatus, A. flavus, A. niger, and 
A. terreus [3]. There are a wide variety of disease spectra of Aspergillus infections, 
i.e., invasive aspergillosis, chronic aspergillosis, and allergic forms of aspergillosis 
[1, 2]. The most severe form causing high morbidity and mortality rate, especially 
in immunocompromised hosts, is invasive aspergillosis (IA) [2, 4]. An increase 
of immunocompromised hosts would also increase patients with IA with a high 
mortality rate [4–14].

Invasive aspergillosis (IA) is recently increasing in patients with allogenic hema-
topoietic stem cell transplantation (HSCT) and solid organ transplantation [5, 8, 13, 
15–22]. Underlying conditions of patients with IA are hematological malignancies, 
e.g., leukemia or lymphoma, bone marrow transplant, and solid-organ transplant 
patients [5, 8, 13, 15–22]. Recently, not only neutropenic patients are at risk for 
IA, but non-neutropenic patients with immunosuppressive agents, e.g., biologics, 
small-molecule kinase inhibitors (SMKIs), Chimeric Antigen Receptor (CAR) T 
cells, are also at risk [23–28]. In developing countries, poor-controlled diabetes 
mellitus is one of the critical risk factors of IA [10, 12]. Therefore, risk factors of IA 
are now patients with malignancy, autoimmune, inflammatory diseases, complex 
immune-metabolic diseases from aging, immunosuppressive treatment, previous 
septic conditions, novel biologic treatment, including patients with hematologi-
cal malignancies receiving SMKIs, patients in ICU, patients with a cytokine storm 
syndrome from CAR-T cells treated with high-dose corticosteroids, patients in ICU 
with severe influenza or other viral infections [23–36]. In an era of Coronavirus 
Disease 2019 (COVID-19) infections, IA was recognized as a severe complication of 
patients with COVID-19 infections in ICU [37–46].

2. Pathogenesis of Aspergillus and its virulence factors

Among thousands of Aspergillus species, only less than twenty species could 
cause diseases in humans [47]. The pathogenic species usually possess virulence fac-
tors that help them survive and cause infections inside hosts. Aspergillus fumigatus 
was utilized as a model to study virulence factors in many studies (Table 1) [1].

To survive inside the host environment, Aspergillus species need to adapt 
to heat and hypoxic conditions inside hosts. For the heat stress, the trehalose 
pathway was shown to have a role in heat tolerance and virulence of A. fumigatus 
[47]. Heat shock proteins (HSPs), especially Hsp90, are chaperone proteins 
associated with stress tolerance, not only for heat [48–50]. In mammalians, 
HIF1α, as a common transcription factor, controls cellular homeostasis in 
hypoxic conditions [51]. In fungi, a homolog of HIF1α, called the sterol regula-
tory element-binding protein (SREBP) or SrbA in A. fumigatus, is induced by 
hypoxia and iron starvation conditions [52–56]. SrbA protein is also associated 
with the virulence of A. fumigatus in vivo [52–54].

A. fumigatus possesses enzymes to protect itself against host reactive oxygen 
species (ROS), e.g., catalase, superoxide dismutases, thioredoxin, glutathione, 
including mitochondrial electron transport chain [57–62]. In some animal 
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models, e.g., an eye infection model, demonstrated that these fungal enzymes 
were essential for fungal virulence [63]. Secondary metabolites are also playing a 
role in fungal virulence [64–66]. A. fumigatus secondary metabolites are glio-
toxin, fumigaclavine, trypacidin, helvolic acid, fumitremorgin, fumagillin, and 
pseurotin, associated with host cellular toxicity [67–71]. However, the mecha-
nisms behind this toxicity is still unclear and need to be further investigated 
in vivo [71]. A. flavus produces aflatoxins, which are important carcinogenic 
secondary metabolites, and other secondary metabolites, called Velvet complex, 
as environmental response mechanisms [72, 73]. Circadian rhythms or light 
response, which were studied thoroughly in the Neurospora model system, are 
essential to react with the environment [74]. Light-induced mycelial pigmenta-
tion and germination acted as a stress signaling pathway in A. fumigatus via 
transcription factor LreA and FphA, respectively [75–77].

For nutrient acquisition, exoenzymes or proteases are major enzymes produced 
by A. fumigatus, especially the alkaline protease Alp1 and the metalloprotease Mep1 
[1, 78]. In A. fumigatus, a transcriptional repressor called CreA has a vital role 
in carbon catabolite repression. AfCreA regulates growth on different nitrogen, 
carbon, and lipid sources and has a role in amino acid transportation, nitrogen, 
and carbon assimilation, including glycogen and trehalose metabolism [79, 80]. 
Although CreA is not required for virulence, it is required for disease progression 
in invasive pulmonary aspergillosis (IPA) mouse models [79–81]. For nitrogen 
utilization, AfRhbA, a Ras-related protein in a nitrogen-regulated signaling path-
way, and AfAreA, a GATA transcription factor requiring the expression of genes 
involving nitrogen utilization, are related to virulence in A. fumigatus [82–84]. A. 
fumigatus still needs divalent cations, i.e., iron, copper, magnesium, zinc, calcium, 
for its growth and virulence inside hosts via siderophores, calmodulin, calcineurin, 
specific importers, and exporters [85, 86].

Additionally, cell wall components of Aspergillus fumigatus are also essential 
virulence factors for fungal survival inside hosts and are important for host 
immune response [87–92]. Cell wall components consist of β-1,3-glucan, chitin, 
galactomannan, α-1,3-glucan, and melanin depending on different stages of A. 
fumigatus, i.e., conidial, or hyphal stage [91–95]. β-1,3-glucan, a central compo-
nent of Aspergillus cell wall polysaccharide, is a pathogen-associated molecular 

Virulence factors Characteristics

Stress tolerance • Thermotolerance

• Hypoxic adaptation

• pH/Reactive oxygen species (ROS) resistance

• Secondary metabolites

• Light response

Metabolism and 

nutrient uptake

• siderophores, Zinc Magnesium Copper transporter, calmodulin, calcineurin, 

phosphate permeases

Cell components • Cell wall: β-glucan, chitin, rodlet

• Galactosaminogalactan (GAG)

• Melanin

Others • Biofilm

• Cellular heterogeneity

Table 1. 
Essential virulence factors in Aspergillus fumigatus requiring for causing infections inside humans [1].
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pattern (PAMP) recognized by host pattern recognition receptors (PRR), e.g., 
dectin-1 [88]. During its conidial stage, rodlet, or hydrophobins, and dihy-
droxynapthalene (DHN) melanin are present to protect fungal conidia against 
host immune response by evading host pathogen-associated molecular patterns 
(PAMPs) recognition, including protecting fungi from unfavorable stress condi-
tions [93–97]. Furthermore, in its hyphal stage, galactosaminogalactan (GAG), 
which is a water-insoluble polymer consisting of a pyranose-form galactose, 
galactosamine, and N-acetylgalactosamine (GalNAc), is present as an extra-
cellular matrix on an outer layer of the cell wall [98]. GAG is associated with 
biofilm formation and immunosuppression properties by masking PAMP expo-
sure and resisting neutrophil killing via neutrophil extracellular traps (NETs) 
[99–102]. The linkage between cell wall components and metabolic pathways is 
still unclear. Nevertheless, these components share the same building blocks, 
e.g., UDP-glucose, glucose 6-phosphate, with specific metabolic pathways, e.g., 
glycolysis, trehalose biosynthesis pathway [81, 103–105]. It is possible that the 
homeostasis of cell wall biosynthesis is involved with some metabolic pathways, 
e.g., the trehalose biosynthesis pathway. Disruption of one of these trehalose 
enzymes or building blocks would result in decreased virulence due to changes 
in cell wall compositions [81, 103–105]. Understanding this homeostasis would 
lead to the discovery of novel antifungal targets in the future.

3. Diagnosis of invasive Aspergillus infections: challenge in the field

Aspergillus infections are associated closely with host immune status 
[106, 107]. Severe asthma with fungal sensitization and allergic bronchial 
pulmonary aspergillosis (ABPA) are found in immunocompetent hosts with 
hypersensitivity, while aspergilloma and chronic pulmonary aspergillosis are 
found in immunocompetent hosts with previous structural diseases, such as lung 
cavity from previous tuberculosis infections [108]. In immunocompromised 
hosts, invasive aspergillosis is common and severe, causing high morbidity and 
mortality in patients [108, 109].

For invasive pulmonary aspergillosis, early diagnosis and prompt treatment 
are the keys to decrease the disease burden. Differentiation between Aspergillus 
colonization and invasive infections is still challenging [25, 92, 93]. Recently, the 
revised EORTC guideline for diagnosis of invasive fungal infections, including 
Aspergillus infections, recommended the diagnostic criteria including host factors, 
clinical, radiological, and microbiological criteria with new diagnostic methods 
(Table 2) [109]. Proven invasive aspergillosis is confirmed with histopathologic, 
cytopathologic, microscopic analysis, or nucleic acid analysis of sterile specimens 
or tissue or formalin-fixed paraffin-embedded tissue (FFPE), including culture 
recovered from sterile sites [109]. Species of common Aspergillus recovered from 
cultures are differentiated using macroscopic and microscopic morphology, but 
the nucleic acid analysis is necessary for the species complex (Table 3) [110]. For 
probable and possible invasive aspergillosis, host factors, clinical features, and 
mycological evidence are including for the diagnosis of invasive aspergillosis. Host 
factors include the history of neutropenia, which is less than 500 neutrophils/mm3, 
for more than ten days, hematological malignancy, allogenic stem cell transplanta-
tion, solid organ transplantation, therapeutic-dose corticosteroids at not less than 
0.3 mg/kg for not less than three weeks during the previous 60 days, treatment 
with T-cell or B-cell immunosuppressants, inherited immunodeficiency, or acute 
graft-versus-host disease grade III or IV [109]. For clinical evidence of pulmonary 
aspergillosis, a chest high-resolution CT scan is recommended to observe any halo 
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sign, air-crescent sign, cavity, or wedge-shaped and segmental or lobar consolida-
tion [109, 111]. Probable invasive aspergillosis still needs at least one mycological 
evidence to support the diagnosis. Mycological evidence is including cultures 
recovered from sputum, bronchoalveolar lavage (BAL), bronchial brush, or 

Diagnosis of invasive aspergillosis. Criteria

Proven • Microscopic analysis: from needle aspiration or biopsy OR

• Culture: from sterile sites except for BAL fluid, paranasal 

sinuses, and urine OR

• Tissue nucleic acid analysis from formalin-fixed paraffin-

embedded tissue

Probable: 1 host factor + 1 clinical 

feature+1 mycological evidence

Host factors

• Recent neutropenia

• Hematological malignancy

• Receipt of an allogenic stem cell transplant

• Receipt of a solid organ transplant

• Prolonged use of corticosteroids

• Use of T-cell immunosuppressants

• Use of B-cell immunosuppressants

• Inherited severe immunodeficiency

• Acute GVHD grade III or IV

Clinical features: pulmonary aspergillosis

• One of the following CT Chest patterns:

 ○ Dense well-circumscribed lesion with or without a halo 

sign

 ○ Air crescent sign

 ○ Cavity

 ○ Wedge-shaped and segmental or lobar consolidation

Mycological evidence

• Culture positive from sputum, BAL, bronchial brush, or 

aspirate

• Direct examination positive from sputum, BAL, bronchial 

brush, or aspirate

• Galactomannan antigen: plasma serum BAL CSF: any of:

 ○ Single serum or plasma >/= 1

 ○ BAL fluid >/= 1

 ○ Single serum or plasma >/= 0.7 and BAL fluid >/= 0.8

 ○ CSF >/= 1

• Aspergillus PCR: any of:

 ○ Plasma, serum, or whole blood 2 or more consecutive PCR

 ○ BAL fluid 2 or more duplicate PCR

 ○ At least 1 PCR from plasma serum or whole blood & 1 PCR 

from BAL fluid

Possible: 1 host factor + 1 clinical 

feature

Table 2. 
Diagnosis of invasive aspergillus infections from revised EORTC/MSG criteria 2020 (BAL: bronchoalveolar 
lavage; CT: computed tomography; CSF: cerebrospinal fluid; GVHD: graft versus host disease; PCR: 
polymerase chain reaction) [109].
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aspirate [109]. Aspergillus galactomannan antigen assays with different thresholds 
depending on specimens, including serum, BAL fluid, plasma, and cerebrospinal 
fluid (CSF), support the diagnosis of invasive aspergillosis [112–115]. However, 
decreased sensitivity of galactomannan antigen assay is observed in patients with 
anti-mold therapy [115]. In addition, Aspergillus PCR from blood and BAL fluid is 
introduced to confirm the diagnosis and identify specific Aspergillus species with 
certain mutations related to triazole resistance [109, 116–124].

Nonetheless, revised EORTC/MSG criteria for diagnosing invasive fungal 
infections may be applied mainly for neutropenic patients or immunocom-
promised patients. Therefore, specific guidelines for the diagnosis of invasive 
aspergillosis in non-neutropenic patients in ICU (Invasive pulmonary aspergil-
losis in ICU, AspICU) or patients with influenza (Influenza-associated pulmo-
nary aspergillosis, IAPA) or Severe Acute Respiratory Syndrome Coronavirus-2 
(SARS-CoV-2) (COVID-19 associated pulmonary aspergillosis, CAPA) co-infec-
tions were developed and published for early and accurate diagnosis (Table 4) 
[31, 125–127].

4. Treatment of Aspergillus infections

IA also includes the infections of the lower respiratory system, sinuses, and skin 
as entry routes. In addition, the cardiovascular system, central nervous system, 
and other tissues could be infected from hematogenous dissemination or direct 
extension from adjacent infected tissues [2]. Infectious Diseases Society of America 
(IDSA, 2016) and ESCMID-ECMM-ERS (2017) recommended voriconazole (6 mg/
kg, intravenous route every 12 hours for one day, and then 4 mg/kg every 12 hours; 
200–300 mg every 12-hour, oral route) as a first-line treatment for invasive pulmo-
nary aspergillosis (IPA) [2, 128]. For alternative treatment, liposomal amphotericin 
B (3–5 mg/kg/day, intravenous route) and isavuconazole (200 mg every 8 hours for 
three days and then 200 mg daily) [2]. For other invasive aspergillosis syndromes, 
i.e., invasive sinus aspergillosis, tracheobronchial aspergillosis, invasive aspergillo-
sis of the central nervous system or cardiovascular system, Aspergillus osteomyelitis, 

Aspergillus 

species

Macroscopic features Microscopic features

Aspergillus 

fumigatus

Typical blue-green colony with 

suede-like surface

Columnar uniseriate conidial heads with phialides 

limited to upper two-thirds of its vesicles; short and 

smooth conidiophores; basipetal green, rough-

walled globose to subglobose conidia

Aspergillus 

flavus

Bright to dark yellow-green 

colony with a granular, flat 

surface

Radiate biseriate conidial heads with phialides 

over the surface of mature vesicles; coarsely rough 

conidiophores; pale green, globose to subglobose 

conidia

Aspergillus 

niger

Dark brown to the black colony 

with white to yellow color at the 

reverse side of the colony

Globose, large, dark brown, biseriate, radiate 

conidial head with long metulae; smooth, hyaline 

conidiophores; dark brown, rough conidia

Aspergillus 

terreus

Cinnamon-brown colony with 

suede-like surface and yellow to 

deep brown color at the reverse 

side of the colony

Compact, columnar, biseriate conidial heads; 

hyaline, smooth conidiophores; hyaline to yellow, 

smooth-walled conidia

Table 3. 
Macroscopic and microscopic features of clinical-relevant Aspergillus species (colony on Czapek Dox agar at 
30°C) [110].
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Diagnostic 

criteria of IPA

AspICU [125] IPA with influenza (IAPA) [126] IPA with SARS-CoV-2 (CAPA) [127]

Host factors One of the following:

• Neutropenia (<500/mm3) before or at ICU admission

• Hematological or oncological malignancy with cytotoxic 

therapy

• Glucocorticoid treatment with prednisolone equivalent 

>20 mg/day

• Immunodeficiency

Entry criteria: influenza-like illness + positive 

influenza PCR or antigen + timing (7 days before 

and 96 hours after ICU admission)

Entry criteria: patients with COVID-19 

infections (RT-PCR) in ICU with a temporal 

relationship to suspected IPA

Clinical features One of the following:

• Fever with appropriate antibiotic treatment for at least three 

days

• Recurrent fever after a fever-free period for at least 48 hours 

with antibiotics and without other apparent cause

• Dyspnea

• Hemoptysis

• Pleuritic chest pain or pleural friction rub

• Worsening respiratory failure with appropriate antibiotics 

and ventilator support

None None

Radiological 

evidence

• Any medical imaging by conventional chest X-ray or CT scan 

of lungs

• Pulmonary infiltrate OR

• Cavitating infiltrate (not from other causes)

• Pulmonary infiltrate OR

• Cavitating infiltrate (not from other causes)
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Diagnostic 

criteria of IPA

AspICU [125] IPA with influenza (IAPA) [126] IPA with SARS-CoV-2 (CAPA) [127]

Microbiological 

evidence

• Aspergillus recovered from the lower respiratory tract (LRT) 

(entry criterion)

• Aspergillus-positive culture of BAL fluid without bacterial 

growth together with a positive microscopic analysis showing 

branching hyphae (if no host factor)

• If pulmonary infiltrate presents, at least one of 

the following:

 ○ Galactomannan (GM) antigen assay: serum 

>0.5 or BAL ≥ 1.0 or

 ○ positive culture from BAL

• If lung cavity presents, at least one of the 

following: positive sputum culture or tracheal 

aspirate culture

Probable CAPA: at least one of the following:

• Microscopic detection of septate hyphae 

in BAL

• Positive BAL culture

• Serum GM >0·5 or serum LFA index >0·5

• BAL GM ≥1·0 or BAL LFA index ≥1·0

• Two or more positive Aspergillus PCR 

in plasma, serum, or whole blood or a 

single positive Aspergillus PCR in BAL 

(<36 cycles); or a single positive Aspergillus 

PCR in plasma, serum, or whole blood with 

a single positive in BAL fluid (any threshold 

cycle)

Possible CAPA: at least one of the following:

• Microscopic detection of septate hyphae in 

non-BAL

• Positive non-BAL culture

• Single non-BAL GM >4·5

• Non-BAL GM >1·2 twice or more

• Non-BAL GM >1·2 plus another non-BAL 

PCR or LFA positive
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Diagnostic 

criteria of IPA

AspICU [125] IPA with influenza (IAPA) [126] IPA with SARS-CoV-2 (CAPA) [127]

Categories • Proven IPA: similar to EORTC/MSG 2020 criteria

• Putative IPA: Aspergillus-positive from LRT + Clinical evi-

dence + Radiological evidence + (Host factors or Aspergillus 

culture from BAL with positive microscopic analysis)

• Colonization: ≥ 1 criterion for a diagnosis of putative IPA is 

not fulfilled

• Proven IAPA: entry criteria with tissue diagno-

sis similar to EORTC/MSG 2020 criteria

• Putative IAPA: entry criteria + Radiological 

evidence + Microbiological evidence

• Colonization: ≥ 1 criterion for a diagnosis of 

putative IPA is not fulfilled

• Proven CAPA: entry criteria with tissue 

diagnosis similar to EORTC/MSG 2020 

criteria

• Probable CAPA: entry criteria + radiological 

evidence + probable criteria of microbio-

logical evidence

• Possible CAPA: entry criteria + radiological 

evidence + possible criteria of microbiologi-

cal evidence

Table 4. 
Diagnostic criteria for invasive pulmonary aspergillosis (IPA) of patients in ICU (AspICU) or with influenza (IAPA) or SARS-CoV-2 (CAPA) coinfections (PCR: polymerase chain reaction; 
ICU: intensive care unit; RT-PCR: Real-time polymerase chain reaction; BAL: bronchoalveolar lavage; GM: galactomannan; LFA: lateral flow assay) [31, 125–127].
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Aspergillus endophthalmitis and keratitis, cutaneous aspergillosis, and Aspergillus 
peritonitis, intravenous voriconazole is still the first-line therapy [2]. For IPA in 
ICU patients, patients with hematological malignancies, or solid organ transplants, 
IAPA, and CAPA, voriconazole and isavuconazole are still recommended as the 
first-line treatment (Table 5).

Voriconazole is metabolized at the liver via CYP2C19 and CYP3A4 [135]. 
Medications with CYP2C19 and CYP3A4-dependent metabolism, antacids, proton 
pump inhibitors may affect serum voriconazole levels [136]. Adverse reactions and 
toxicity of voriconazole are associated with higher serum voriconazole levels [137]. 
Common adverse reactions include reversible visual disturbances, hepatotoxicity, 
photosensitivity, reversible visual or auditory hallucinations, tachyarrhythmias, 
and QT interval prolongations [137, 138]. Isavuconazole is a second-generation 
broad-spectrum triazole requiring a loading dose with a five-day half-life [139]. 
Isavuconazole has fewer adverse reactions in photosensitivity, hepatotoxicity, visual 
abnormality, and less drug–drug interaction [140–142]. Isavuconazole is a CYP3A4 
inhibitor and can decrease the metabolism of sirolimus, tacrolimus, cyclosporine, 
and digoxin, leading to increased levels of these agents [142]. Furthermore, isa-
vuconazole can induce dose-dependent QTc shortening [143]. Isavuconazole was 
shown to be non-inferior to voriconazole to treat invasive mold disease from the 
SECURE trial [144]. Posaconazole is also a broad-spectrum triazole used mainly for 
prophylaxis and salvage treatment of invasive fungal infections [145]. A suspen-
sion form of posaconazole has unpredictable bioavailability and needs a high-fat 
meal for better absorption [146]. However, tablet and IV formulations overcome 
this limitation. Posaconazole strongly inhibits CYP3A4 and is metabolized through 
UGT1A4 [145]. Using CYP3A4 substrates with posaconazole should be cautious 
[145]. The common adverse effects of posaconazole are gastrointestinal distur-
bances, hepatotoxicity, rashes, fever, hypokalemia, hypomagnesemia, and QTc 
prolongation [145].

Amphotericin B, a polyene antifungal agent binding to ergosterol in the fungal 
cell membrane, has many forms, i.e., conventional with deoxycholate and lipid-
based form [2, 147]. Conventional amphotericin B has common adverse effects, 
including acute reactions after infusion (fever, chills, nausea), phlebitis, hypokale-
mia, hypomagnesemia, and nephrotoxicity (usually from renal tubular acidosis). 
The lipid-based form has less nephrotoxicity than the conventional form [2]. 
Nevertheless, acute infusion reactions may still present in liposomal amphotericin B 
[148]. In addition, hypokalemia, hypomagnesemia, mild bilirubin, alkaline phos-
phatase elevations are also present occasionally in lipid-based amphotericin B [2]. 
Lipid-based amphotericin B is recommended for alternative treatment of invasive 
aspergillosis in case that azoles cannot be used [2].

Echinocandins, e.g., caspofungin, micafungin, is a non-competitive β-1,3 
D-glucan synthase inhibitor leading to loss of fungal cell wall’s strength and integ-
rity [149, 150]. Echinocandins have fewer adverse reactions and fewer drug–drug 
interactions [149, 150]. Echinocandins are recommended for salvage therapy or in 
azole-resistant Aspergillus infections combined with azoles for invasive aspergillosis 
treatment (Table 5) [2, 151–153].

Therapeutic drug monitoring (TDM) of azoles, e.g., voriconazole, posacon-
azole, isavuconazole, is necessary, especially in elderly patients, obese patients, 
critically ill patients, and patients with potential azole drug–drug interactions [2]. 
For treatment of IA, IDSA recommended TDM of voriconazole at a trough level 
of >1–1.5 μg/mL but less than 5–6 μg/mL to prevent neurotoxicity [2]. American 
Society of Transplantation Infection Diseases Community of Practice (AST) 
recommended TDM of posaconazole (suspension and tablet form) and isavucon-
azole at a trough level of >1–1.25 μg/mL and 2–3 μg/mL, respectively [154]. Timing 
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for measuring serum trough concentration of voriconazole, posaconazole, and 
isavuconazole is at 5–7 days, after 5 days, and within 7 days, respectively [154]. For 
prophylaxis, International Society for Heart and Lung Transplantation (ISHLT) 
recommended TDM of voriconazole and posaconazole at a trough level of ≥1 μg/
mL and > 0.7 μg/mL, respectively [155]. Additionally, in CAPA, ECMM/ISHAM 

Condition First-line treatment Prophylaxis

IPA in ICU patients 

[129, 130]

Voriconazole (6 mg/kg, 

intravenous route every 

12 hours for one day, and 

then 4 mg/kg every 12 hours; 

200–300 mg every 12 hours 

oral route) or

Isavuconazole (200 mg every 

8 hours for 3 days and then 

200 mg daily)

(Liposomal amphotericin B, 

3–5 mg/kg/day, intravenous 

route, in ICU patients with 

severe liver insufficiency, 

cirrhosis Child-Pugh scores 

B, C)

In immunocompetent patients in ICU, 

prophylaxis is not recommended for IPA

IPA in patients 

with hematological 

malignancies 

[131–133]

Voriconazole or

Isavuconazole

(Liposomal amphotericin B 

as alternative treatment)

Posaconazole (oral solution 200 mg every 

eight hours or tablet/intravenous route 

300 mg every 12 h on day one then 300 mg 

daily) (in AML and MDS undergoing 

intensive chemotherapy with the incidence of 

invasive mold diseases >8% or in graft-versus-

host disease)

Voriconazole (200 mg orally every 12 h)(in 

HSCT)

IPA in patients 

with solid organ 

transplantation [134]

Voriconazole or

Isavuconazole

(Liposomal amphotericin 

B in hepatotoxicity, drug–

drug interaction, ≥10% 

environment azole-resistant 

isolates found)

Kidney and heart transplantation are not 

recommended

Lung transplantation: voriconazole, nebulized 

liposomal amphotericin B

IAPA [31, 126] Voriconazole or

Isavuconazole

No current recommendation

Need further studies

CAPA [127] For azole sensitive:

Voriconazole or

Isavuconazole (for 

6–12 weeks)

For azole-resistant:

- Suspected: voriconazole + 

echinocandin (Caspofungin 

70 mg first day followed by 

50 mg daily) or isavuconazole 

+ echinocandin

- Proven: Liposomal 

amphotericin B

No current recommendation

Need further studies

Table 5. 
Treatment of invasive pulmonary aspergillosis (IPA) in ICU patients, patients with hematological 
malignancies, or solid organ transplants, influenza-associated pulmonary aspergillosis (IAPA), and COVID-19 
associated pulmonary aspergillosis (CAPA) (AML: acute myeloid leukemia; MDS: myelodysplastic syndrome; 
HSCT: hematological stem cell transplantation).
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recommended weekly TDM of voriconazole and posaconazole at a trough level of 
2–6 μg/mL and 1–3.75 μg/mL, respectively [127].

5. Azole-resistant Aspergillus

5.1 Etiology and clinical significance

Voriconazole and isavuconazole are the first-line therapy of invasive aspergil-
losis [2, 129, 130]. Furthermore, azoles, i.e., posaconazole and voriconazole, are 
also used as prophylaxis of invasive aspergillosis in patients with hematological 
malignancies and solid organ transplantation [131–134]. Therefore, azoles are 
important antifungal agents to combat invasive aspergillosis. Unfortunately, 
azole-resistant Aspergillus fumigatus strains are emerging and increasing, leading 
to increased treatment failure and mortality [156, 157]. The etiology of these 
emerging azole-resistant A. fumigatus (ARAF) may be from the environmental 
selective pressure associated with azole fungicides in the agricultural area, 
including Europe, Asia, Latin America, the Midwest, and Southeast states of the 
USA [158–161]. The supporting evidence of environment-derived ARAF is that 
ARAF strains were recovered from azole-naive patients [158, 162–165]. In addi-
tion, the most common mutations at the cyp51A gene (encoding lanosterol 14-α 
demethylase) causing azole resistance in ARAF strains, which are TR34/L98H 
and TR46/Y121F/T289A mutations, were also recovered from patients’ homes and 
surroundings [166–171].

Azole fungicides, i.e., bromuconazole, difenoconazole, epoxiconazole, enilcon-
azole, metconazole, prochloraz, propiconazole, prothioconazole-desthio, and 
tebuconazole, play an important role in the development of environment-derived 
azole-resistant Aspergillus isolates leading to cross resistance to medical azoles [169, 
172, 173].

Antifungal susceptibility tests (AST) of Aspergillus species are essential for 
screening azole-resistant Aspergillus isolates. The indications to perform Aspergillus 
AST are that the fungus is recovered from sterile sites in regions with high azole-
resistant rates, including long-term azole treatment in chronic bronchopulmonary 
aspergillosis and breakthrough Aspergillus infections or recurrent or persistent 
infections [2, 128, 174].

The standard antifungal susceptibility testing of filamentous fungi to observe 
the minimum inhibitory concentration (MIC) using broth microdilution assays 
was described by the Clinical and Laboratory Standards Institute (CLSI) and the 
European Union Committee on Antimicrobial Susceptibility Testing (EUCAST) 
[175, 176]. To determine antifungal resistance of Aspergillus species, e.g., A. flavus, 
A. fumigatus, A. niger, A. terreus, CLSI and EUCAST utilized two values, which are 
epidemiological cutoff values (ECVs or ECOFFs) and clinical breakpoints (BP) 
(Table 6). ECVs for CLSI and ECOFFs for EUCAST of each antifungal agent against 
each Aspergillus originate from MIC distribution of the wild-type Aspergillus popu-
lation [175–178]. These values can divide Aspergillus strains into two groups, which 
are wild-type and non-wild-type strains. Non-wild-type strains may resist those 
antifungal agents [175, 176, 178]. Clinical breakpoints are based on antifungal phar-
macodynamics, pharmacokinetics, data from clinical trials, and patient outcomes 
[175, 176, 178]. Resistance is determined by the MICs over R (resistant) (Table 6). 
For EUCAST, another value is the area of technical uncertainty (ATU), which is the 
value that needs to be addressed before reporting these results, i.e., repeating the 
test, using a genotypic test, changing the susceptibility category, or including ATU 
as a part of the report [176].
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Molecular methods to detect CYP51A mutations, e.g., TR34/L98H, TR46/Y121F, 
are established by using classic PCRs with sequencing, real-time PCRs, loop-
mediated isothermal amplification (LAMP), or whole-genome sequencing (WGS) 
[179]. These molecular methods have a high negative predictive value to rule out 
these resistant strains’ infections [179]. However, they had narrow coverage and 
mutations at this point depending on association data between mutations and anti-
fungal resistance property. Furthermore, commercial tools are still not approved 
by the US FDA [179].

5.2 Management of azole-resistant Aspergillus and novel antifungal candidates

Overexpression with a tandem repeat in the promoter area (TR34 or TR46) and 
point mutations (L98H or Y121F/T289A) in the cyp51A gene, encoding azole’s target 
called lanosterol 14-α demethylase, would lead to azole resistance in Aspergillus 

Aspergillus 

species

Antifungal 

agents

CLSI M59 & M61, 2020  

(μg/mL)

EUCAST BP_ECOFF v2.0, 2020 

(μg/mL)

ECV S I R ECV S≤ R> ATU

A. flavus Amphotericin B 4 — — — 4 — — —

Caspofungin 0.5 — — — — — — —

Isavuconazole 1 — — — 2 1 2 2

Itraconazole 1 — — — 1 1 1 2

Posaconazole 0.5 — — — 0.5 — — —

Voriconazole 2 — — — 2 — — —

A. fumigatus Amphotericin B 2 — — — 1 1 1 —

Caspofungin 0.5 — — — — — — —

Isavuconazole 1 — — — 2 1 2 2

Itraconazole 1 — — — 1 1 1 2

Posaconazole — — — — 0.25 0.125 0.25 0.25

Voriconazole 1 ≤0.5 1 ≥2 1 1 1 2

A. niger Amphotericin B 2 — — — 0.5 1 1 —

Caspofungin 0.25 — — — — — — —

Isavuconazole 4 — — — 4 — — —

Itraconazole 4 — — — 4 — — —

Posaconazole 2 — — — 0.5 — — —

Voriconazole 2 — — — 2 — — —

A. terreus Amphotericin B 4 — — — 8 — — —

Caspofungin 0.12 — — — — — — —

Isavuconazole 1 — — — 1 1 1 —

Itraconazole 2 — — — 0.5 1 1 2

Posaconazole 1 — — — 0.25 0.125 0.25 0.25

Voriconazole 2 — — — 2 — — —

Table 6. 
Interpretation of antifungal susceptibility tests and epidemiological cutoff values (ECVs) of Aspergillus 
species according to CLSI M59 and M61, 2020 and EUCAST BP ECOFF version 2, 2020 (S: susceptible, I: 
intermediate, R: resistant, ATU: Area of Technical Uncertainty) [175–177].



The Genus Aspergillus - Pathogenicity, Mycotoxin Production and Industrial Applications

14

fumigatus including voriconazole and isavuconazole [156, 178]. To treat these 
azole-resistant Aspergillus infections, monotherapy of each azole should be avoided, 
especially in areas with more than 10% of azole resistance prevalence [180]. In areas 
with high rates of azole resistance, liposomal amphotericin B and a combination 
of voriconazole and echinocandin should be considered [2, 127, 128, 156, 180]. 
Therefore, the prevalence of azole-resistant Aspergillus strains using conventional 
culturing methods together with broth microdilution assays or using molecular 
biology (RT-PCR) is essential to decide the optimal treatment and to choose suitable 
antifungal agents to get rid of these infections [156, 179].

From the increased speed of azole-resistant Aspergillus strains, novel antifungal 
agents with high efficacy and fewer side effects are crucial to combat these infec-
tions with very high mortality [156]. However, discovering these novel antifungal 
agents has many steps and methods to evaluate both in vitro and in vivo analyses 
for both antifungal activity and toxicity [181, 182]. The first step for screen-
ing antifungal activity has many methods depending on the screening purpose 
[181]. To observe the antifungal activity of novel antifungal candidates, the broth 
microdilution method is the standard method to provide the MICs [183]. This 
method is perfect for various compounds requiring high throughput assays [181]. 
Furthermore, this method requires a small number of compounds and can apply to 
different Aspergillus species simultaneously [181]. To observe combinatorial effects 
between novel antifungal candidates and current antifungal agents, checkerboard 
assays are used to determine the fractional inhibitory concentration index (FICI) 
[184, 185]. The FICI is calculated using the sum of the fractional inhibitory con-
centration (FIC1) of the first compound, which is MIC1 + 2 of the combination of 
the first and the second compounds divided by MIC1 of the first compound alone, 
and the FIC2 of the second compound [184, 185]. Synergistic, additive, indif-
ferent, and antagonistic effects are defined by FICI ≤0.5; >0.5–1; >1–4; and > 4, 
respectively [184–186]. For the cytotoxicity effects on human epithelial cells, many 
in vitro colorimetric assays, including mammalian tissue culture systems and vital 
dyes, are used, such as Alamar blue, MTT, XTT (tetrazolium) assays [181]. Next 
steps after in vitro studies to prove the antifungal activity and toxicity, in vivo ani-
mal models are used to study pharmacodynamics and pharmacokinetics, including 
in vivo antifungal activity and in vivo toxicity [181]. Then, these antifungal can-
didates would follow through the clinical trial phase I (safety), phase II (checking 
effectiveness), phase III (confirming effectiveness, side effects), and get approved 
[181, 182, 187].

Many novel antifungal compounds against both classical targets and novel 
targets are in clinical trials (Table 7) [262]. Novel targets against Aspergillus 
species include glycosylphosphatidylinositol (GPI) anchor protein, dihydrooro-
tate dehydrogenase in pyrimidine synthesis, fungal mitochondrial respiration 
chain, siderophore iron transporter, Heat shock protein 90 (Hsp90), calcineurin, 
histone deacetylase (HDAC), inositol phosphorylceramide (IPC) synthase, chitin 
synthase, and sphingolipid pathway (Table 7). Nevertheless, more clinical trials 
are on the way for these agents before using them in the clinical practice against 
antifungal-resistant Aspergillus/fungal strains.

In addition, enzymes in the Aspergillus trehalose biosynthesis pathway, i.e., 
trehalose-6-phosphate synthase, trehalose-6-phosphate phosphatase, trehalase 
enzymes, were identified as important virulence factors, including proteins related 
to the trehalose pathway, i.e., AfSsdA, AfTslA [103, 105, 263, 264]. The trehalose 
pathway in A. fumigatus is associated with cell wall integrity and fungal virulence 
in vivo [103, 264, 265]. However, inhibitors of this pathway are still lacking and 
under-investigated. Validamycin A is one of the inhibitors of trehalase enzymes 
and was first demonstrated its strong antifungal activity against a plant fungal 
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Name. Target Mechanism Advantage Administration Clinical 

trial

Classical targets

Encochleated 

amphotericin B 

(CAmB) [188–192]

Ergosterol Renovated structure of 

amphotericin B with cochleated 

lipid-crystal nanoparticles

Oral administration, broad-spectrum, less toxicity Oral Phase I

Rezafungin (CD101) 

[192–203]

1,3-β-D-glucan synthase (FKS) 1,3-β-D-glucan synthase inhibitor Improved stability, long half-life (once a week), activity 

against A. fumigatus, A. terreus, A. flavus, and A. niger

Intravenous Phase III

Ibrexafungerp  

(SCY-078) [204–210]

1,3-β-D-glucan synthase (FKS) 1,3-β-D-glucan synthase inhibitor activity against A. fumigatus, A. terreus, A. flavus, and A. 

niger, including itraconazole-resistant Aspergillus

Oral and 

intravenous

Phase III

VT-1598 [211, 212] Lanosterol demethylase (CYP51) Tetrazole, inhibiting lanosterol 

demethylase

Less drug–drug interactions, long half-life, broad-

spectrum: Candida, Aspergillus

Oral Phase I

VT-1161 

(oteseconazole) [213, 

214]

Lanosterol demethylase (CYP51) Tetrazole, inhibiting lanosterol 

demethylase

Less drug–drug interactions, long half-life: activity 

against azole-resistant Candida, onychomycosis

Oral Phase III

VT-1129 

(quilseconazole) 

[215–220]

Lanosterol demethylase (CYP51) Tetrazole, inhibiting lanosterol 

demethylase

Less drug–drug interactions, long half-life, brain 

penetration, activity against Cryptococcus, Candida

Oral Phase I

PC945 [221–227] Lanosterol demethylase (CYP51) Triazole, inhibiting lanosterol 

demethylase

Fungicidal, high lung exposure, activity against A. 

fumigatus

Inhalation Phase II

Novel targets

Fosmanogepix 

(APX001) [228–236]

Glycosylphosphatidylinositol 

(GPI) anchor protein synthesis 

(GWT1)

Inhibiting GPI Fungal-specific target, broad-spectrum, activity against 

A. fumigatus, A. terreus, A. flavus, and A. niger

Intravenous and 

oral

Phase II

APX2096 [236] Glycosylphosphatidylinositol 

(GPI) anchor protein synthesis 

(GWT1)

Inhibiting GPI Strong activity against Cryptococcus, effective blood–

brain barrier penetration

Intraperitoneal 

and oral

—

Olorofim (F901318) 

[237–239]

Dihydroorotate dehydrogenase in 

pyrimidine synthesis

Inhibiting pyrimidine synthesis Activity against A. fumigatus, A. terreus, A. flavus, and 

A. nidulans, including azole-resistant A. fumigatus

Intravenous and 

oral

Phase III
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Name. Target Mechanism Advantage Administration Clinical 

trial

T-2307 [240–242] Intracellular mitochondrial 

membrane respiration potential

Inhibiting mitochondrial 

respiration chain (arylamidine)

Uptaking more by fungal cells, fungicidal activity 

against A. fumigatus, A. terreus, A. flavus, A. nidulans, 

and A. niger

Subcutaneous Phase I

VL-2397 (ASP2397) 

[243–245]

Unknown Uptaking by siderophore iron 

transporter (Sit1)

Fungicidal, activity against A. fumigatus, A. terreus, A. 

flavus, and A. niger

Intravenous Phase II

Geldanamycin 

[246–248]

Heat shock protein 90 (Hsp90) Inhibiting Hsp90 Synergy to caspofungin Intravenous —

Tacrolimus (FK506) 

[249–251]

Calcineurin Inhibiting calcineurin Synergy to caspofungin, activity against A. fumigatus Intravenous and 

oral

—

Cyclosporin A [249, 

252]

Calcineurin Inhibiting calcineurin Activity against A. fumigatus Intravenous, oral, 

and topical

—

FK506 analogs 

(9D31OD-FK506) 

[251]

Calcineurin Inhibiting calcineurin Synergy to azoles, decrease T-cell toxicity and host 

immunosuppression

Intravenous —

Trichostatin A [253] Histone deacetylase (HDAC) Inhibiting HDAC Synergy to caspofungin, activity against A. fumigatus Intravenous —

MGCD290 [254] Histone deacetylase (HDAC) Inhibiting HDAC Synergy to caspofungin, azole, broad spectrum Oral Phase II

Aureobasidin A 

[255–258]

Inositol phosphorylceramide 

(IPC) synthase

Inhibiting IPC synthase Synergy to caspofungin Intravenous and 

oral

—

Nikkomycin [259] Chitin synthase Inhibiting chitin synthase Broad-spectrum Intravenous —

BHBM D13 [260, 

261]

Sphingolipid pathway Acylhydrazone, inhibiting fungal 

sphingolipid glucosylceramide 

(GlcCer) synthesis

Broad-spectrum, specific to fungi, fungicidal, blood–

brain barrier penetration, less toxicity

Intraperitoneal 

and oral

—

Table 7. 
Summary of novel antifungal agents against classical targets and novel targets for Aspergillus infections.
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pathogen, Rhizoctonia solani [266–269]. Furthermore, validamycin A has antifungal 
activity against Candida albicans and Aspergillus flavus [186, 270]. Validamycin 
A also possesses combinatorial effects with conventional amphotericin B against 
A. flavus [186]. Nevertheless, in vivo experiments are still necessary to verify an 
antifungal activity of validamycin A. Additionally, the high-osmolarity glycerol 
(HOG)-mitogen-activated protein kinase (MAPK) signaling pathway is associ-
ated with trehalose production and stress response in A. fumigatus [271–274]. This 
signaling pathway may be another good antifungal target to be developed in the 
future. Therefore, there are many more pathways involved with Aspergillus viru-
lence, and there are so many unexplored areas in Aspergillus pathogenesis to develop 
novel antifungal candidates. With this knowledge, we could overcome the shortage 
of antifungal agents against many more antifungal-resistant Aspergillus strains to 
emerge very soon.

6. Conclusion

Aspergillus species are common fungi found everywhere around humans. They 
adapt and express many virulence factors to survive inside hosts and cause infec-
tions in immunocompromised hosts. Recently, new risk factors that cause severe 
invasive pulmonary aspergillosis are ICU patients with influenza infections or 
COVID-19 infections. The diagnosis of invasive aspergillosis, especially without 
proven tissue or culture evidence, is still challenging. New molecular methods, 
i.e., nucleic acid assays, lateral flow assays, are introduced for supporting the 
diagnosis of probable and possible invasive aspergillosis. Nevertheless, voricon-
azole and isavuconazole are the first-line therapy in IPA in ICU patients, patients 
with hematological malignancies, patients with IAPA, and CAPA. Furthermore, 
posaconazole is the principal antifungal agent for the prophylactic treatment of 
IPA in patients with hematological malignancies. Additionally, emerging azole-
resistant Aspergillus strains are increasing, and the management against these 
azole-resistant Aspergillus strains is the combination therapy between azoles and 
echinocandins, including liposomal amphotericin B. Although novel antifungal 
agents against Aspergillus species are on their way, antimicrobial stewardship of 
existing antifungal agents is also crucial to prevent further breakthrough antifun-
gal-resistant strains in the future. With our better understanding of Aspergillus 
pathogenesis, the shortage of antifungal agents against Aspergillus and its resistant 
strains would no longer be for the better lives of patients suffering from Aspergillus 
infections.
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