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Chapter

DNA Methyltransferases and
Schizophrenia: Current Status
Pranay Amruth Maroju and Kommu Naga Mohan

Abstract

Schizophrenia (SZ) is a complex disorder without a single cause but with
multiple etiologies. Monozygotic twin studies suggesting high discordant rates pro-
vide evidence for epigenetic mechanisms among the factors that result in increased
susceptibility. Among the different epigenetic modifications in mammals, DNA
methylation mediated by DNA methyltransferases (DNMTs) is the most-well
studied. Studies on post-mortem brain samples and blood samples of SZ patients
revealed altered levels of most DNMTs. In addition, some recent studies also
reported disease-associated SNPs in the DNMT genes. While the effects of
dysregulation of DNMTs are beginning to be understood, many unanswered ques-
tions remain. Here, we review the current evidences that shed light on the relation-
ship between DNMT dysregulation and SZ, and suggest the possible strategies to
address some of the unanswered questions.

Keywords: Schizophrenia, DNA methyltransferases, DNA methylation,
Dysregulation, Abnormal neurogenesis

1. Introduction

Schizophrenia (SZ) is a severe and chronic mental disorder with an incidence of
�1%, affecting �20 million people worldwide [1]. The main symptoms of SZ
include hallucination, delusion, abnormal disorganized behavior, disorganized
speech, disturbances of emotions such as marked apathy, etc. The disorder is asso-
ciated with considerable disability and can affect educational and occupational
performance with 2–3 times increased likelihood of death earlier than the general
population [2].

SZ is a complex disorder with no single causative factor but with multiple
etiologies (Table 1). The five main factors that are believed to result in increased
risk are: physical and chemical changes in brain [3], pregnancy or birth complica-
tions [4], childhood trauma [5], genetic [6] -and epigenetic [8]. Among these, a
high risk among first-degree relatives compared to the general population and
increased risk in monozygotic than dizygotic twins suggest genetic factors [7].
However, the observed concordance rates (�50%) in monozygotic twins that were
much lesser than expected for a purely genetic risk (nearly 100%) suggest the
contribution of epigenetic mechanisms to SZ [9].

Recent data based on brain imaging and molecular-genetic studies suggest that
SZ is a form of neurodevelopmental disorder [10]. The neurodevelopmental
hypothesis for SZ suggests pathological neurodevelopment during first and second
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trimesters of pregnancy results in altered neuronal circuits which in turn result in
psychosis in adolescents or young adults when exposed to increased biological or
psychological stress. Evidences in support of this hypothesis comes from genetic
studies that identified affected genes and risk factors during perinatal life that may
disrupt the normal process of neurodevelopment. In addition, studies over the past
20 years showed that in comparison with controls, SZ patients after the onset
exhibit accelerated aging-related loss of brain tissue [11]. Specifically, the patients
show increased age-related reduction in the proportion of grey matter compared
with controls [12]. These findings suggest that altered neurodevelopment may
underlie the processes associated with SZ.

2. Epigenetic mechanisms

As mentioned above, evidence on the contribution of epigenetic mechanisms in
SZ comes from monozygotic twin studies wherein the concordance rates are only
�50%. This low concordance rate suggests the interplay of genes and environment
resulting in SZ. Because of this interplay, the epigenetic mechanisms have been
suggested to be among the etiological factors [8]. Epigenetic mechanisms are
defined as processes that can alter the patterns of gene expression without causing a
change in the DNA sequence [13]. These mechanisms operate at the levels of
transcription, mRNA stability and translation (Table 2). At the level of transcrip-
tion, mammalian genes can be regulated by covalent modifications of the DNA [19],
modifications of N-terminal tails of histones [15], microRNAs [20], circular RNAs
[17] and long noncoding RNAs [21]. A number of modifications of RNA have been
reported to influence mRNA stability and efficiency of translation. These modifica-
tions and their roles are described elsewhere [22, 23]. Because of epigenetic differ-
ences, genetically identical cells in a multicellular organism express different sets of
genes that confer cell type – specific identity and function [24]. The most well
studied epigenetic modification is methylation of the 5th carbon in the cytosine
residues in the genomic DNA, often referred to as cytosine methylation. This
modification mostly occurs in the CpG dinucleotides because of the maintenance
mechanism in a post-replicative manner involving hemi-methylated DNA [see
below]. As such, DNA methylation is often used as a synonym to CpG methylation

S.

No

Factor Comment References

1 Physical and
chemical changes in
brain.

Subtle structural changes have been observed in post-
mortem brain samples of SZ patients. Imbalances in
neurotransmitters such as dopamine and glutamate have
been linked to SZ.

[3]

2 Pregnancy or birth
complications

Low birth weight, infection during pregnancy, asphyxia,
premature labour, maternal obesity diagnosis in pregnancy,
etc. have been associated with SZ in the offspring.

[4]

3 Childhood trauma There is an increased risk to experience SZ if there is death
or permanent separation of one or both parents.

[5]

4 Genetic The risk in identical twins (1 in 2) is four times higher than
non-identical twins (1 in 8). These risks are much higher
than for general population (1 in 100).

[6, 7]

5 Epigenetic Monozygotic twins show only 45–50% concordance. [8, 9]

Table 1.
Risk factors for schizophrenia.

2

Psychosis - Phenomenology, Psychopathology and Pathophysiology



in mammals. A family of enzymes, referred to as DNA methyltransferases
(DNMTs) are responsible for establishment and maintenance of DNA methylation
[25]. Several studies that focused on the relationship between DNAmethylation and
gene expression showed an inverse correlation, meaning that DNA methylation is

Mechanisms Machinery Comment

1. DNA Methylation Establishment
and
maintenance:
DNMTs
Erasure: TETs,
AID/APOBECs.

Altered methylation
patterns and gene
expression patterns
observed in SZ [14].

2. Histone tail modifications Establishment:
HATs, HMTs
Erasure: HDMs
and HDACs.

Aberrant histone
modifications were
reported in SZ [15].

3. MicroRNAs DROSHA,
EXPORTIN,
DICER, RISC
and
ARGONAUTE

Altered miRNA profiles
were reported in SZ
[16].

4. Circular RNAs RNA binding
proteins,
muscleblind
(MBL), quaking
and adenosine
deaminase.

Multiple circRNAs have
been confirmed to play
important roles in the
occurrence and
development of SZ [17].

5. Long non-coding RNAs PRC1: Polycomb
Repressive
Group proteins.

Long non-coding RNAs
are associated with SZ
and effects in the
neuronal structure [18].

Table 2.
Epigenetic mechanisms in regulating gene expression.
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often associated with repressed state of the promoters [26]. In case of histones, the
lysines in the N-terminal tails of core histones can either be acetylated or methyl-
ated. These modifications occur on the same lysine residues and are therefore
mutually exclusive [27]. Whereas histone lysine acetylation is always associated
with gene expression, histone methylation is associated with either expression or
silencing depending on the residues involved [28]. For example, methylation at
lysine 9 of histone H3 (H3-K9) or H3-K27 is associated with silencing. On the other
hand, H3-K4 or H3-K36 methylation is associated with gene expression. Histone
methyltransferases and histone acetyltransferases are two families of enzymes for
imparting the two covalent modifications of the N-terminal tails of the core histones
[29]. As in case of DNA methylation, histone marks are also heritable. The cova-
lently modified nucleosomes from the parental chromatin are segregated equally
among the two daughter DNA molecules so that additional nucleosomes containing
histone marks identical to the parental nucleosomes are assembled [30]. Both DNA
methylation and histone modifications are reversible involving different categories
of enzymes and processes. The machinery of DNA methylation and demethylation
is described in the next section [Section 2.1]. With regard to the histone modifica-
tions, histone demethylases (HDMs), histone methyltransferases (HMTs), histone
acetyltransferases (HATs) and histone deacetylases (HDACs) together play a role in
erasure and establishment of histone modification marks [31]. HDMs remove
methyl groups from the lysines of the core histones so that the unmethylated lysines
can be acetylated by HATs. HDACs, on the other hand, remove acetyl groups from
the acetylated lysines so that the same residues can be methylated by HMTs.

Apart from covalent modifications of the genome, long noncoding RNAs (lnc
RNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) also play an impor-
tant role in regulating gene expression. Of these, circRNAs and miRNAs regulate
expression at post-transcriptional levels whereas lncRNAs can regulate at both
transcriptional and post-transcriptional levels. Lnc RNAs are ≥200 nucleotides, do
not encode any protein and regulate genes at the both transcriptional and post-
transcriptional levels [32]. At the level of transcription, lncRNAs either can promote
histone modifications and chromatin condensation or recruit transcription factors
to facilitate gene expression or evict transcription factors and result in gene repres-
sion. In addition, lncRNAs are also known to influence alternative splicing, poly-
some recruitment to enable translation, act as decoys for microRNAs (miRNAs) and
regulate mRNA stability. The miRNAs, on the other hand cause translational
repression of the target mRNAs. Each miRNA is �22 bases long and can recognize
multiple targets having a few mismatches at their 30-ends [33]. In cases, where there
is no mismatch, miRNA can induce degradation of the target mRNA sequence [34].
CircRNAs are generated by back-splicing or non-colinear splicing of pre-mRNA
molecules and may include both exonic and intronic sequences [35]. In addition to
competing with canonical splicing and controlling the levels of the corresponding
protein-coding mRNAs, circRNAs can also act as protein decoys or miRNA sponges
to regulate gene expression [36].

2.1 DNA methylation and demethylation machinery

Of the different epigenetic mechanisms influencing gene expression described
above, DNA methylation-mediated regulation of gene expression is the most-well
studied. DNA methylation is established and maintained by DNMT family of
enzymes whereas different mechanisms exist for demethylation (Figure 1A). Of
the four members of DNMTs that facilitate DNA methylation, DNMT3L does not
have an active methyltransferase (catalytic) domain. DNMT3A and 3B are de novo
methyltransferases of which DNMT3A is mainly responsible for establishment of
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methylation in imprinted genes whereas DNMT3B establishes methylation in
pericentric repetitive regions [37]. DNMT1 is a maintenance methyltransferase,
which methylates the daughter DNA strand in the hemi-methylated DNA generated
after replication (Figure 1B). In this process, the methylated CpG sites in the
parental strands serve as information to methylate the complementary CpG sites in
the daughter strand. Demethylation, on the other hand can be achieved by cytidine
deaminases or Ten-Eleven Translocation (TET) enzymes [38] (Figure 1C). Cyti-
dine deaminases such as activated induced cytidine deaminase (AID) and apolipo-
protein B mRNA editing enzyme catalytic polypetide 1 (APOBEC1) catalyze the
conversion of methylcytosine to thymine [39], leading to T:G mismatches. These
mismatches are repaired by base excision repair machinery that incorporates
unmodified cytosine. The TET enzymes hydroxymethylate the methylated cyto-
sines which are further processed into oxidized forms of cytosine (5-formylcytosine
and 5-carboxycytosine) that are further subjected to base excision repair resulting

Figure 1.
DNA methylation and demethylation machinery. (A) Domains of DNMTs. CXXC: Cys-X-X-Cys domain,
BAH: Bromo-Adjacent Homology domain, MTase: Methyltransferase domain, PWWP: Pro-Trp-Trp-Pro
domain, ADD: ATRX-DNMT3-DNMT3L domain (B) Cytosines are methylated by de novo
methyltransferases DNMT3A and DNMT3B with the help of DNMT3L. Only methylated CpGs are
maintained by DNMT1. (C) Different pathways of demethylation of methylated cytosines (5mC). TET: ten-
eleven translocation (TET) proteins, AID/APOBEC: activity-induced cytidine deaminase/ apolipoprotein B
mRNA editing complex,Thy: thymine. TDG: Thymine-DNA glycosylase, AP: apurinic/apyrimidinic site, BER:
base-excision repair. 5hmU: 5-hydroxymethyluracil, 5hmC: 5-hydroxymethylcytosine, 5fC: 5-formylcytosine
and 5caC: 5-carboxylcytosine.
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in active demethylation. Hydroxymethylcytosine results in passive demethylation
via DNA replication because of absence of methylgroup in the parental strand in the
hemimethylated DNA.

2.2 DNA methylation studies in schizophrenia

Initial studies on DNA methylation differences between SZ patients and con-
trols, and among discordant monozygotic twins focused on candidate genes identi-
fied by genetic studies. For example, Abdolmaleky et al. [40] by using DNA from
frontal lobes of post-mortem brain samples showed �50% increased methylation in
the RELN promoter. Subsequent DNA methylation studies focused on genes
involved in Dopaminergic [41], GABAergic [42], Glutamatergic [43], serotonergic
pathways [44] of neurotransmission and genes such as BDNF [45]. These studies
used DNAs either post-mortem brain samples or peripheral blood lymphocytes.
However, the data did not always yield consistent reports. For example, in case of
BDNF promoter IV, decreased DNA methylation was observed in peripheral blood
in a study by Kordi et al. [46] whereas, Ikegame et al. [47] and Ümit Sertan Çöpoğlu
et al. [48] reported no change in the methylation levels in the same tissue. Subse-
quent studies which used genome-wide methylation analysis identified many genes
showing statistically significant differences in DNA methylation, but the effective
values or the degree of methylation differences observed were not large enough to
demonstrate a biological effect such as altered expression. For example, in one of
the first studies, Mill et al. [49] by using microarrays identified genes RPL39 and
WDR18 with increased methylation in the promoter upstream regions of 8% and
3%, respectively. Studies conducted after these observations used a variety of tech-
nologies such as Methylated DNA Immunoprecipitation (MeDIP) – sequencing and
Illumina-27 K and 450 K arrays and reported differentially methylated sequences
with low effective values. Importantly these studies identified genes with little or no
overlap among the top gene hits corresponding to the most significant differentially
methylated sites [50]. Nevertheless, some of these genome-wide studies also iden-
tified methylation differences in candidate genes such as COMT [51], GAD1, RELN
[52] and BDNF [53]. Although these genome-wide studies did not yield common
genes with significant differences in DNA methylation, bioinformatic analyses
revealed common pathways. For example, methylome data using the blood DNAs
revealed the involvement of functioning of the immune system [54]. This in turn is
in agreement with the genome-wide association studies that identified immune-
related genes including the major histocompatibility locus [55]. Another common
pathway identified in both blood– and DNA- based studies is the neurodeve-
lopmental processes [56]. The DNA methylation studies were also extended to
study the effects on gene expression. In one such study, Liu et al. [57] identified 16
differentially methylated sites using a case–control approach. When the
corresponding 16 genes were studied only five genes showed an inverse correlation
of expression with methylation whereas two showed a positive correlation. The
remaining genes showed no difference in the level of expression. Besides analysis of
gene-related regions of the genome, bulk DNA methylation in SZ patients was also
investigated. In such studies, Bonsch et al. [58] observed lower levels of methylation
in peripheral blood monocytes of patients among discordant monozygotic twins.
Meals et al. [59] also found a decreased global methylation levels in leukocytes of
patients compared to normal individuals. However, these studies are not in agree-
ment with Bromberg et al. [60] who did not observe any difference in the global
methylation levels in leukocytes. Overall studies on the global methylation levels
were inconclusive and likely to be influenced by factors such as age, gender, med-
ication and smoking behavior. In summary, some but not all studies observed
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significant differences in DNA methylation levels in the candidate genes whereas
genome-wide studies indicated the involvement of neurodevelopmental processes
and immune system function. These results are consistent with the model of etiol-
ogy that SZ is a complex disorder with no single causative factor.

2.3 Dysregulated DNMTs in schizophrenia

Epigenetic processes and epigenetic modifications are tightly controlled to
enable normal mammalian development. In this context, the presence of aberrant
DNA methylation patterns affecting the candidate genes suggests the possibility of
the role of dysregulation of epigenetic machinery in SZ. Investigations on
dysregulation of DNAmethylation machinery in SZ dates back to 2005 when Veldic
et al. [61] reported increased DNMT1 levels in the GABAergic interneurons of post-
mortem brain tissues of SZ patients. This increase was also correlated with
increased promoter methylation and decreased expression of REELIN, an extracel-
lular matrix protein and GAD67, an enzyme involved in production of GABA.
Importantly, DNMT1 inhibitors were reported to decrease hypermethylation and
increased expression of the two genes [62]. Subsequently, HDAC inhibitors were
also shown to relieve the repression associated with DNMT1 overexpression to an
extent similar to DNMT1 inhibitors [63]. These results suggest the potential of
epigenetic drugs in ameliorating the phenotypes associated with SZ. Later
experiments in brain tissues of patients revealed that at increased levels, DNMT1
binds to REELIN, GAD67 and BDNF promoters in cortex but not cerebellum.
Further, this selective cortex-specific binding is not associated with any changes
in the levels of DNA methylation [64]. The authors suggested that increased
DNMT1-associated downregulation of the three genes can be independent of the
catalytic activity of DNMT1. As mentioned above, DNMT1 is a maintenance
methyltransferase and cannot introduce new methyl groups in the DNA.
Therefore, hypermethylation of REELIN and GAD67 is possible only if there is
de novo methylation followed by maintenance methylation of DNMT1. Not
surprisingly, overexpression of DNMT1 as well as DNMT3A was subsequently
observed in post-mortem brain samples as well as peripheral blood lymphocytes
of SZ patients [65]. Further, DNMT3B overexpression was also reported in
peripheral blood lymphocytes but is not reported as of date in post-mortem
brain tissues of SZ patients. Since both DNMT3A and 3B are required for de novo
methylation, it is not unexpected that DNMT3B would also be overexpressed
in the brain tissues of the patients. In addition to human studies, experiments
using offspring of prenatal restrained stressed mice also confirmed the
association of increased DNMTs with SZ-associated phenotypes. In the progeny,
DNMT1 and 3A protein levels were high with increased binding of DNMT1 and
MeCP2 (Methyl-CpG binding protein 2) and repression of REELIN and GAD67
promoters [66].

Taken together, there is reasonable argument for DNMT1 and DNMT3A and,
possibly DNMT3B overexpression as risk factors for SZ. However, the information
on the number of genes dysregulated due to DNMT1 overexpression was limited
only three (REELIN, GAD67 and BDNF). By taking DNMTs as risk-conferring
genes, Saradalekshmi et al. [67] investigated whether any SNPs of DNMTs are
associated with SZ. In this case–control study, minor alleles at rs2114724 and
rs2228611 of Dnmt1, rs2424932 and rs1569686 of Dnmt3B and rs2070565 in Dnmt3L
showed significant association with SZ. The authors also reported that rs2424932
showed an association in male patients whereas rs1569686 was associated with an
earlier onset in patients with family history. Bioinformatic analysis on the effects of
these SNPs suggested that the minor alleles affect the splicing of Dnmt1 or Dnmt3L
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transcript or reduce the levels of expression of Dnmt3B. However, functional
studies on these SNPs were not reported yet.

2.4 Models of dysregulated DNMTs

In the light of reports suggesting increased DNMT1 and/or DNMT3A levels as
risk factors for SZ, it is important to understand the effects of their overexpression
on neurodevelopment. Unfortunately, overexpression of DNMT1 results in mid-
gestational lethality in mice [68] making it impossible to generate animal models
with constitutive overexpression. In addition, reduction of DNMT1 protein levels,
but not its absence, appears to be an essential step for differentiation [69]. In this
context, it is also difficult to generate mice conditional alleles of Dnmt1 that enable
neurogenesis-specific overexpression. Therefore, we proposed that cell-based
models that either over express DNMT3A or DNMT1 or together serve as useful
tools for studying the effects on neurogenesis. Specifically, embryonic stem cells
(ESCs) are attractive because they provide opportunities to investigate the effects
of DNMT1 and /or DNMT3A overexpression at different stages of neural differen-
tiation. For instance, during the induction of neuronal differentiation, the ESCs are
first differentiated into embryoid bodies (EBs) to obtain progenitor cells with
ectoderm, endoderm and mesoderm specification. From EB stage, the cells can be
differentiated into neuronal progenitor cells (NPCs) and subsequently into neurons.

In order to study the effects of DNMT1 overexpression on neurogenesis, D’Aiuto
et al. [70] utilized Dnmt1tet/tet (Tet/Tet), a mouse embryonic stem cell line that
overexpresses DNMT1 (Figure 2A). This cell line was generated by insertion of tet-
off cassettes between the Dnmt1 promoters and the start codons of both chromo-
somes [71]. As a result, the endogenous Dnmt1 promoter expressed tTA, a
transactivator that binds to the CMV-tet operator (TetO + CMV sequence present at
the 30-end of the tet-off cassettes. This resulted in increased expression of DNMT1 in
the Tet/Tet ESCs. When doxycycline is added to this cell line, tTA became inactive
and could not express Dnmt1 and making the genome hypomethylated. When the
Tet/Tet ESCs were used for neuronal differentiation by the authors, there was
reduction in DNMT1 levels in embryoid bodies with no difference between the
wild-type (R1) and Tet/Tet cells. However, neurons differentiated from the Tet/Tet
cells showed abnormal dendritic branching (Figure 2B), increased activity of N-
methyl-D-aspartate (NMDA) receptor (Figure 2C) and increased levels of the NR1
subunit of the receptor. In this study, the authors reported that increased DNMT1
levels did not result in any hypermethylation of Reelin or Gad67 promoters. This
finding was not surprising because DNMT1 was only a maintenance
methyltransferase and new methylation marks are established only by the de novo
methyltransferases. Although this study indicated that DNMT1 overexpression
results in abnormal neurogenesis, the effects on the levels of SZ-associated gene
transcripts, particularly on genes such as Gad67, Reelin and Bdnf were not investi-
gated.

In a recent study, Saxena et al. [72] used a modified neuronal differentiation
method that resulted in increased expression of DNMT1 in Tet/Tet neurons
(Figure 2D). These results suggested that Tet/Tet neurons were suitable for study-
ing the expression levels of SZ-associated genes in presence of increased DNMT1
levels [73]. When 15 SZ-associated genes were tested between the Tet/Tet and R1
neurons, 13 showed significantly altered transcript levels of which, 11 showed
identical patterns of dysregulation as in patients (Figure 2E). Eight of these 11 also
showed significantly altered transcript levels in Tet/Tet ESCs but the patterns were
similar to Tet/Tet neurons in only five cases. These results suggested that the
dysregulation patterns of the SZ-associated genes varied during the stages of
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pluripotency and neuronal differentiation. The authors then used doxycycline to
turn off Dnmt1 and studied whether dysregulation observed in Tet/Tet ESCs could
be reversed. Out of the eight genes tested in ESCs, the direction of transcript
dysregulation for only four genes was reversed. These results suggested that by
using DNMT1 inhibitors, it may not be possible to reverse DNMT1 overexpression-
associated dysregulation of certain SZ-associated genes. Importantly, in this study,
the authors did not observe any significant difference in the levels of methylation of
the promoters of the affected genes either in ESCs or neurons. These results indi-
cated that dysregulation of the genes studied in Tet/Tet neurons could be due to
catalytic activity-independent effects of DNMT1. While the results on the Tet/Tet

Figure 2.
(A) Generation of Tet/Tet ESC line. R1: wild-type. Oocyte (1o), somatic cell (1s) and pachytene spermatocyte
(1p) promoters are shown. (B) Embryoid bodies (EBs) and neurons differentiated from R1 and Tet/Tet ESCs.
Neo/Pur: Neomycin and puromycin selection markers. (C) Increased NMDA receptor activity in Tet/Tet

neurons. Compared to R1 neurons, when glutamate was added, the calcium uptake is higher in Tet/Tet

neurons. This uptake is inhibited when MK801 (inhibitor of NMDA receptor) was used. (D) Western blot
analysis of DNMT1 in Tet/Tet ESCs, EBs and neurons. (E) Four distinct categories of the 15 SZ-associated
gene transcripts studied in Tet/Tet and R1 cells. Direction of change is indicated as per the color key. Red color
indicates decreased transcript levels whereas increased transcript levels are shown in blue. Absence of color
indicates no change.
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cells undoubtedly revealed the effects of DNMT1 overexpression on a wider set of
SZ-associated genes, details on the global effects of increased DNMT1 levels at the
transcriptome and methylome levels are still awaited.

3. Conclusions

In conclusion, molecular details that connect DNMT1 overexpression with
abnormal neurogenesis are beginning to emerge. With the availability of genome-
wide methylation and transcriptome analysis methods, it is now possible to investi-
gate the effects of DNMT1 overexpression in post-mortem brain samples of SZ
patients. However, this effort requires an understanding on the incidence of
DNMT1 overexpression in these samples. Of particular interest is to compare the
effects of overexpression of DNMT1 or DNMT3A or both during the process of
neuronal differentiation and the nature of the altered transcript levels. Whether the
genes affected are only related to SZ or other neuropsychiatric disorders or
neurodevelopmental disorders is an important question that needs to be addressed.
Such information is useful to explore the contribution of epigenetic mechanisms in
a wider spectrum of neurological disorders. In addition, improvement in the
methods for generating genetically modified ESCs, their differentiation into specific
types of neurons and development of brain organoids should help advance our
understanding of the relationship between dysregulation of DNA
methyltransferases and neurodevelopmental disorders such as schizophrenia.
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