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Chapter

Adaptive Travel Mode Choice in 
the Era of Mobility as a Service 
(MaaS): Literature Review and 
the Hypermode Mode Choice 
Paradigm
Stefano de Luca and Margherita Mascia

Abstract

Mobility as a Service (MaaS) is becoming a “fashionable” solution to increase 
transport users’ satisfaction and accessibility, by providing new services obtained 
by optimally integrating sustainable modes, but also guaranteeing mass transport 
and less sustainable modes, guaranteeing fast and lean access/egress to the mass 
transport. In this context, the understanding and prediction of travellers’ mode 
choices is crucial not only for the effective management of multimodal trans-
port networks, but also successful implementation of new transport schemes. 
Traditional studies on mode choices typically treat travellers’ decision-making 
processes as planned behaviour. However, this approach is now challenged by the 
widely distributed, multi-sourced, and heterogeneous travel information made 
available in real time through information and communication technologies (ICT), 
especially in the presence of a variety of available mode options in dense urban 
areas. Some of the real-time factors that affect mode choices include availability 
of shared vehicles, real-time passenger information, unexpected disruptions, and 
weather. These real-time factors are insufficiently captured by existing mode choice 
models. This chapter aims to propose an introduction to MaaS, a literature review 
on mode choice paradigms, then it proposes a novel behavioural concept referred 
to as the hypermode. It will be illustrated a two-level mode choice decision archi-
tecture, which captures the influence of real-time events and travellers’ adaptive 
behaviour. A pilot survey shows the relevance of some real-time factors, and cor-
roborates the hypothesized adaptive mode choice behaviour in both recurrent and 
occasional trip scenarios.

Keywords: Mobility as a Service, mode choice, urban transport, Intelligent 
transportation systems

1. Introduction

MaaS can be considered as a tool to improve users’ mobility and, as stated by 
[1, 2] “MaaS provides an alternative way to move more people and goods in a way 
that is faster, cleaner, and less expensive than current options”. In particular, also 
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according to [1], “MaaS is a user-centric, intelligent mobility distribution model 
in which all mobility service providers’ offerings are aggregated by a sole mobility 
provider, the MaaS provider and supplied to users through a single digital platform”.

Overall, MaaS application allows to optimize a trip for transit factors such as 
convenience, carbon emissions, and reliability. In general, the following virtuous 
impacts may be associated to MaaS concept:

1. reducing car ownership, the use of personally owned modes, car use, energy 
consumption and pollution;

2. increasing accessibility, equity, welfare;

3. pursuing the system optimum.

Currently, MaaS services have been implemented in several countries such as 
Germany (MOOVEL, Qixxit, BeMobility, HannoverMobil), Netherlands (Mobility 
Mixx, NS-Business card, Radiuz Total Mobility), Finland (WHIM, Tuup), Sweden 
(UBIGO), France (EMMA, Optymod), Austria (Smile, WienMobil lab), USA 
(SHIFT) and Singapore.

A list of key fundamentals to support such a virtuous MaaS ecosystem is 
reported by the Maas Alliance, a public-private partnership established in 2015 by 
the UE encouraging and catalyzing pilot projects. Moreover, several contribution 
give interesting insights, such as [3, 4].

Importantly, the MaaS Alliance, in the White Paper [5], states that: “due to eco-
logical and capacity advantages, the traditional modes of public transport, like bus, 
tram and metro/underground, should remain as the backbone of MaaS in urban 
areas”. On the other hand, the integration of traditional modes of public transport 
with other faster, cheap and continuous services can provide new lifeblood and a 
new look to public transport and can be the key solution to aid sustainable modes of 
transport [6].

Unfortunately, if the vision of what MaaS should be is clear, the real challenge 
is what MaaS could become if its development completely relies on private opera-
tors. [7] reported that the main risk of a purely commercial approach to MaaS is to 
disincentivize sustainable trips, stating that “The success in some markets of new 
services, including apps for private-hire vehicles and ride-sharing, clearly has the 
potential to disrupt existing urban mobility services and could also encourage a 
shift towards car use away from more sustainable modes.” Therefore, in the same 
study it has been concluded that “City and regional authorities need to be involved 
in the development of policy around MaaS at EU and national level, through new 
models of governance and with public sector leadership, to avoid environmental, 
economic and social dysfunctions.”

According to the four workshops organized for the MAASiFiE project to define a 
European 2025 MaaS roadmap, the policy & regulation between public and private 
participants is seen as the most significant driver for MaaS development [8]. Along 
the same line, the Maas Alliance recognizes that a limited regulation can compro-
mise the way MaaS applications impact on urban environment and compromise the 
public interest (e. g. decrease congestion, pollution, etc.).

However, if the problem is clear the solution is not so easy to find. One step 
forward was taken by the Finnish government adopting in April 2017 the Act on 
Transport Services (also known as Transport Code), the first known regulatory 
effort on this matter. However, the Code main aim is to boost the establishment of 
requirements for MaaS services (integration, interoperability, etc.) and the avail-
ability of data [9].
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In addition, starting from the vision of how MaaS should work, a great effort 
need to be used in proposing models and methodologies enabling such working.

MaaS platform should be supported by a simulation environment which, starting 
from historical and observed data, should be able to reproduce the actual state of the 
multi-modal transportation system and forecast the future states. This is strictly needed 
to “offer” updated, reliable and personalized MaaS solutions to the users. Current 
platforms rely on simplified hypotheses on users’ travel behavior models, on transport 
system simulation models and on the short-midterm traffic forecasting models.

Summarizing, the following drawbacks seem to characterize MaaS 
implementation:

• MaaS development is mainly driven by private operators; hence, they are 
mainly developed as business solutions in an open market, where different 
competitors offer their services, without a clear regulatory framework and 
without a clear vertical/horizontal integration.

• Uncertainty about the way decision makers and governmental agencies may 
push towards specific, system-oriented transportation planning strategy due to 
the lack of a clear regulatory framework.

• MaaS platforms do not rely on consistent and reliable modelling framework 
able to forecast future system state and consistently modify their offer.

• Existing analyses have not clearly demonstrated the environmental and social 
sustainability of a MaaS service.

It is, therefore, important to preliminarily define the conceptual framework 
in which any MasS service should be figure out. To this aim, five pillars can be 
identified.

i. MaaS service should be an open market but regulated by decision makers/
governmental agencies and characterized by a specific and organized regula-
tory framework;

ii. the traditional modes of public transport, like bus, tram and metro/under-
ground, should remain as the backbone of MaaS in urban areas;

iii. MaaS service should guarantee sustainability and equity and lead toward a 
car-free transportation system;

iv. MaaS service should offer a smart integration of single-step transport modes 
offered by different providers;

v. MaaS service should be intrinsically dynamic adapting its characteristics to 
the day-to-day and the en-route travel needs.

In this context, MaaS requires the ability to model mobility and travel choices. 
The issue is not trivial especially for travel choices [10]. First, it is necessary to 
model individual choices, secondly, both predictive and adaptive choices must be 
considered and third, the intrinsic dynamic of the choice behavior must be explic-
itly considered.

Indeed, the understanding and quantification of travellers’ mode choices is 
crucial for the prediction and management of multimodal traffic networks, and 
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have become an important field of inquiry in cross-disciplinary research span-
ning transport engineering, computing, mathematics, psychology, and social and 
behavioural sciences.

The underlying assumption of most existing studies on travel mode choice is that 
a traveller chooses a specific mode before commencing his/her trip, which is catego-
rized as planned behaviour. However, some studies have identified and demonstrated 
the influence of real-time events on mode choices,1 particularly for travellers using 
public transport; some examples include real-time passenger information, weather, 
and transport disruptions [11–13]. These real-time events may lead travellers to assess 
various modes in an adaptive way to the extent that the aforementioned planned 
behaviour plays a less significant role in the final outcome of the mode choices.

This chapter aims to give a literature overview of the existing approaches, the aims 
to propose an adaptive mode choice behaviour paradigm which takes into account 
real-time events, and provides an empirical validation of this mode choice paradigm. 
The real-time events include, but not limited to, availability of shared bikes at the 
docking station, real-time information on bus arrival time, scheduled or unexpected 
local disruptions, and weather conditions. This research is an important undertaking 
as it not only identifies a set of new factors that influence mode choices, but also pres-
ents a novel framework to study mode choice behaviour. This behavioural paradigm 
may pose interesting challenges from a modelling perspective and may require an 
integrated modelling approach for both mode choice and traffic assignment to fully 
capture the adaptive behaviour. The latter statement stems from the observation that 
many real-time factors identified above have a dynamic and stochastic nature that is 
related to the evolution of the system (e.g. the dynamic network loading).

The main contribution made by this paper includes:

• A novel adaptive mode choice behavioural paradigm able to incorporate 
real-time events (both pre-trip and en-route), which advances state-of-the-art 
modelling approaches that mostly rely on static attributes and simulate mode 
choices as planned behaviour.

• A pilot survey that shows the viability and validity of the adaptive mode choice 
behaviour for real-world scenarios, where a number of mode options and 
real-time events are defined and combined to analyse user responses under 
different circumstances.

The rest of this chapter is organized as follows. Section 2 provides an extensive 
review of state-of-the-art mode choice approaches. In Section 3 the bi-level mode 
choice behaviour paradigm that explicitly accounts for real-time events is proposed. 
A real-world scenario pertaining to the hypothesized adaptive behaviour is intro-
duced in Section 4, which also presents the pilot survey study, which assesses the 
behavioural validity of this new concept at a qualitative level, and discusses the sur-
vey results. Section 5 introduces some remarks on the main issues of MAAS and the 
research perspectives regarding the proposed interpretative hypermode paradigm.

2. Literature review

In general, travel mode choices may be updated between different periods of time 
(period-to-period) or within the same trip (within-day). In the period-to-period 
choice process all the available transport modes are considered. Users have the option 

1 Throughout this paper, real-time information is treated as a special case of real-time events.
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to choose among the available modes and their decision-making processes converge 
towards a stable choice that, once reached, can be considered as habitual.

Almost the totality of the existing scientific contributions assume that travellers 
choose their mode of transport through a one-step decision as a planned behavior, only 
few exceptions explore the alternatives. In particular, travellers’ mode choices are usu-
ally reported to be habitual in several travel behaviour studies [14–16]. In general, hab-
its depend on the perception and preference towards a travel mode and it can hardly 
be modified. As a matter of fact, it is a common approach to investigate and model 
the habitual behaviour (holding behaviour), and neglect the dynamic element of the 
choice process. Within this framework, the mode choice analysis may depend on the 
different interpretative paradigms that can be assumed for modelling travel demand:

a. Trip-based. It implicitly assumes that the choices relating to each origin– 
destination trip are made independently of the choices for other trips within 
the same and other journeys.

b. Trip chaining. It assumes that the choices concerning the entire journey influ-
ence each other. In this case, the choice of an intermediate destination, if any, 
takes into account the preceding or following destinations in the trip chain; the 
choice of transport modes takes into account the whole sequence of trips in the 
chain, and so on.

c. Activity-based. It analyses transport demand as the outcome of the need to 
participate in different activities in different places and at different times. It 
therefore takes into account the relationships among different journeys made 
by the same person during the day and, in the most general case, between 
journeys made by the various members of the same household.

The trip-based paradigm is the most widely adopted, and relies on a consolidated 
theoretical literature [17] and operational literature, which has predominantly inves-
tigated mono-modal transport systems competing with each other (e.g. [18–34]).

Minor attention, yet increasing in the last years, has been paid to individuals’ 
preferences in multi-modal networks where different transport modes are inte-
grated and a possible choice alternative is a combination of them (e.g. [22, 35–40]). 
Nevertheless, it should be noted that most of them consider public or private 
transport modes separately or, consider integrated transport modes, for instance 
when combined with park-and-ride. More Recently, [41] attempt to model the full 
range of choice options in multimodal network settings using a stated preferences 
approach, and approach the problem as a route choice problem. But they only 
investigate pre-trip choices.

Trip-chain and activity-based paradigms model pre-trip behaviour in a more 
realistic behavioural context, hence may allow a better interpretation and simula-
tion of the travellers’ mode choices. However, they are usually rather complex for 
calibration and implementation. Some examples include:

i. mode and departure time [41, 42];

ii. trip chain [42–47]

iii. activity-based [32, 46–50];

Among the pre-trip choice paradigms, pre-trip switching approaches have also 
been developed to understand and simulate potential modal shift (e.g. [51–56]). 
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Finally, different attempts have also been made to model an habitual behaviour 
(holding decision), but taking into account temporal correlation for the same user, 
thereby showing how tastes can vary for the same traveller using short-term cross-
sectional data [57–59].

The pre-trip and habitual choices have been extensively investigated in the lit-
erature; however, some scholars have also dealt with the explicit simulation of mode 
choice dynamics with regard to both short- or long-term scenarios. In particular, 
[60–63] study short-term mode choice dynamics using discrete choice method 
and panel data. With regard to long-term mode choice dynamics, [64] investigate 
commuting behavior within the traditional maximum utility framework, whereas 
alternative approaches have tried to take into account more complex behavioural 
determinants and processes such as habits and learning. In particular, [65] derived 
decision rules based on neural networks to predict activity scheduling and mode 
choice; [66] developed a computational process model to mimic travel decision-
making process; [67] developed an agent-based process to simulate travel behavior 
in terms of information acquisition, learning, adaptation and decision heuristics. 
Recently, the Markov chain approach has been fruitfully adopted to model and 
interpret the decision-making process [32, 68–72].

With regard to the within-day travel mode choice behavior, it can be assumed that 
a typical traveller chooses a transport mode (or a combination of transport modes) 
and may change his/her initial choice by switching to other modes before leaving 
the origin and/or during the trip. Obviously, such behaviour is reasonable only in a 
multi-modal or inter-modal context. On the one hand not many contributions can be 
founded in the literature; on the other hand the landscape of available mode options 
is evolving particularly at the urban level. Multi-modal networks are rapidly growing, 
and a new generation of mobile, personalised information systems and intelligent 
transport systems are ready to support this flexible and adaptive behaviour by provid-
ing assistance in the planning and implementation of multimodal trips [73].

As a matter of fact, an increasing number of users may reconsider their initial 
travel choices. However, not many contributions can be found in literature. From 
a psychological viewpoint, the study undertaken by [74] considers a two-level 
approach to simulate the mode choice. At the first level (more related to the person) 
the authors apply the comprehensive action determination model, which assumes 
that intentional processes, habitual processes, and normative processes lead to a 
certain level of propensity to use the private car. The second level of choice (more 
related to the trip) is characterized by situational influences, where trip purpose, 
disruptions on public transport, and weather are identified as predictors. The 
authors conclude that the multi-level approach is a promising alternative to con-
ventional models. These insights from the field of psychology are valuable for the 
correct interpretation of the decision-making processes of travellers, and will be 
considered in the hypermode approach proposed in this paper.

Different contributions have analysed mode choice as a sort of path choice in a 
broader context of a multimodal network [49, 75–77], by considering interconnected 
networks, one for each different transport mode. Such an issue has been addressed in 
a multi-modal context through the well-established supernetworks [78, 79]. However, 
such an approach has been mainly adopted/used for modelling elastic demand assign-
ment problems; it is not very flexible to address possible adaptive behaviour.

Contribution by [80] take the mode availability into consideration, but mainly 
from an assignment perspective as both model the user decision to change mode 
at each node. In [81] each option (mode and route) is associated with a probability 
of immediate availability, which is one for private modes and less than one for 
public transport, the latter being a specific value affected by service frequency. The 
author therefore revised the transit assignment problem by taking into account 
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mode availability at each node, which represents a decision point for the users. The 
proposed assignment model entails sequential choices at each intermediate node 
in the multimodal network and seeks an equilibrium. [80] proposes the strategy 
of adaptive multimodal least expected time in order to determine the hyperpath 
associated with the least cost in a multimodal network. In addition to the modes of 
walking and driving, each public transport line is considered a separate mode. The 
authors consider a delay associated with the transfer between modes, and model 
the users’ capability to reassess the costs at each node and determinate if switching 
mode may be a better option. However, the assessment of switching from one mode 
to another is merely based on time as this is a reasonable assumption for assignment 
algorithms, but it is not sufficient to capture the decision making process at the 
mode choice level. Moreover, users are quite reluctant to have too many transfers 
and reassess all mode options at every en-route node unless a disruption occurs.

In conclusion, mode choice behaviour may rely on an extensive scientific 
literature, but it predominantly deals with habitual behaviour including pre-trip 
behaviour, pre-trip switching behaviour or travellers’ behaviour at specific nodes 
of the transportation network. Most of the existing efforts have been focused on 
multi-modal networks in which different transit modes are connected or in which 
individual transport modes (car, motorbike, cycling) and collective transit modes 
may interact with each other (Park and Ride). However, the choice contexts are 
always pre-trip and not much can be found with regard to multimodal contexts in 
which the transport mode can be changed during the trip (transit alternatives and 
shared modes). For example, the introduction of shared modes (car/motorbike/
bike-sharing) and their integration with the various existing transit systems lead 
to a significant flexibility that cannot be neglected. Instead, they should be care-
fully analysed and interpreted with behavioural paradigms that are different from 
the traditional ones. Furthermore, the literature suggests that weather conditions 
have the potential to influence mode choices [12, 82], and that there is a lack of 
comprehensive evaluation of costs, time and service quality in multimodal travel 
choice [41].

In conclusion, this paper focuses on the decision making process that leads users 
to take a specific mode in the presence of different mode options and real-time 
information/events. The proposed novel mode choice paradigm satisfies the follow-
ing requirements:

• it captures a more realistic mode choice behaviour, which is influenced by real-
time events, building on the multi-level approach proposed in the psychology 
field by [74];

• it is able to subsume planned behaviour as a special case, which addresses 
travellers whose mode choices are not adaptive; this is particularly true for 
travellers who use their own vehicles (private cars and bikes);

• it is validated with a pilot study through a preliminary qualitative survey to 
demonstrate the validity of the approach.

3. The hypermode concept

Currently, mode choice is considered a planned behavior and is embedded 
within traffic assignment procedures only in a static context [83], which obviously 
does not capture the influence of any real-time events. With regard to dynamic 
modelling, mode choice is usually considered a fully pre-trip behavior. This paper 
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investigates an adaptive mode choice behaviour and presents the results of an 
empirical study undertaken to validate the approach. It focuses on the potential 
effects of real-time events on both pre-trip and en-route mode choices.

For reason that will become clear below, this adaptive mode choice will be 
hereafter called “hypermode”, in analogy to the hyperpath concept proposed for 
the route choice in transit assignment [84]. The hyperpath approach suggests that 
travellers first identify a set of attractive lines that connect their origin–destination 
(O-D) pair; then they choose a specific service according to certain strategies. Such 
strategies can be based on the minimization of travel time, waiting time, walking 
distance, or the number of transfers A more complex strategy can also consider the 
influence of real-time information on path choices [85, 86]. In an analogous way, 
the hypermode concept stipulates that travellers identify a set of feasible modes for 
their target trip and may make their final decisions later based on real-time events. 
These adaptive mode choices have been recently facilitated by the development 
of Information and Communication Technologies (ICT) such as smartphones, as 
well as Intelligent Transport Systems (ITS) such as vehicle tracking and prediction. 
For example, travellers can now make informed mode choices based on estimated 
time of arrival of buses/trains/trams, or the availability of shared bikes at any given 
docking station. Such adaptive travel behaviour is suitable for dense urban areas, 
where plenty of mode options and access points are available to travellers, and 
walking is always an option especially for short trips. Given that 50% of the trips 
in urban areas in Europe are shorter than 5 km [87], the hypermode concept enjoys 
wide empirical support. This extra modelling dimension could lead to a significant 
yet challenging advancement in the modelling of multimodal transport networks.

This section illustrates this notion by proposing a conceptual analytical frame-
work along with a few examples.

3.1 Decision-making architecture

In this section, we formally introduce the hypermode concept, which is analogous 
to the hyperpath concept proposed for the route choice in public transit assign-
ment [84]. The hyperpath approach suggests that a traveller first identifies a set 
of attractive lines that connect the origin–destination (O-D) pairs. Then, he/she 
chooses a specific service according to a certain strategy, which can be based on the 
minimization of travel/waiting time, amount of walking, or number of transfers. 
A more sophisticated strategy can also take into account the influence of real-time 
information on path choices [86]. In an analogous way, the hypermode concept 
stipulates that travellers identify a set of feasible modes for their target trip and may 
later make their final decisions based on real-time events. These adaptive mode 
choices have been recently facilitated by the development of Intelligent Transport 
Systems (ITS), and Information and Communication Technologies (ICT).

The underpinning decision making process involved in the hypermode concept 
is articulated in two levels.

1. The user identifies a set of feasible travel modes for the trip, which are acces-
sible at the same physical location or nearby. On this level, the decision making 
is strategic (i.e. not real-time), and is affected by static characteristics such 
as user preferences, socio-economic characteristics, average/historical travel 
times, and financial costs of using different modes.

2. Right before a trip is made, the user evaluates real-time events in order to select 
a specific mode of transport from the aforementioned feasible set. The real-
time event includes but is not limited to: availability of vehicles (relevant to 
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shared modes), weather conditions (relevant to walking and biking), vehicle 
arrival time information (relevant to scheduled or unscheduled public trans-
port), and disruption or crowdedness.

This adaptive behaviour can occur at the following different stages of the trip:

• The user has not yet left the origin and has a set of modes in mind that could 
bring him/her to the destination with acceptable time and cost. Just before 
leaving the origin the user reassesses these modes based on real-time events 
such as weather, real-time bus information and so forth, which may influence 
the user’s the final choice of mode within the feasible set.

• The user has just left the origin with a specific mode in mind (e.g. tube). He/
she then approaches a tube station and notices a disruption or heavy crowding, 
hence immediately considers another mode from the feasible set.

• The user has chosen an access point, which is a specific location where he/she 
can access several modes that can all serve the trip. The user approaches the 
access point and then chooses a specific mode based on a combination of his/
her preferences (e.g. first coming/least walking/least transfers) and real-
time events.

The extent to which the real-time events affect the mode choices varies among 
individuals. For example, some users may take their preferred modes in any 
circumstance. This is particular the case for travellers who use their own vehicles, 
such as private cars or bikes (cyclists who use their own bikes usually stick to 
the same mode in case of very adverse weather conditions). Such behaviour is 
referred to as planned in this paper since it is not adaptive, and only involves the 
first level of the decision making process. Such planned behaviour can be sub-
sumed by the proposed two-level decision making paradigm, as it is a special case 
with decision parameters on the second level being rigid and non-responsive to 
real-time events.

3.2 Factors affecting adaptive mode choices

Table 1 illustrates the proposed approach and a non-exhaustive list of factors 
affecting choice probabilities on the two choice levels.

The realization of a specific mode choice is therefore the consequence of the 
mode first belonging to the feasible set (choice level 1), and then actually chosen 
within such set with given real-time events (choice level 2).

Figure 1 illustrates, in further detail, individual components of the decision 
making processes with inputs and outputs of the two levels of choices.

Any of the traditional mode choice models can be applied to calculate the prob-
ability at the first level. Once the probabilities of all possible modes are calculated, 
the set of feasible modes can be formed, which is a quite standard procedure and 
thus omitted here. In the second level of the decision making process, the feasible 
modes are subject to re-interpretation and their probabilities are reassessed based 
on real-time events. For example, if walking is the preferred mode with the highest 
probability at the first level, and the weather is rainy in real time, the probability 
associated with walking decreases.

The whole procedure may be easily formalized in a compact formulation coher-
ent with existing assignment models, thus may be implemented for simulation any 
transportation system (see technical report [88]).
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4. Real-world case study

The hypermode concept is illustrated here using a real-world example. The area 
of interest is part of South Kensington in London.

As shown in Figure 2, a traveller starts his trip in O (origin) and wishes to reach 
the destination D. Before leaving the origin, the user has a set of feasible modes 
he would consider, namely bus, tube, bike-sharing, and walking, which are all 
accessible in the vicinity of the origin. These feasible modes are ranked by the user 
according to his/her own preferences, which are static in nature. For example, 
the traveller may consider cycling as unsafe, thus bike-sharing may receive a low 
rank or even is excluded from the feasible set. Moreover, the traveller usually has a 

Figure 1. 
Flow chart representation of the hypermode concept.

Level of choice Factors affecting choice probability

(1): Feasible set Probability of each mode to belong to the feasible mode set depends on:

• Socio-economic characteristics (age, gender, income, etc.)

• Health and/or environmental concern

• Financial cost

• Average travel time

• Number of transfers

(2): Final mode choice Choice probability of a specific mode depends on:

• Real-time arrival time (bus, train)

• Vehicle availability (bike-sharing, car club)

• Weather (walking, cycling)

• Disruptions and crowdedness (bus/train/tube stations)

Table 1. 
The two choice levels and influencing factors in the hypermode approach.
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preferred mode within the feasible set, which is likely to be the one he/she pursues 
at the first attempt. If this preferred mode is not viable given real-time conditions 
(e.g. no shared bike is available, or the weather is unsuitable for walking), then the 
probability of selecting that mode decreases and the user will consider other modes 
in the feasible set.

Based on Figure 2, we describe the following specific scenarios, which are 
examples of potential adaptive behaviour.

• The user includes walking and bus in his feasible mode set. He prefers to 
take the no.360 bus at the closest bus stop towards the destination. When he 
reaches the bus stop, he sees on the digital display board that the next bus will 
arrive in 10 minutes. Rather than waiting at the bus stop, he switches to walk-
ing knowing that the total travel time would be similar (notice that the waking 
route in this case differs from the one shown in Figure 2).

• The user, who eliminates the possibility of walking due to physical conditions, 
may have bus and tube in his feasible set with bus being the preferred option. 
Before leaving the origin, he checks his cell phone and finds out the estimated 
waiting time for the bus is 10 minutes. He then prefers to take the tube at the 
South Kensington Station instead of waiting for the bus.

• The user has walking, tube and bike-sharing in his feasible set with cycling 
being the preferred option. He approaches the nearest docking station and 
cannot find any available bike. In this case he decides to walk or take the tube, 
depending on which one ranks higher, instead of looking for other docking 
stations nearby.

• The user has walking and bus in his feasible set, with walking being his 
preferred option. He is about to leave the origin when it starts raining. He then 
chooses to take a bus instead.

Figure 2. 
The study area in South Kensington, with available modes and routes shown.
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All of these illustrative examples have one thing in common: The pre-defined 
feasible modes are re-interpreted and re-ranked with the influence of real-time 
information, which is dynamic and stochastic in nature. This highlights the key 
difference between the traditional mode choice model and the adaptive behaviour 
that we try to demonstrate.

Note that it is possible that the repetitive occurring of a negative real-time event 
on a day-to-day basis may lead to the exclusion of a mode from the feasible set. 
For example, if a user constantly finds the bike-sharing station empty, he/she may 
exclude bike-sharing as one of the feasible modes in his/her planned behaviour. 
This, however, does not contradict the mode choice behaviour that we propose here. 
In fact, it still falls within the scope of the proposed two-stage decision-making 
process, i.e. in the forming of feasible mode choice set (see Level 1 of Figure 1). In 
most cases, the feasible mode set contains more than one element, and the realiza-
tion of a particular mode choice (or sequence of mode choices) must thus rely on 
real-time events.

To further support the relevance and likelihood of such adaptive behaviours, we 
conduct a qualitative survey to validate the behavioural soundness of this subject, as 
described in Section 4.1.

4.1 Survey study

A pilot survey has been undertaken to explore the validity of the underpinning 
idea of the proposed hypermode concept. 50 respondents have been interviewed at 
Imperial College London. The sample includes academic, technicians and adminis-
trative staff as well as students, to ensure that behaviour in different user categories 
is captured. The respondents have been interviewed face-to-face to ensure an 
in-depth and comprehensive grasp of their decision-making processes.

4.2 Survey design

The respondents were presented with two different scenarios:
SCENARIO 1. The regular commuting trip home from the College at the end 

of the day, which is a Revealed Preference scenario. The origin is the same for all 
respondents but the destinations vary, with some at walking distance and others 
outside of London.

SCENARIO 2. A hypothetical trip from the College to Sloane Square (a shopping 
destination 2.1 km away from the origin) at the end of the working day. This is a 
Stated Preference scenario.

In the first scenario the respondent is asked what modes are available for his/her 
trip. An open question is then asked to describe the decision making process that 
shortlists the possible mode options or leads to a specific mode choice. Afterwards 
they are asked if any of the following real-time events may affect their final 
mode choice:

1. Real-time bus arrival time

2. Bike availability at docking stations for bike-sharing service

3. Disruptions on the tube

4. Weather

5. Other, specify.



13

Adaptive Travel Mode Choice in the Era of Mobility as a Service (MaaS): Literature Review…
DOI: http://dx.doi.org/10.5772/intechopen.98432

If the respondent’s explanation of the decision making process at the open 
question is in line with the adaptive behaviour, as confirmed by answering “yes” 
to any of the above real-time events (1 to 4), then this user behaviour is related to 
hypermode.

In the Stated Preference scenario (Scenario 2) the modes available to the 
user are the same as those shown in Figure 2 (with possibly different routes and 
access points), and are associated with given average costs and travel times. The 
user is asked what would his preferred mode option be in the described scenario. 
Depending on the preferred mode, a range of real-time events are presented to the 
respondent, which may lead him/her to reassess the original choice. For example, 
Table 2 shows the situation presented to the respondent who selects bus as the 
preferred mode.

Two different types of trips are considered:

• Leisure (e.g. shopping, visiting friends)

• Important appointment, (on-time arrival is needed)

Since trip purpose is likely to be an influencing factor of mode choice.
Real-time events relevant to other preferred modes are also included in the 

survey; a few examples are provided below.

• Availability of bike at the docking station if the user chooses bike sharing;

• Wet weather if the user chooses walking;

• Disruptions on the tube once the user reaches the tube station.

The key point for Scenario 2 is to understand if the user would either consider 
alternative transport modes in a specific situation or stick to the initial mode 
preference regardless of any real-time events. In the first case the user is associated 
with the hypermode behaviour. In Scenario 2 both the origin and destination are 
located in central London, which is not necessary true in Scenario 1. This could have 

Preferred mode Bus

Real-time event You arrive at the bus stop and the information system says that your bus 

will arrive in 12 minutes.

Purpose of trip Leisure (e.g. shopping) Appointment 

(on-time arrival 

is crucial)

What do you do?

Wait for the bus even if 

you may arrive later than 

expected

Use the 12 minutes for other 

errands and then go back to 

the bus stop

Consider alternative buses

Consider alternative modes

Table 2. 
Survey scenarios for the bus.
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potentially influenced the results as more mode options are available to reach the 
destinations in Scenario 2, while in the first scenario the users with destination far 
away may have quite limited mode choices. To avoid potential bias, in Scenario 1 the 
respondents with destination outside of London are asked to consider the trip from 
the College to the station in central London from which they take a train; this allows 
plenty of mode options to be available to all users.

4.3 Survey results

Some characteristics of the sample respondents are reported in Table 3.
Table 4 shows the percentages of respondents associated with the hypermode 

behaviour. We also use the sample size (50) to calculate the 95% binomial propor-
tion confidence interval. Here, the category “Either scenario” accounts for those 
who show the hypermode behaviour in either Scenarios 1 or 2.

The results of this exploratory survey show that the vast majority of the respon-
dents follow an adaptive behaviour, which is in line with the hypermode concept. In 
the first scenario, 34% of the respondents consider initially a set of feasible modes for 
their trips, and their final mode choices are determined/affected by real-time events.

In the second scenario, 86% of the respondents indicate that they would con-
sider alternative modes once adverse real-time events occur. This result refers to the 
overall responses for the two travel purposes (leisure/appointment) (i.e. respon-
dents who consider alternative modes for at least one of the two travel purposes are 
associated with hypermode). The analysis of the responses for each travel purpose 
indicates that:

• [Leisure] 60% of the respondents re-assess the available modes in the presence 
of adverse real-time events.

• [Appointment] 82% of the respondents re-assess the available modes in the 
presence of adverse real-time events.

This difference is easily understandable as the urge to reach the destination on 
time offers another motivation to reconsider other modes and justifies the associ-
ated effort.

A more detailed analysis of Scenario 2 identifies the pattern of mode switches 
under the two different trip purposes. The results are reported in Table 5.

Scenario 1 Scenario 2 Either scenario

Average percentage 34% 86% 92%

Confidence interval [21%, 49%] [73%, 94%] [81%, 98%]

Table 4. 
Survey results with 95% confidence levels for the hypermode behaviour. Sample size: 50.

Age of respondents Gender of respondents

N respondent 18–25 24% N female respondent 38%

N respondent 26–44 48% N male respondent 62%

N respondent 45–64 28%

Table 3. 
Age and gender of respondents.
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The adaptive behaviour is more evident in Scenario 2. This may be explained by 
the fact that the respondents were referring to their regular commuting trip in the 
first scenario, and were less likely to abandon their preferred mode due to extensive 
learning of the preferred and alternative modes based on past experience. On the 
other hand, in the more hypothetical scenario (Scenario 2), the travel environment 
is new to the commuters, who might be more inclined to consider different modes 
due to the lack of experience.

The inertia in decision-making may also play a role in the sense that users may 
be inclined to stick to one specific mode of transport even though it may not appear 
to be the most rational choice at the moment. This choice behaviour is known 
as bounded rationality. In the second scenario, despite their familiarity with the 
area, the users were more prone to consider different modes, as their experience 
on specific trips is relatively limited. The adaptive behaviour is more evident when 
on-time arrival at the destination is important.

Table 5 partially illustrates the relevance of users’ adaptive behaviour to plan-
ning. In particular, it shows the percentage of travellers who abandon their initial 
(static) mode choice in reaction to real-time events. For example, when there is a 
interruption/delay of tube service, 39% of travellers will switch to other modes, 
possibly at nearby access points. Such information is crucial for planning service 
interruption at tube stations (such as scheduled maintenance or train operation): 
the planner need to take into account the increase in demand for other modes in the 
vicinity of the tube station to avoid heavy congestion and/or shortage of supplies.

5. Conclusions

5.1 Remarks on MaaS

Many researchers and stakeholders of the transport sector see Mobility as a 
Service (MaaS) as the mobility of the future. However, a lot of uncertainty lye 
under this travel solution. The same first statement is actually uncertain, consider-
ing that it depends on MaaS diffusion, which in turn depends on the adopted busi-
ness model, on its financial convenience and on the membership rate, which in turn 
depend on what kind of services are offered, their level of service and their price. 
On the other hand, first MaaS applications have not helped to clarify the financial 
convenience of a MaaS.

Furthermore, MaaS is also generally associated with many virtuos impacts 
which can be sinthesized by saying that it goes in the direction of a sustainable 
mobility, by aiding and supporting intermodality. However, also this statement 
is not clearly confirmed by the literature. In fact, put different services in the 

Mode initially considered % of switches (Leisure) % of switches (Appointment)

Walking 50% 41%

Tube 37% 39%

Bus 13% 17%

Bike-sharing 0% 2%

Cycling 0% 0

Taxi 0% 0

Table 5. 
Mode switches in Scenario 2.
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same market place does not suffice to guarantee intermodality: who chooses the 
service/services to offer to the users? Instead, the literature agrees that if MaaS 
is developed according to a purely commercial approach, there is a serious risk 
to dis-incentivize sustainable trips, encouraging instead a shift towards car use. 
Hence, the literature also agrees on the need of regional authorities to lead MaaS 
development through new models of governance. However, the way this result can 
be achieved is not clear.

Consistently with these premises, one of the main necessary research perspec-
tive is to investigate and identify possible regulatory frameworks, MaaS schemes 
and approaches for bidding/tendering the services enabling the public entity to rule 
the MaaS.

In addition, the way MaaS should work is clear in the literature, but models 
and methodologies enabling such working are very complex and largely new with 
respect to the approaches currently used in transportation system modelling.

From the demand side, new approaches are needed to profile users coupling with 
MaaS requirements and involving also psychological and social science. Moreover, 
new approaches are needed for the modelling of individual choices, considering the 
intrinsic dynamicity of the MaaS system and including the effect of service reliabil-
ity and of the provided information.

From the supply side, new modelling framework are needed to integrate contin-
uous and discontinuous services, to deal with diffused/distributed inter-modality 
and with dynamically changing conditions and unpredicted temporary disruptions 
of the service.

5.2 Remarks on the Hypermode paradigm

The widespread of real-time travel information combined with the presence 
of a variety of travel modes available in dense urban areas could lead travellers to 
reconsider their planned mode choices based on real-time events, such as real-
time passenger information, transport disruptions, overcrowdings, and weather. 
However, most existing mode choice studies analyse the decision process as planned 
behaviour, and hence do not capture the influence of these real-time events on 
mode choices.

This paper aims to address this limitation by presenting an innovative approach 
to interpret mode choice, which captures an adaptive behaviour of travellers. The 
underpinning assumption is that the traveller first identifies a set of feasible modes 
that connect his/her origin to the destination; then he/she evaluates the real-time 
situation in order to select a specific mode of transport from the feasible set. This 
novel behaviour paradigm is referred to as hypermode in this paper, in analogous to 
the hyperpath concept used extensively in transit assignment. A two-level decision-
making process is illustrated, which rests on planned and adaptive model choice 
behaviour, respectively.

A survey has been undertaken to test the proposed approach; it demonstrates 
the validity of the underlying assumption of hypermode, and serves as a proof 
of concept. As the next step of this research, we will explore different modelling 
approaches (e.g. Nested/Mixed Logit and discrete choice model with endogenous 
attribute threshold/cut-off) along with calibration and validation methods based 
on a wide variety of data.

For future research, the hypermode concept could be explored alongside 
dynamic assignment of the multimodal network, which provides feedback to mode 
choice models in the form of real-time events. For example, the dynamic re-distri-
bution of shared bikes, as a result of multimodal traffic assignment, could affect 
the availability of bikes at docking stations and hence travellers’ mode choices. 
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