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Chapter

Application of Atomic Force 
Microscopy in Organic and 
Perovskite Photovoltaics
Chandra Shakher Pathak

Abstract

Atomic force microscopy (AFM) has become widely used technique in air, 
liquids, or vacuum to generate high-resolution topographic images of a surface 
having a nanometer-scale resolution. AFM gives the information about the 
morphology, phase composition etc. Photovoltaic materials have been attracting 
intense interest due to their performance and the morphology as well as quality of 
these materials affects their performance. AFM is now a day widely used technique 
for morphology and other electronic properties measurements at nanoscale for 
photovoltaic materials to understand their relation with device performance. This 
chapter describe the brief introduction of Kelvin probe force microscopy (KPFM) 
and conducting atomic force microscopy (CAFM) and their application in electri-
cal characterization at nanoscale of organic and perovskite photovoltaic materials.

Keywords: AFM, KPFM, CAFM, Photoconductive AFM, Nano scale, Electrical 
properties, Surface potential

1. Introduction

Scanning tunneling microscopy (STM) was first introduced in 1982 and it is 
based on tunneling of electron between the metallic tip and sample surface and 
it is limited to the study of conducting surface [1]. After four years in 1986, the 
solution of this restriction was provided by atomic force microscopy (AFM) and 
it is based on the detection of attractive or repulsive forces [2]. AFM was used 
to analyze the surface morphology and used to measure the force of interaction 
between the AFM tip and the sample. AFM consists of a sharp tip having nanome-
ter dimension which is attached to a cantilever is used to scan the sample surface. 
A laser beam focused on the cantilever which detects the bending of cantilever. 
The reflection of the laser beam is focused on photodiode detector. Deflection of 
the cantilever is monitored during the scanning and converted into surface image. 
AFM is generally operated in contact mode and tapping mode. AFM is the widely 
used tool for the characterization of materials surface at the nanoscale. AFM 
was developed to a very versatile technique by combination with other measure-
ments methods. This chapter will cover the application of electrical mode of AFM 
specifically Kelvin probe force microscopy (KPFM) and conducting atomic force 
microscopy (CAFM).
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1.1 Kelvin probe force microscopy

Lord Kelvin proposed macroscopic Kelvin probe method in 1898 to determine 
the contact potential difference (VCPD) between a metallic plate and sample [Kelvin 
L., Contact electricity of metals Phil. Mag. 1898, 46, 82–120]. Later in 1991, KPFM 
was first introduced by Nonnenmacher et al. [3]. The KPFM mode is basically two-
scan process. In the first scan topography of the surface is acquired in tapping mode 
along a single line profile. Following this, the mechanical excitation of the cantile-
ver is turned off and in the second scan this topography is retraced at a certain lift 
height (LH) above the sample surface, recording local variations in contact poten-
tial difference (CPD). During the second scan, the tip-sample distance is constant 
and it is equal to dAFM + LH, where dAFM represent the tip-sample distance during 
the topographic scan. When the AFM tip is brought close to the sample surface, the 
electrostatic force is generated and it is proportional to the difference between their 
Fermi levels. If the work functions of the sample and the tip are different, electrons 
flow from the lower work function to the higher work function material to align 
their Fermi level and the system reach in charge equilibrium condition. The vacuum 
levels of the tip and sample are not the same and the surfaces of the sample and the 
tip are charged and an apparent VCPD will form. Due to the VCPD an electrical force 
acts on the contact area and this force can be nullified by applying a DC voltage 
and it is equal to the work function difference between tip and sample. The work 
function of the sample can be calculated when the tip work function is known from 
scanning a reference sample.

1.2 Conductive atomic force microscopy

Conductive atomic force microscopy (CAFM) is usually used to analyze the local 
variations in current of the sample. The AFM controller is used for applying dc bias 
through the substrate during measurements. The CAFM tip is connected through 
a low noise current amplifier to the AFM controllers to generate the current image. 
We can collect the current–voltage (I-V) characteristics by CAFM tip which can be 
contacted randomly at various positions of sample surface and I-V characteristics 
are collected at each position.

KPFM generates 3D mapping of surface electric potential and measure the local 
work function while CAFM generates the current map. CAFM is one of the simplest 
ways of characterizing electrical properties at high resolution is by applying voltage 
between the sample and a CAFM probe. Photoconductive AFM; current mapping 
under illumination is useful for correlating high resolution current mapping with 
the photovoltaic device performance. Now a day these two modes of AFM in electri-
cal mode are widely used in all area of research; nanoelectronics field, solar cell, 
2D materials and semiconductor industries, biology etc. This chapter consists the 
collection of some published work as well as some new results.

2. Organic photovoltaics

Conducting polymers have been attracting attention after their discovery by 
Shirakawa, MacDiarmid, and Heeger in 1977, who were awarded the Nobel Prize 
in Chemistry in 2000 for the discovery of conductive polymers [4, 5]. They used 
organic polymer polyacetylenes, which is a conjugate polymer and insulator and 
increased the conductivity of polyacetylene films by several orders of magnitude 
by chemical doping [4]. In recent years, there has been lot of research activity in 
the field of polymer electronics and attracted a lot of attention because of its high 



3

Application of Atomic Force Microscopy in Organic and Perovskite Photovoltaics
DOI: http://dx.doi.org/10.5772/intechopen.98478

flexibility, light weight and solution process ability [6]. Applications of conduct-
ing polymers include organic light emitting diodes, organic thin film transistors, 
organic solar cells, actuators and sensors etc. [7–13]. AFM is usually used to mea-
sure the roughness, morphology and phase analyses of conductive polymer [13]. 
KPFM is used to measure the work function [14–20] and CAFM [18, 21, 22] used 
to measure the current of the organic solar cell materials. These two methods gives 
valuable insights in the structure and working mechanism of organic photovoltaic 
devices.

Poly(3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) is a 
well-known conducting polymer because of its high conductivity, excellent thermal 
stability, transparency, structural stability and processability [23–25]. PEDOT:PSS 
polymer is a promising candidate as a transparent electrode for optoelectronic 
devices. PEDOT is made from ethylenedioxythiophene (EDOT) monomers. 
PEDOT is insoluble in many common solvents, and it is unstable in its neutral state. 
To improve its processability, water-soluble polystyrene sulfonate (PSS), can be 
added and the addition of PSS causes it to become soluble. During the polymeriza-
tion, PSS acts as charge balancing dopant to yield PEDOT:PSS.

Figure 1 shows the height images and Figure 2 shows the surface potential 
images of PEDOT:PSS films with co-solvents (N-Methyl-2-pyrrolidone (NMP) and 
methanol (MeOH)). The average root-mean- square roughness (RMS) values were 
found in the range 3.2–5.5 nm. Pristine PEDOT:PSS film was quite smooth with a 
RMS roughness of 2.6 nm. RMS roughness values of PEDOT:PSS films increases 
after co-solvents addition. Variation in the RMS roughness after addition of co-
solvents indicates the morphological change that arises from the conformation of 
the polymer chain [16]. The estimated average work function of co-solvents doped 
PEDOT:PSS thin films range from 4.63 to 4.82 eV as compared to 4.9 eV for the 
pristine PEDOT:PSS film [16]. Work function can be calculated with the following 
Equation [16, 27].

 
φ φ−

=
−

tip sample

CPDV
e

 (1)

Figure 1. 
AFM images of PEDOT:PSS films modified with (a) 0% NMP 1% MeOH, (b) 0.1% NMP 1% MeOH,  
(c) 0.3% NMP 1%MeOH, (d) 0.5% NMP 1% MeOH, (e) 0.8% NMP 1%MeOH, and (f) 0% MeOH 0.5% 
NMP.Reproduced with permission from [16].
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where VCPD is the contact potential different measured by KPFM in volts, φtip  

andφsample  are the work functions of tip and sample in eV, respectively, while e is the 

electronic charge.
Figure 3 shows the current map of bare and NMP doped PEDOT:PSS films. 

Bare PEDOT:PSS has less current as compared to NMP doped PEDOT:PSS film as 
shown in Figure 3 [28]. This shows the reduction of more PSS from the surface for 
NMP doped PEDOT:PSS film. Hosseini et al. [22] also reported higher current for 
ethylene glycol (EG) doped PEDOT:PSS film.

Figure 4 shows topography, surface potential images and corresponding line 
profile of bare and NMP doped PEDOT:PSS films. Bare PEDOT:PSS has work func-
tion of 4.90 eV and 4.77 eV for NMP doped PEDOT:PSS film [16, 28]. Line profile 
shows the homogenous distribution of surface potential. We also showed that 
the work function was reduced with the addition of dimethyl sulfoxide (DMSO) 
solvent in PEDOT:PSS [15].

Figure 2. 
Potential images of PEDOT:PSS films modified with (a) 0% NMP 1% MeOH, (b) 0.1% NMP 1% MeOH,  
(c) 0.3% NMP 1% MeOH, (d) 0.5% NMP 1% MeOH, (e) 0.8% NMP 1% MeOH, and (f) 0% MeOH 0.5% 
NMP. Reproduced with permission from [26].

Figure 3. 
CAFM images of bare and NMP doped PEDOT:PSS films. Reproduced with permission from [28].
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3. Perovskite photovoltaic

The last 10 years has seen a new photovoltaic (PV) technology being discovered 
and developed at a rate greater than any previous energy harvesting technology with 
research fuelled by the facile, low cost large area solution processing routes avail-
able for device fabrication. These devices, known as organic–inorganic metal halide 
perovskites have certified power conversion efficiencies (PCEs) > 25% [29], compa-
rable values to the incumbent technologies but available at a fraction of the materials 
and processing costs. The perovskite thin films are typically polycrystalline ones, 
comprising microstructures such as grains and grain boundaries (GBs). Recently 
some of research groups have performed the microscopic investigation and sug-
gested that the grain boundaries (GBs) in planar perovskite solar cells have beneficial 
[30, 31]. Hence engineering of the perovskite films and the microscopic investigation 
is essential for the further improvement in the properties of perovskite photovolta-
ics. CAFM and KPFM have been widely used to characterize the local properties of 
perovskite thin films at nanoscale to see the changes in electrical properties specially 
to improve the performance and stability of perovskite photovoltaics. CAFM 
[30–37] and KPFM [32, 38–40] have been used to characterize the local properties 
of perovskite thin films. Such studies suggested that GBs have beneficial effects due 
to efficient photogenerated charge carrier separation and collection at GBs [30, 31]. 
Downward- as well as upward- band bending at GBs were reported from KPFM 
measurements, depending on the GB composition [41]. Zhao et al. [32] measured the 
photocurrent of FTO/compactTiO2/mesoporousTiO2 + CH3 NH3PbI3/CH3NH3PbI3 
film and found the photo current intensities were higher on the center of the grain 
than on the defect position, whereas the larger grain size leads to the higher photo-
current on the center. They also reported that the dark current intensities increased 
dramatically in the defect position, suggesting a high conductive character for defect 
position. Li et al. [31] fabricated CH3NH3PbI3/mTiO2/c-TiO2/FTO typical device 
and performed c-AFM measurements under steady illumination of power 14 mW/
cm2 on CH3NH3PbI3 surface from the top and showed that the photocurrent flows 
through the GBs are negligible at 0 V bias, while the major photocurrents form on 
the grains. However, with the low bias the photocurrents at the GBs become much 
higher than those of the grains. Xu et al. [35] also observed higher current near GBs 
for CH3NH3PbI3- PCBM structure under high vacuum and dark conditions.

Figure 4. 
Topography, CPD images and corresponding line profile of bare and NMP doped PEDOT:PSS films. 
Reproduced with permission from [28].
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Kutes et al. [34] performed photoconductive AFM for methylammonium lead 
iodide (CH3NH3PbI3)/c-TiO2/FTO/glass structure and the schematic diagram of the 
photoconductive (CAFM under illumination) AFMs configuration shown in  
Figure 5. They observed higher current in grains than grain boundary (GB) as 
shown in Figure 6.

Yun et al. [30] also used CAFM and KPFM technique to investigate the role of 
GBs and the schematics shown in Figure 7. They observed the higher CPD at grain 
boundary with illumination and current near GBs for CH3NH3PbI3/TiO2/FTO/glass 
heterojunction structure than in the grains as shown in Figures 8 and 9.

They found that the higher current collection near GBs is consistent with KPFM 
results, which indicates that photogenerated carriers are more efficiently separated 
and transported along the GBs. Lower CPD at the GBs under the dark condition 
implies that downward band bending is present at GBs. KPFM is widely used for 
photovoltaics to analyses the work function of perovskite materials.

We prepared the MAPI films as described by Liu et al. [42] and they dipped 
PbI2 film on CH3NH3I solution. Here we spin casted CH3NH3I in 1 ml isopropanol 
on mesoporous PbI2 film and annealed the prepared films at 70° to 110°C for 
10 minutes. Figure 10 shows the height image and current–voltage characteristics 
of CH3NH3PbI3 (MAPI) films on FTO annealed at 70°, 90° and 110° C for 10 min 
respectively. Which shows the higher grain size for 70° C annealed perovskite film 
(Figure 10a) and the current was in pA for all three samples.

After the temperature variation CAFM studies, We prepared mesoporous PbI2 
scaffolds MAPI films on FTO and annealed at 100°C were analyzed in details. 
CAFM and KPFM with and without illumination measurements were done and the 
schematics of these measurements are shown in Figure 11 and results are shown in 
Figures 12 and 13. At dark and with the illumination of 532 nm laser having inten-
sity of 0.6 W/cm2 shows homogeneous higher current near GBs. KPFM also shows 

Figure 5. 
Schematic diagram of the photoconductive AFMs configuration where the perovskite solar cell (PSC) is 
illuminated from below through a transparent-conducting cathode (FTO/glass) while measuring local 
current with a positionable conductive AFM probe anode from above. This diagram includes a 3D rendered, 
3 μm × 3 μm, topographic AFM image of a methylammonium lead triiodide (MAPbI3) thin film, along with 
a schematic cross section of the PSC containing a compact TiO2 electron transport layer reproduced with 
permission from [34].



7

Application of Atomic Force Microscopy in Organic and Perovskite Photovoltaics
DOI: http://dx.doi.org/10.5772/intechopen.98478

lower CPD value at GBs and mostly homogeneous mapping which are consistent 
with the results by Yun et al. [30]. Here we illuminated the sample from glass side 
not from the top (perovskite) side.

Figure 13 shows the topography and surface potential images and line profile of 
the perovskite films under illumination. The change in the CPD value reflects the 
change in the work function of the perovskite surface. Charge generation occurs 
significantly in GBs and the higher photocurrent near GBs suggests that GBs acts as 
channels for current flow than strong recombination centers. As we know that the 
higher number of defects are present at the grain boundaries which will increase 

Figure 6. 
Two-dimensional images of 3 μm × 3 μm region of a MAPbI3 thin film (same magnification): (a) topography, 
(b) dark Isc, and (c) Isc under 0.07 W.cm − 2 illumination. (d) Three-dimensional representation of 
the topography, overlaid by the illuminated Isc color contrast collected over the same area, revealing the 
microstructure-specific response. Same current scale for (c,d). Reproduced with permission from [34].

Figure 7. 
Schematics of the (a) KPFM and (b) C-AFM set up. Relevant vacuum energy levels (in eV) for corresponding 
materials are indicated. Reproduced with permission from [30].
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the non-radiative recombination of electrons and holes. The charge accumulation 
or depletion between grains and GBs may cause band bending, which induces the 
charge carrier separation. Hence the investigation of electronic properties at grain 
boundaries is crucial. KPFM has been used to determine the surface potential at 

Figure 8. 
KPFM measurements performed on a CH3NH3PbI3/TiO2/FTO/glass structure over an area of 3 μm2.  
(a) Topography map and (b) CPD images taken in the dark. (c − e) CPD maps under various laser 
illumination intensities at a wavelength of 500 nm. (f) Intensity dependence of CPD of the sample at a 
wavelength of 500 nm as measured by KPFM. Reproduced with permission from [30].
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Figure 9. 
CAFM measurements performed on a CH3NH3PbI3/TiO2/FTO/glass structure over an area of 5 μm2.  
(a) Topographic image and (b) current image are taken in the dark at 0 V. current images (c) under 
illumination at 0 V and (d) under illumination at 0.3 V. insets in panels b − d are overlap of corresponding 
CAFM maps and a topography map of the region with a white outline in panel a. wavelength and intensity of 
the illumination were 500 nm and 1.1 kW/cm2, . Reproduced with permission from [30].

Figure 10. 
Topography, corresponding current-bias characteristics of MAPI/film annealed at (a) 70°, (b) 90° and 
(c) 110° C.
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Figure 13. 
Topography, CPD map and line profile of MAPI/FTO (a) dark and (b) under illumination of 532 nm laser 
having intensity of 0.6 W/cm2.

Figure 11. 
Schematic representation of CAFM and KPFM measurements.

Figure 12. 
Topography, current map and line profile of MAPI/FTO (a) dark and (b) under illumination of 532 nm laser 
having intensity of 0.6 W/cm2.
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grains and GBs. From the topography and CPD map we can see the individual 
grains and the CPD is higher in grains compared to GBs. The line profile plots are 
useful in quantitative analysis of CPD variations across topographical feature in 
perovskite films. CPD is higher at higher region (grains) and lower in lower regions 
(GBs) and it might be due to the presence of built in potential around the GBs.

4. Conclusion

AFM provides lots of required and interesting results with advanced modes and 
widely accepted technique to characterize all type of materials. CAFM and KPFM 
provides information about grains and GBs of photovoltaic materials which help us 
to understand the current transport and band bending to improve the performance 
and life time of photovoltaic materials. Combination of such characterization at 
nanoscale with macroscopic analysis can link the photovoltaic materials properties 
and optimization of device performance.
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