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Chapter

The Structure and Function of 
Alkamides in Mammalian Systems
Stephanie E. Johnstone and Scott M. Laster

Abstract

Alkamides, or alkylamides, are fatty acid amides produced by plants from the 
genera Echinacea, Acmella, Spilanthes, and Heliopsis among others. Alkamides contain 
varying head groups, an amide moiety, and a fatty acid tail with varying numbers 
of carbons and double and triple bonds. Extracts from these plants have been used 
worldwide by native peoples for the treatment of numerous medical disorders, 
including bacterial and viral infections, inflammation, liver and kidney disorders, 
and pain. In vitro, these molecules display a variety of different activities depend-
ing on the cell type tested. Studies with neurons, macrophages and mast cells have 
revealed interactions between alkamides and a number of different cells surface 
receptors and intracellular signaling molecules. Generally, the alkamides have been 
found to exert suppressive effects, inhibiting cellular activation. In this report we 
introduce the structure of alkamides and review their effects in a number of dif-
ferent cellular systems. We also describe structure:function studies that have been 
performed with alkamides. While these studies have not as yet revealed general rules 
for alkamide activity, interesting insights have been revealed. The stage is set for the 
development of synthetic, designer alkamides with targeted in vivo activities.

Keywords: alkamide, inflammation, immunity, nocioception

1. Introduction

The alkamides, also known as alkylamides, are fatty acid amides which vary in 
structure and function. Alkamides are found in nature in over 100 plant species, 
where they are thought to act as a defense against herbivory [1]. Alkamides contain 
a fatty acid tail, which can vary in the number of carbons and unsaturations, an 
amide group, and a variable headgroup. The structure of the alkamide dodeca-
2E,4E-dienoic acid isobutylamide (A15) from Echinacea, which contains an isobutyl 
headgroup is shown in Figure 1. The structures of several other alkamides that have 
been studied extensively are also shown in Figure 1, including spilanthol, pellitorine, 
sanshool, and capsaicin. Spilanthol, which is found in many plants, including several 
species in the Acmella and Spilanthes genera and Heliopsis longipes, has 10 carbons 
and three double bonds in the fatty acid region. Historically, the most common usage 
for spilanthol has been as an analgesic. Plants containing spilanthol are often called 
“toothache plants” where the plant matter is chewed, causing a local numbing sensa-
tion in the mouth [2]. Pellitorine, found in plants from the Piper genus, is similar in 
structure to A15 from Echinacea, with two less carbons and two unsaturations in the 
fatty acid chain. Sanshool is found in plants in the Zanthoxylum genus which includes 
the Szechuan peppercorn. A number of analogs of sanshool have been identified 
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with hydroxy-α-sanshool believed to be the major bioactive compound in most plant 
extracts [3]. Hydroxy-α-sanshool contains 12 carbons with multiple double bonds in 
the fatty acid chain and a hydroxyl group for the headgroup. Capsaicin, which con-
tains a nine-carbon fatty acid, contains methyl groups on the fatty acid chain and an 
unsaturation at the sixth carbon. Capsaicin also contains an aromatic head group, and 
through its ability to activate the transient receptor potential (TRP) TRPV1 receptor, 
is responsible for the painful sensation associated with “hot peppers” [4].

2. Alkamides in plants used in traditional medicine

2.1 Echinacea

Alkamides occur in the flowering plants of the Echinacea genus, including the 
species purpurea, angustifolia, and pallida [5]. Alkamide containing Echinacea 

Figure 1. 
General structure of alkamides. A. Dodeca-2E,4E-dienoic acid isobutylamide (A15) is shown above as a representation for 
the general alkamide structure. Other alkamides from Acmella/Spilanthes (spilanthol) (B), Piper nigrum (pellitorine) 
(C), Zanthoxylum (sanshool) (D), and Capsicum (capsaicin) (E). Structures B-E are from Boonen et al. [1].
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extracts have been used historically by a variety of peoples including numerous 
Native American tribes for a wide range of purposes including treatment of infected 
wounds, rabies, or painful conditions such as toothaches or snakebites [6]. In 1805, 
Lewis and Clark learned about the use of this medicinal plant on their famous 
expedition and mailed seeds and roots to President Jefferson noting it as one of 
their important finds [6]. Today, Echinacea extracts are used to treat a variety of 
conditions- most often the common cold, but also bronchitis, upper respiratory 
infections, and more generally as an anti-inflammatory [7, 8]. Recently, the role of 
the alkamides in the uses for Echinacea have been studied by a number of labs.

Alkamides from Echinacea, such as A15, have been shown to act on a variety 
of cell types, including many immune cells such as macrophages, mast cells, and 
T cells, and also neurons [9–11]. In immune cells, A15 suppresses activation of 
pro-inflammatory responses such as production of pro-inflammatory cytokines and 
chemokines, which may account for the reduction of symptoms when Echinacea is 
used to treat respiratory infections [11]. In addition to the modulation of important 
inflammatory cytokines, alkamides from Echinacea are useful in inhibiting activa-
tion of mast cells and T cells, which has been linked to the inhibition of calcium-
dependent signaling [10]. In neurons, alkamides have been shown to block ion 
channel activity leading to analgesia, which further reinforces their use to relieve 
symptoms caused by the common cold or respiratory infections [9]. Echinacea 
extracts have also been tested successfully in clinical trials to treat eczema where a 
significant reduction in local inflammation was noted [12].

2.2 Piper longum and Piper nigrum

Plants containing alkamides have not only been used by Native Americans, but 
they have also been used by people around the globe in China, Mexico, Brazil, Africa, 
Europe, and India [13]. Piper species, such as the long pepper, have been used in tra-
ditional medicine to treat a range of conditions such as chronic bronchitis, asthma, 
viral infections, and diarrhea and their use first appeared in texts by Hippocrates 
[14]. The plant Piper longum L., which contains 16 known alkamides, has been used 
to treat stomach conditions in ancient Chinese medicine and in traditional Indian 
medicine to treat abdominal pain and disease, among other diseases and disorders 
[15, 16]. Modern research has shown that these alkamides can increase melanin con-
tent and tyrosinase activity in melanoma cells [15] leading to suggestions that Piper 
extracts might produce an anti-melanoma affect. In addition, pellitorine displayed a 
strong cytotoxic activity in a study with two tumor-derived cell lines [17]. Alkamides 
isolated from Piper longum have also been shown to suppress NF-κB activation and 
inhibit the activity of COX-1 and -2 [18]. Inhibition of prostaglandin synthesis was 
also observed in ionophore stimulated leukocytes treated with pellitorine containing 
Piper extracts [19]. Finally, pellitorine has also been shown to be an effective insecti-
cidal agent against the housefly and Aedes aegypti mosquito [20, 21].

2.3 Phyllanthus

Traditional healers in India have used the plant Phyllanthus fraternus to treat 
liver disorders, mixing the plant into a paste or using a plant extract [22]. Aqueous 
extracts from the plant, which are used by Indian healers, possess antioxidant 
activity and can prevent the oxidation of lipids and proteins [23]. In isolated hepa-
tocyte mitochondria, the extracts are protective against alcohol induced oxidative 
stress [24]. Phyllanthus sp. have also been used in Ghana as an anti-malarial treat-
ment and two alkamides E,E-2,4-octadienamide and E,Z-2,4-decadienamide (both 
of which lack the alkyl residue on the amine group) are thought to contribute to 
their anti-malarial activity [25].
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2.4 Spilanthes

In Mexico, alkamide containing Spilanthes plants have been used as insecticides as 
well as analgesics [26]. In Africa and India, Spilanthes acmella is used as a medication to 
treat malaria [27]. In regions of Brazil, extracts from these plants have also been used as 
a female aphrodisiac [28]. Spilanthol is the predominant alkamide found in Spilanthes 
sp. with several other alkamides reported in lesser quantities [29]. Commercial prepa-
rations of spilanthol are as available for use as oral analgesics and to provide a long-
lasting mint flavor in toothpastes [2]. In animal models, analgesia was demonstrated 
using a Spilanthes extract and was found to reduce murine hind paw edema and acetic 
acid induced tail flick in a dose dependent manner [30]. Spilanthol displays structural 
similarities to capsaicin, the ligand for the nociceptor channel TRPV1, which may 
account for its analgesic properties [23]. Isolated spilanthol also displays immunomod-
ulatory properties in vitro causing dose dependent reduction in macrophage activation 
and nitric oxide (NO) production, as well as inhibition of cytokine production and 
NF-κB activation [31]. Other uses for spilanthol have been investigated including as an 
antipyretic, antimicrobial, antifungal, diuretic, and vasorelaxant [32].

2.5 Zanthoxylum clava-herculis

Zanthoxylum clava-herculis, also known as the toothache tree, Hercules’ club, 
or prickly ash, has been used as a medical plant by Native Americans. In East Asia 
this plant is used as an analgesic, an antimicrobial, and for the treatment of kid-
ney and liver disorders (Pawlus et al.; [33]). For example, extracts from the bark 
of Zanthoxylum display antimicrobial activity against Gram negative and Gram 
positive bacteria, and yeast in vitro [34]. Several alkamides have been isolated from 
Zanthoxylum clava-herculis including α-sanshool, and the presence of these mol-
ecules may explain the activities of this plant [35]. The alkamides in Zanthoxylum 
clava-herculis extracts have been shown to bind cannabinoid receptors, perhaps 
suggesting the mechanism of analgesic action [36].

2.6 Additional plants

Alkamides have been identified from a variety of other plants representing over 
30 different plant families [23] although the role of the alkamides in the activity of 
the plant extracts has not been thoroughly defined. A few come from the Solanaceae 
family such as Capsicum annuum L. which has been used to treat otitis, infections, 
rheumatism, and headache [1]. Alkamides have also been identified in another plant 
from the same family, Nicotiana tabacum L., which is used in Africa to treat convul-
sions and as a stimulant [1]. Extracts of Ricinus communis L., which is a member 
of the Euphorbiaceae family, contains alkamides and is used by Mediterranean and 
African cultures to treat respiratory illness, rheumatic pain, and acne [37].

3. Alkamide cellular activities

3.1 Macrophages

Macrophages are important innate immune cells involved in organ homeostasis 
and defense against microbes [38]. Excess macrophage activation can, however, result 
in pathophysiological damage [39] and, therefore, it is necessary to identify immuno-
modulatory compounds which can dampen macrophage responses. Alkamides have 
been shown to display this activity in vitro. For example, alkamides have been shown 
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to inhibit LPS-induced TNF-α production by human monocytes/macrophages [40]. 
The authors propose that this effect is mediated by alkamides binding to type 2 can-
nabinoid receptors (CB2) and altering downstream signaling via cAMP, p38/MAPK, 
and JNK molecules [40]. CB2 is highly expressed on innate and adaptive immune 
cells, with the capability to down-regulate cellular activity, and has been proposed as 
an important therapeutic target [41]. Subsequently, it was shown that the alkamides 
dodeca-2E,4E,8Z,10Z-tetraenoic acid isobutylamide and dodeca-2E,4E-dienoic acid 
isobutylamide bind the CB2 receptor directly, with a higher affinity than endog-
enous cannabinoids, and that binding was associated with increased intracellular 
calcium level and IL-6 expression. However, contradictory to previous work, it was 
shown subsequently that the effect on TNF-α, IL-1β, and IL-12p70 expression was 
independent of CB2 binding [42]. Therefore, there may be multiple cellular targets 
of alkamides resulting in inhibition of both CB2-dependent and CB2-independent 
pathways leading to modulation of cytokine production. Taken together, these 
results demonstrate that alkamides are able to directly bind an important cell surface 
receptor, with known anti-inflammatory activity, as well as inhibit pro-inflammatory 
cytokine production through alternative, undefined mechanisms.

Alkamide effects on macrophages have also been studied during viral infection. 
During infection with influenza A, macrophages are key in elimination of the virus 
and can also contribute to the symptoms and pathology of influenza A by causing 
overproduction of inflammatory mediators [43]. It was found that alkamides undeca-
2Z,4E-diene-8,10-diynic acid isobutylamide, dodeca-2E,4E,8Z,10E/Z-tetraenoic 
acid isobutylamide, dodeca-2E,4E-dienoic acid isobutylamide, and undeca-2E-ene-
8,10-diynoic acid isobutylamide from Echinacea were able to inhibit influenza-
induced TNF-α and prostaglandin production, with dodeca-2E,4E-dienoic acid 
isobutylamide also strongly inhibiting chemokine CCL2, CCL3, and CCL5 production 
[44]. The inhibition of these mediators may explain the relief from symptoms seen in 
certain individuals when Echinacea extracts are used to treat influenza A.

3.2 T cells

Thymus-derived lymphocytes, or T cells, are a type of lymphocyte whose activity 
is critical to the immune response to infection, allergic reactions, and cancer [45]. 
Alkamides have been shown to inhibit IL-2 production in a dose dependent-manner 
from Jurkat T cells and the effects were independent of cytotoxicity [46]. IL-2 produc-
tion is an important signaling molecule in T cell function and differentiation and 
decreasing IL-2 production may limit T cell activation and proliferation reducing the 
adaptive immune response. On the other hand, reducing IL-2 production in certain 
situations may have a beneficial effect by decreasing production of pro-inflammatory 
cytokines [47]. In support of this hypothesis, mitogen-stimulated splenocytes 
harvested from mice treated with Echinacea, produced significantly less IL-1β and 
TNF-α [48]. These mice also showed enhanced levels of T cell proliferation, both 
mitogen-induced and in the absence of mitogens. Stimulation of T cell proliferation 
was also observed using a commercial preparation of Echinacea augustifolia in which 
murine T cells were stimulated with anti-CD3 and the commercial Echinacea product 
[49]. Finally, T cell calcium responses were also found to be inhibited follow ionophore 
stimulation upon treatment with dodeca-2E,4E-dienoic acid isobutylamide (T. V. [10]).

3.3 Mast cells

Alkamides have been shown to be biologically active against mast cells. Mast cells 
are myeloid derived immune cells with key roles in regulation of vascular homeostasis, 
immune responses, and angiogenesis and have important functions in diseases such as 
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allergy, asthma, cardiovascular disorders, and gastrointestinal diseases [50]. A15 from 
Echinacea was demonstrated to inhibit mast cell degranulation, histamine release, and 
calcium influx in both primary bone marrow-derived mast cells and the mast cell-like 
cell line RBL-2H3 [10]. Because A15 was able to block granule release following iono-
phore stimulation, as well as FCεRI crosslinking, A15 must act on molecular targets 
regulating both stimulation pathways. Additionally, A15 inhibited TNF-α and prosta-
glandin E2 production following ionophore stimulation. In an atopic dermatitis model, 
mast cell tissue infiltration was diminished following treatment with spilanthol [51]. 
In vivo, oral administration of N-(2-hydroxyethyl) hexadecanamide downregulated 
mast cell activation and pathology associated with mast cell activation such as edema 
[52]. In an asthmatic model using OVA-sensitized guinea pigs, Echinacea treated ani-
mals displayed a significant reduction in exhaled nitric oxide which has been shown to 
be partially produced by mast cells in asthmatic disease [53].

3.4 Neurons

A popular therapeutic use for alkamides is as pain relievers. Numerous groups 
have now reported on the analgesic effects of alkamides in vitro and in vivo. There 
are multiple types of pain receptors, with different specific receptors mediating 
mechanical and thermal pain. The neurons bearing these receptors are categorized 
as C-fibers, which are unmyelinated and small in diameter, and A-fibers, which are 
myelinated and quick to respond to stimuli mediating “initial fast-onset pain” [54]. 
Using the alkamide hydroxy-α-sanshool, from the Zanthoxylum plant, a selective 
inhibition of mechanical pain via inhibition of voltage-gated sodium channels on 
Aδ mechanonociceptors was observed in mice under both naïve and inflammatory 
conditions, with no influence on thermal pain [55]. Hydroxy-α-sanshool also altered 
activity levels of cool-sensitive fibers and cold nociceptors in extracellular nerve 
recording from the lingual nerve in rats [56]. Sanshool was also found to target 
channels TRPV1 and TRPA1 [57]. Alkamides from Acmella oleracea and a synthetic 
isobutylalkylamide showed long lasting in vivo analgesic efficacy when mice were 
pretreated with the alkamide 15 minutes prior to carrageenan injection to induce 
pain [58]. Alkamide dodeca-2E,4E-dienoic acid isobutylamide was demonstrated to 
be biologically active in the central nervous system in mice following intraperito-
neal injection and dependent on interaction with the voltage-gated sodium channel, 
particularly Nav1.8 [59]. TRPV1, a non-specific cation channel that is the receptor 
for capsaicin and found on neurons, has been shown to be sensitive to isobutylal-
kylamides [60]. Using in vitro dorsal root ganglion cultures, neurons responded to 
the application of a synthetic isobutylalkylamide with an increase in intracellular 
calcium in a manner similar to activation by capsaicin [61]. This supports the anal-
gesic effects observed with alkamides due to TRPV1 repeat activation of the channel 
leading to desensitization and lack of responsiveness [62]. Alkamides, such as 
pellitorine, also directly inhibit TRPV1 activation by acting as an antagonist which 
additionally explains the commonly observed analgesic effects [12]. This points 
to dual actions of alkamides as both TRPV1 agonists and antagonists, which can 
both lead to channel inactivation and pain relief. Interestingly, low dose synthetic 
isobutylalkylamide administration was shown the be anti-nociceptive, whereas 
high doses induced nociceptive behaviors in mice, with the authors suggesting the 
anti-nociceptive effects arising from blocking of ion channels [63]. Further, lingual 
application of synthetic isobutylalkylamide activated mechanosensitive neurons 
through modulation of potassium channels in human testing and caused a tingling 
sensation, while repeated exposure to the isobutylalkylamide causes desensitization 
of the channels and lessened tingling [64] supporting the concept of inhibition of 
neuron activities through desensitization of ion channels.
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3.5 Liver and pancreatic cells

Alkamides have be tested as therapeutics for dietary and nutritional disease, 
particularly in diabetes. For example, daily oral administration of alkamides to dia-
betic rats was shown to significantly decrease fasting blood glucose level, and total 
liver cholesterol, and to relieve organ enlargement through activation of the AMPK 
signaling pathway which reduced fatty acid synthesis [65, 66]. Additionally, alka-
mides from Zanthoxylum were found to cause activation of the mTOR pathway in 
diabetic rats and ameliorate their protein metabolism disorder [65, 66]. Alkamides 
from the same plant also increased glucose metabolism preventing hyperglycemia 
and pancreatic dysfunction through modulation of the main enzymes regulating 
gluconeogenesis as well as improved amino acid metabolism [67, 68].

3.6 Cancer cells

Alkamides have also been investigated as treatments for cancer. For example, 
alkamide derivatives of bexarotene were able to induce apoptosis and prevent cell 
migration and proliferation in triple-negative breast cancer cells, while showing no 
cytotoxic effects against normal mammary epithelial cells [69]. In addition, a panel 
of alkamides with varying structure and molecular weights were able to induce 
differentiation of human leukemia cells to granulocyte-like cells [70].

4. Structure: function studies

4.1 Fatty acid chain saturation

The differences in cellular uptake based on structure could also explain the 
differences seen in biological activities of alkamides. A number of labs have 
asked how the structure of various alkamides contributes to their activities. For 
example, the importance of double bonds in the fatty acid chain was evaluated 
by measuring inhibition of cytokine production from LPS-stimulated RAW 264.7 
macrophage-like cells. Similar levels of inhibition of TNF-α was observed with 
synthetic versions of dodeca-2E,4E-dienoic acid isobutylamide which all have 
12-carbon tails with zero, one, or two double bonds indicating that unsaturated 
bonds are not required for inhibitory effect [71]. Further, 11–12 carbon isobutyl-
amides containing a double bond at position C2 were found to inhibit chemically 
induced TNF-α production from human blood, RAW 264.7 macrophage-like cells, 
and other cell lines [1, 44].

The presence of multiple alkyne groups in the fatty acid chain was also investi-
gated. Alkamides with multiple alkyne groups inhibited the activity COX enzymes, 
and at higher levels, inhibited prostaglandin E2 production [44, 72]. Both alkamide 
A15 and pellitorine, which have highly similar structures, including their fatty acid 
chain inhibit ionophore stimulated prostaglandin production [19]. Interaction with 
the endocannabinoid receptor CB2 has been shown to occur with unsaturated alka-
mides with 11–14 carbons, but there was no affinity observed for all-trans tetradeca-
2E,4E,8E,10E-tetraenoic acid IBA, indicating specific structural requirements for 
alkamide receptor interaction [1]. One group showed alkamides required a double 
bond at the C2 position for interaction with CB2 receptors with a second double 
bond at C4 increasing affinity, but not required for receptor interaction [1, 59]. 
Finally, a possible role for double bonds came from studies of the endocannabinoids 
where it was noted that the alkamide N-benzyl-(9Z,12Z)-octadecadienamide double 
bonds closely mimic those in endocannabinoid substrates [73].
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The number and placement of double bonds has also been shown to impact the 
ability of alkamides to cross cell barriers. Using a Caco-2 cell monolayer, spilanthol 
and pellitorine, both 10 carbon alkamides but variable in position and number of 
double bonds, were tested for their ability to cross the monolayer. Spilanthol trans-
port was significantly better than was the transport of pellitorine, suggesting that 
the placement and number of double bonds can affect transport [74]. A systematic 
analysis of bond number and position, and how they affect transport has not been 
performed.

Positioning of double bonds in spilanthol analogs between carbons two 
and five altered the physiological activity, with most activity resulting from 
double bonds at positions two and four [75]. The necessity of double bonds in 
the fatty acid chain was also evaluated for the activity of α-hydroxysanshool. 
Unsaturations were found to be required for interaction with TRPA1, but not 
TRPV1, perhaps indicating that different regions of the alkamide interact with 
the two receptors [57].

4.2 Fatty acid chain length

Experiments with alkamides using RAW 264.7 macrophages found that the 
number and placement of double bonds did not affect the activity, however, the 
length of the fatty acid chain did impact activity with these cells, with shorter fatty 
acid chains eliminating anti-inflammatory activity [71]. The length of the fatty 
acid chain was investigated using synthetic variants of dodeca-2E,4E-dienoic acid 
isobutylamide in an LPS activated RAW 264.7 cell model system. Alkamides with 
fatty acid tails shorter than 12 carbons did not significantly inhibit LPS-stimulated 
TNF-α cytokine production, indicating that longer fatty acid chains are required for 
this activity [71].

Alkamide fatty acid chain length was also evaluated in mast cells with alkamide 
analogs of varying chain lengths tested for their ability to inhibit intracellular 
calcium influx and mast cell degranulation. It was found that the shortest (four 
carbon) and longest (15 carbon) analogs were poor inhibitors of both degranulation 
and intracellular calcium influx [76]. Interestingly, there seemed to be differences 
in the optimum chain length and maximum inhibition for calcium influx and 
degranulation, perhaps suggesting different cellular targets responsible for inhibi-
tory effects. For degranulation, the optimum chain length was eight carbons and for 
inhibition of calcium influx it was 12 carbons.

4.3 Head group

The head group was also investigated using LPS-stimulated RAW 264.7 cells 
and results indicated that head group substitutions were well tolerated with 
biological activity retained with most substitutions [71]. Addition of a carbon 
into the isobutyl head group did not significantly affect cytokine inhibition, and 
replacement of the isobutyl group with a benzyl group or six-carbon alkyl chain 
lessened inhibition, but the molecule was still biologically active [71]. Finally, 
altering of the amide functional group through addition of a thiazole group 
rendered the molecule inactive, thus demonstrating the importance of the amide 
[71]. In other studies using alkamides with benzyl headgroups, some showed 
affinity for CB2 receptors, which had been previous reported for isobutyl head-
groups, with most activity seeming to come from the presence of an alkyl chain 
with 2 double bonds, rather than the identity of the headgroup [1]. Together, 
these studies suggest that fatty acid chain length and the amide are the critical 
determinants of alkamide activity.



9

The Structure and Function of Alkamides in Mammalian Systems
DOI: http://dx.doi.org/10.5772/intechopen.98198

Author details

Stephanie E. Johnstone and Scott M. Laster*
Department of Biological Sciences, The Comparative Medicine Institute,  
North Carolina State University, Raleigh, NC, USA

*Address all correspondence to: smlaster@ncsu.edu

5. Summary

Alkamides have been in use in traditional medicine for centuries across cultures 
worldwide. Alkamides are found in a large number of plant species including those 
in the genera Echinacea, Piper, Phyllanthus, Zanthoxylum, and Spilanthes, among 
others. Some alkamide containing products have made to commercialization in the 
21st century such as splinathol in oral products and capsaicin creams. Currently, 
significant progress has been made into understanding alkamide activity and their 
use as therapeutics, although many questions regarding the molecular mechanism 
of alkamide action remain unanswered. At a cellular level, alkamides act on a vari-
ety of cell types including mast cells, macrophages, T cells, and neurons and alka-
mides are able to cross important cellular barriers including the blood–brain-barrier 
and the gut epithelial barrier. Modulation of cellular activity results in changes in 
cytokine and chemokine production, as well as cellular activation and signaling. 
Alkamides may be useful in dietary and nutritional settings with some studies 
demonstrating efficacy in mitigating effects of diabetes in mice. Additionally, some 
progress has been made in linking alkamide structure to activity, which could aid in 
the development of highly targeted drugs. Overall alkamides provide a promising 
class of plant derived compounds which should be considered when designing and 
evaluating novel therapeutics.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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