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Male Infertility, Oxidative Stress
and Antioxidants
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Renata Finelli, Nexhbedin Beadini and Sava Micic

Abstract

Within the male reproductive system, oxidative stress (OS) has been identified
as prevailing etiology of male infertility. The effects of reactive oxygen species
(ROS) on male fertility depend on the dimensions, “modus operandi” of the ROS
and the oxido-reduction potential (ORP) of the male reproductive tract. Hereupon,
for an adequate response to OS, the cells of our body are endowed with a well-
sophisticated system of defense in order to be protected. Various antioxidant
enzymes and small molecular free radical scavengers, maintain the delicate balance
between oxidants and reductants (antioxidants), crucial to cellular function and
fertility. Therapeutic use of antioxidants is an optimal and coherent option in terms
of mitigating OS and improving semen parameters. Therefore, recognizing and
managing OS through either decreasing ROS levels or by increasing antioxidant
force, appear to be a requesting approach in the management of male infertility.
However, a clear defined attitude of the experts about the clinical efficacy of
antioxidant therapy is still deprived. Prominently, antioxidant such as coenzyme
Q10, vitamin C and E, lycopene, carnitine, zinc and selenium have been found
useful in controlling the balance between ROS production and scavenging activities.
In spite of that, healthy lifestyle, without smoke and alcohol, everyday exercise,
reduction of psychological stress and quality well-designed meals, are habits that
can overturn male infertility.

Keywords: Male infertility, reactive oxygen species, oxidative stress, antioxidants,
sperm parameters

1. Introduction

The World Health Organization (WHO) defines infertility as the inability
(failure) to attain clinical pregnancy after one year or more of regular unprotected
sexual intercourse [1]. Since infertility presents a certain disability (impaired
reproductive function), medical assessment and treatment falls under the umbrella
of the United Nations Convention on the Rights of Persons with Disabilities –
UNCRPD, which is formally accepted by many countries. The article 1 of this
Convention summarizes the overall objective as: “to promote, protect and ensure
the full and equal enjoyment of all human rights and fundamental freedoms by all
persons with disabilities, and to promote respect for their inherent dignity” [2]. Due
to its health, cultural and socio-economic impact, infertility is a major globally
underestimated public health concern [3, 4]. Therefore, proper evaluation of male
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infertility is a substantial stride in qualifying, quantifying and configuring necessary
laboratory assessment, credential treatment strategies as well as policies to diminish
the burden of this global sensitive health issue.

There are approximately 186 million infertile people [5] or 15% of couples
globally, 50% due to male factor infertility which experience problems in conceiv-
ing [6, 7]. In male dominated societies, generally, the female partner is blamed for
barrenness, even though ancient Greeks were aware that male factor is a contribu-
tor to the reproductive success [8].

In fertile couples, spontaneous conception is most likely to occur in 30% of cases
during the first month, 75% after 6 months, 90% after 12 months and 95% between
18 to 24 months [9]. Also, there are studies which consider that 80% of couples
having unprotected sexual intercourse will achieve pregnancy in the 6-month [10]
or 12-month interval [11].

In addition, male fertility reaches its maximum potential at ages of about 25 to
30 years and declines sharply in the beginning of fifties [12], however, there are
men reported to give life to offspring into their eighties [13]. Paternal age of
>40 years is associated with more than 20% higher chance of congenital defects in
the offspring [14]. Over the past decades, an age-related decline in semen quality
resulting in declined fertility was observed [15].

Oxidative stress (OS) has been identified as one of the major contributors
affecting male fertility potential [16] and has thus been extensively studied in the
last three decades. Although cells of the human body have efficient mechanisms to
cope with factors disturbing the normal cell homeostasis, OS may arise due to an
imbalance between generation of oxidants and antioxidants mechanisms, resulting
in cell damage.

Reactive oxygen species (ROS) are important mediators of OS status, because of
their capacity to oxidize proteins, lipids, and DNA, resulting in cellular dysfunction
[17]. ROS are oxygen-based molecules that have unpaired electrons on their most
outlier spin-orbit, derived from the reaction of carbon-centered radical with oxygen
(except hydrogen peroxide), which makes them highly reactive [18]. The most
common ROS are hydroxyl radical (OH•), hydrogen peroxide (H2O2) and the
superoxide anion (O2•-). ROS are generated not only by leukocytes (neutrophils
and macrophages mostly) [19], but also by any aerobe living cell including sperma-
tozoa [20]. Moreover, another subclass of free radicals deriving from nitrogen-
based molecules are called reactive nitrogen species (RNS) [21, 22]. At physiologic
amount, RNS are important for various functions within the male reproductive
tract such as: (1) signal transduction, (2) regulation and assembly of tight junction
within the blood-testis barrier, (3) mediation of cytotoxic and pathological events,
(4) production of hormones, (5) inflammation and (6) other important physiolog-
ical changes of spermatozoa [23].

Some of the most common ROS and RNS are listed in Table 1. Effects, conse-
quences, mode of formation and action of these molecules are presented in details in
Table 2.

Under physiological conditions, high levels of ROS are counterbalanced by anti-
oxidants, which competently maintain a delicate redox balance by donating their
electrons to the ROS and thus interrupting further intake of electrons from sur-
rounding compartments [37]. The seminal antioxidant system comprises a network
of enzymatic and non-enzymatic molecules, dispersed mostly within seminal
plasma and spermatozoa [38]. The three major antioxidant enzymes are glutathione
peroxidase (GPx), catalase (CAT) and the superoxide dismutase (SOD) [39].

With an increasing knowledge on the role of OS in the clinical manifestation of
male infertility, antioxidant prescription and its implementation in treating male
infertility may be helpful. Several antioxidant compounds are currently prescribed
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without any scientific rationale, ensuing neither semen parameters improvement, nor
fertilization outcomes. Contrary, some other studies even showed a worsening of
semen parameters [40–42], because an excess intake of antioxidants can contribute
in the establishment of reductive stress (RS), a condition which has been reported
being as harmful as OS [43]. Therefore, there still lack of conclusive consensus
regarding the clinical advantages of antioxidants - based therapy in male infertility.

Hydrogen peroxide (H2O2) Ref.

Hydrogen peroxide is not a free radical, because it does not contain an unpaired electron,
but it is classified as ROS because it participates in the generation of highly reactive
hydroxyl free radicals through interactions with iron and copper, based on the Fenton
reaction.

[22,24–26]

Superoxide (O2•
—) Ref.

It is generated by electron transport leaks from several reaction in cytosol. It does not
spread easily and faraway its origin. It is responsible for cell injury, by deconstructing
iron–sulphur clusters in proteins through the inactivation of iron regulatory protein-1.
Superoxide is insoluble for the cell membrane.

[27–29]

Hydroxyl (•OH) Ref.

This represents the neutral form of the hydroxide ion, deriving from the reaction between
Fe2+ and H2O2 (Fenton reaction). It is the most reactive free radical. The hydroxyl radicals
and hydroxide ions can be generated also by the reaction of H2O2 and O2•- catalyzed by
iron (Haber-Weiss reaction). The hydroxyl radical has the potential of reacting fast and
nonspecifically.

[30, 31]

Peroxynitrite (ONOO—) Ref.

It is generated during reaction of nitric oxide (NO) with O2
—, it can react with thio groups

of structural proteins, resulting in the formation of nitrosotioles, which can disunite
metal-protein interactions and result in the formation of metal-derived free radicals.

[32]

Peroxyl radical (ROO•) Ref.

Peroxyl radicals remove electrons from lipids during the process of lipid peroxidation.
During this process, intermediates are generated that participate in further reactions with
oxygen to form lipid peroxyl (LOO•) and lipid hydroperoxide (LOOH) which are
responsible for sperm DNA and protein damage.

[33–35].

Hypochloric acid (HOCl) Ref.

Hypochloric acid is produced by macrophages and neutrophils during respiratory burning
that accompanies phagocytosis. This radical is generated in the reaction between H2O2

and chloride ion (Cl�).

[36]

Table 2.
The mode of formation of the biologically active ROS responsible for the major consequences of oxidative stress.

Reactive oxygen species Reactive nitrogen Species

Radicals Non-radicals

Lipid peroxyl LOO• Lipid hydroperoxide LOOH Nitryl chloride NO2Cl

Thyl RS• Ozone O3 Nitrous acid HNO2

Peroxyl RO2
• Singlet oxygen �1O2 Nitrogen dioxide NO2

Nitric oxide NO• Hydrogen peroxide H2O2 Dinitrogen trioxide N2O3

Superoxide O2
•— Hypochloric acid HOCl Nitroxyl anion NO�

Hydroxyl OH• Peroxynitrite ONOO— Nitroxyl cation NO+

Table 1.
Most common ROS and RNS.
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2. Oxidative stress and male infertility

OS is a condition characterized by an elevated generation of ROS and a reduced
response of biological mechanisms to promptly neutralize the reactive intermedi-
ates or to repair the damage [44]. An increased quantity of ROS and RNS has now
been established with strict evidence to be a prominent attribute of many acute and
chronic pathologies [45].

Nearly eight decades after the Macleods discovery in 1943, highlighting ROS as
key players in cell physiology and sperm motility [46], scientists all over the world
turned their attention toward the association between free radicals and the male
infertility.

2.1 Sources of ROS

Semen comprises a variety of cells including spermatozoa, germ cells, leukocytes
and epithelial cells [47], whereby leukocytes produce about 1000-times more ROS
than immature sperm cells [48].

ROS originate from a different countless endogenous and exogenous sources.
Endogenous sources of ROS can be generated extracellularly and intracellularly.

Intracellular ROS include O2
—, H2O2 and OH�, generated mainly in the mitochon-

dria [49]. In the mitochondria, about 5% of the consumed oxygen is physiologically
converted into ROS. The ROS production is increased when the electron
transporting chain (ETC) derails as a result of mitochondrial dysfunction [50].

Exogenous sources of ROS include smoking, alcohol and drugs abuse, environ-
mental pollutants, heavy metals, ionizing radiation, diets rich in energy-yielding
nutrients like carbohydrates, saturated fats and proteins [51].

2.2 Mechanism of ROS production within human sperm

ROS are generated in two pathways: the extrinsic and the intrinsic pathway,
described in Figure 1.

Leukocytes are responsible for the extrinsic pathway of generating ROS, while
spermatozoa for the intrinsic pathway of ROS generation [52]. Granulocytes are the
white blood cells (WBC) in seminal fluid which are predominantly responsible for
demolishing pathogens by ROS production [53, 54].

An association between OS and the elevated leukocyte numbers has been found
[19]. On the other hand, the relationship between the seminal leukocyte concentra-
tion and male infertility is not clear. In fact, leukocytospermia, i.e. the presence of
more than 1�106 WBC/mL, is not predictive of male infertility [55, 56]. However,
the significance of WBC activation in ROS generation and its impact on elevated OS
levels cannot be left unnoticed. Various studies reported high levels of
proinflammatory chemokines in human semen along with high ROS quantity
[57, 58]. Recently, in the seminal plasma of oligozoospermic and azoospermic men
it was observed a negative correlation between levels of interleukin-6 (IL-6), inter-
feron alpha (IFN-α) and interferon gamma (IFN-γ) and sperm parameters such as
concentration, motility and morphology [59, 60].

Among spermatozoa, it has been shown that morphologically abnormal sperma-
tozoa are the main source of ROS generation [61]. Excess residual cytoplasm (ERC)
around the mid-piece of spermatozoa (observed in teratozoospermic sperm) con-
tains high levels of cytoplasmic enzymes responsible for generating ROS [62].

ERC has a considerable amount of enzymes to regulate glucose metabolism,
specifically glucose-6-phosphate dehydrogenase (G6PD) [63], which induces

4

Vitamin E in Health and Disease - Interactions, Diseases and Health Aspects



increased ROS levels by activating (1) the NADPH - nicotinamide adenine dinucle-
otide phosphate located in the plasma membrane of spermatozoa, and (2) NADPH –

dependent oxide-reductase, known as diphorase, detected in the middle piece of
mitochondrial level [64–66]. In a study by Sabeur et al., calcium-dependent
NADPH oxidase 5 (NOX5) of spermatozoa plays a considerable role in ROS gener-
ation [67]. However, there is a difference between NOX5 found in spermatozoa,
which does not require protein kinase C for expressing its activity, and in leuko-
cytes, where protein kinase C is essential [68].

2.3 Physiological role of ROS

ROS are very important molecules as they act as cellular mediators essential for
(1) normal spermatogenesis, (2) activation of steroidogenic pathway, (3) modula-
tion of mitochondrial and death receptor-apoptotic pathways. These fundamental
cascades are required for the process of: maturation, hyperactivation, capacitation,
acrosome reaction as well as sperm-oocyte fusion, crucial for the fertilization pro-
cess, all presented in Figure 2.

2.3.1 Maturation

After spermiation, spermatozoa are transported into the epididymis where they
undergo a maturation process, leading to significant chemical and physiological
modifications including recombination of cell-surface proteins, and enzymatic and

Figure 1.
Mechanism of free radical production within semen. (a) The intrinsic and extrinsic pathway contribute in the
formation of O2•-. (b) Superoxide is transformed directly and indirectly to secondary (e, f, g) ROS. Adapted
from reference [28]. (mathematical symbols + and - stand for positive and negative feedback).
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nuclear modifications [69, 70]. These result in the assembly of the signal transduc-
tion machinery that is crucial for the sperm capacity to undergo hyperactivation
and capacitation [69, 71]. The nuclear DNA of mammalian spermatozoa is densely
packed, as histones are substituted by smaller-sized (arginine-rich) protamine [72].
Protamines substitute histones during spermiogenesis [73] and compact DNA
tightly through inter/intramolecular disulphide bonds between cysteine residues
[74]. The oxidizing process of thiol groups on protamines and the formation of
disulfide bonds increase chromatin stability and DNA protection from any physical
or chemical damage [75], which is fundamental because human spermatozoa have

Figure 2.
Physiological and pathological consequences of ROS. ROS dose is a critical parameter in determining the
ultimate cellular response, low (necessary) dose for physiological processes and high (toxicity) dose expressing
their pathological effects.
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limited capability to repair DNA damage [76]. Protamination occurs when sperma-
tozoa pass through the caput and caudal part of the epididymis [77].

Another important event is the formation of “mitochondrial capsule” made
by a complex protein material, which is necessary to abolish proteolytic
degradation [78].

2.3.2 Hyperactivation

Hyperactivation is a particular state of sperm motility characterized by vigorous,
large asymmetric flagellar (whiplash-type) beat and head sperm shifting (large
lateral head displacement) [79]. Hyperactivation is reported to facilitate the capac-
itation process and is indispensable for successful accomplishment of acrosomal
reaction, sperm-egg fusion, and fecundation [74].

Undoubtedly, ROS play an inclusive role in the regulation of these processes, by
triggering hyperactivation and capacitation. This occurs by induction of Ca2+ and
HCO3

� influx, probably through the deactivation of the enzyme Ca2+-ATPase and
further basification of the cytosol [80]. ROS (especially O2•-) upregulate the Ca

2+

mediate adenylate cyclase (AC) enzymatic activity, increasing cAMP (cyclic aden-
osine monophosphate) generation by activating protein kinase A (PKA). Further,
this triggers NADPH oxidase activation and thereby promotes the upregulation of
ROS production [81]. PKA-mediated phosphorylation leads to protein tyrosine
kinase (PTK) activation, phosphorylating consecutive tyrosine residues in the
axonemal fibrous sheath and the cytoskeleton of sperm tail [69, 82].

2.3.3 Capacitation

Capacitation has been documented in 1951 by Austin and Chang [83, 84].
Capacitation involves cholesterol outflow from the sperm membrane and a global
intensification of tyrosine phosphorylation [85]. The signal transduction pathway is
guided by the cAMP and modulated by the oxido-reductive state [86]. During
capacitation, spermatozoa undergo molecular modifications such as alkalization of
inner cell pH, activation of cAMP-dependent pathways, cholesterol efflux from
cell-membrane and phosphorylation of surface proteins by cAMP-dependent kinase
[87]. Researchers have emphasized the impact of free radicals in modulating the
cAMP pathway, which involves PKA activation and phosphorylation of its sub-
strates [88]. A correlation between elevated protein phosphorylation rate, increased
presence of the second messengers and ROS synthesis have been observed during
capacitation [69]. The cholesterol oxidation and its consequent discharge from the
sperm membrane is necessary in tuning-up spermatozoa for the next step, resulting
in greater bicarbonate and Ca2+ ion permeability via activation of sodium/bicar-
bonate cotransporter (NBC) and ion channels [89].

2.3.4 Acrosome reaction (AR)

The hyperactivated spermatozoon tends to penetrate over the cumulus-oocyte-
complex and attach to the zona pellucida of the egg, whereas acrosome reaction
(AR) is a well-regulated exocytotic reaction in response to coordinated stimuli [90].
These changes are triggered by tyrosine phosphorylation of sperm-membrane pro-
teins regulated by ROS signaling [63, 88]. NO is implicated in AR by activating the
second messenger cyclic guanosine-mono-phosphate (cGMP), PKC and protein
kinase G (PKG) [91]. Physiological levels of H2O2, O2

� and NO are needed for AR
[88]. In the oocyte, the release of Ca2+ is followed by cleavage of phosphatydi-
linositol-4,5-bisphosphonate (PIP2) into inositol tri-phosphate (IP3) and
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diacylglycerol (DAG), which are responsible for acrosomal exocytosis and activa-
tion of PKC. This further results in Ca2+ inflow and activation of PLA2 (phospholi-
pase A2), which play a key role in the cleavage of secondary fatty and consequently
increasing the membrane fluidity, necessary sperm-oocyte fusion [92].

2.3.5 Sperm-oocyte fusion

ROS are also necessary in the finalization of the fertilization process. This final
step is due to enhanced membrane fluidity, which is controlled and directed by ROS
in inhibiting the protein tyrosine phosphatase activity, which prevents deactivation
of PLA2, a necessary step for accomplishing sperm-oocyte fusion [93]. When the
spermatozoon penetrates the zona pellucida and the corona radiata, the oocyte
changes the composition of the vitelline layer [24]. This envelope is catalyzed by
ovoperoxidase making o,o-dityrosine crosslinks to prevent polyspermy [94].

2.4 Pathological repercussions of oxidative stress

High levels of ROS have the potential to damage cellular components by medi-
ating lipid peroxidation, apoptosis, DNA damage, mitochondrial dysfunction and
protein oxidation.

2.4.1 Lipid peroxidation (LPO)

Sperm membranes are mostly constituted by poly-unsaturated fatty acid
(PUFAs), which represents a disadvantage in terms of OS susceptibility [95].

Lipid peroxidation (LPO) is as a chemical reaction by which oxidants assault
carbon double bond(s) in lipid compounds, especially PUFAs, by detaching hydro-
gen and adding oxygen to carbon, by generating LOO• and LOOH [96]. In vitro
research highlighted a negative correlation between malondialdehyde (MDA - end
product of LPO) concentration, and sperm morphology and motility [97–99].
LPO is a self-propagating process passing through three phases: (1) initiation; (2)
propagation; (3) termination. Through all three phases free radicals enter in a
radical-chain reaction [32].

The propagation of the oxidative wave can also result in DNA fragmentation and
protein damage, affecting particularly sperm motility, morphology and fertilizing
capacity.

2.4.2 Apoptosis

The programmed cell death, known as apoptosis, is a physiological phenomenon.
In the male reproductive tract, apoptosis is responsible for supervising the excess
production of male gametes, a process being regulated by extrinsic and intrinsic
stimuli [80]. The intrinsic stimuli include apoptosis-including genes like p53, Bax
and Fas, but also Bcl-2 and c-kit genes which act as apoptosis suppressors [100],
while extrinsic stimuli consist of varicocele, infection, heat stress, environmental
toxins, advanced male age lifestyle factors, ionizing and nonionizing radiations,
defective protamination and idiopathic causes [101, 102] . During the process of
spermatogenesis, spontaneous germ cell apoptosis in all developing stages of sper-
matozoa has been seen in the testis of normozoospermic and non-obstructive
azoospermic men [20]. This guarantees that only functionally and genetically com-
petent germ cells become mature spermatozoa [103]. Prolactin and insulin are
considered as pro-survival hormones which bind to specific receptors on sperm
membrane [104]. The inhibition of this cascade will result in increased ROS
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generation by mitochondria, followed by the release of cytochrome C, which in turn
activates the apoptotic caspases, triggering the apoptosis [74, 82, 105]. High levels
of cytochrome C have been found in seminal plasma of infertile men [82, 106].

2.4.3 DNA damage

It is reported that infertile males with high seminal OS levels present high
fragmentation of sperm DNA [107]. Numerous contributors can include lifestyle
factors, radiation, advanced male age, varicocele, infection and idiopathic causes
[108, 109]. Guanine base (G) is the most common DNA’s organic base exposed to
OS assault and converts into 8-hydroxy-deoxyguanosine (8-OHdG) by free radicals
[110]. Mechanisms by which OS cause DNA damage involve warping single and
double-stranded DNA crosslinks, direct oxidation of DNA bases and DNA muta-
tions [111]. Comparing to nuclear DNA, mitochondrial DNA is more susceptible to
DNA damage, due to the lack of histones and protamines, and nucleotide excision
repair mechanisms [112].

In addition, mitochondrial damage affects the interior mitochondrial membrane,
causing electron outflow from the transporting chain, inducing a further increase of
OS status [113].

2.4.4 Mitochondrial dysfunction

Mitochondria represent the most important place in generating ATPs, which
serves as a fuel for sperm to move. This is why its proper function represents a
fundamental key point in the mosaic of male infertility problems. Defects in the
pathway for ATP production correlate with low sperm motility, known as
asthenozoospermia [114]. There is an inactivation of genes which encode constituting
proteins of the electron transport chain, mainly those that are involved in ATP
formation [115]. When the extent of such injury overwhelms DNA repair capacity
mechanisms, the subsequent alterations in mitochondrial biology stimulate the acti-
vation of the genes responsible for stress–response, hereby inducing apoptosis [116].

2.4.5 Protein oxidation

Formation of radical amino acids is of the result of protein oxidation (PO),
especially of the alpha-central carbon, causing disintegration of peptide skeletons
[117]. Moreover, the SH-rich lateral chains of methionine and cysteine are inclined
to be oxidised with propagation of methionine sulphoxide and disulphides, respec-
tively [87]. Similarly, arginine, proline, threonine and lysine are oxidised, resulting
in the formation of carbonylated proteins (aldehyde and ketones), markers of PO
status [117]. These alterations impact the protein morphology and physiology, with
a wide impact on spermatogenesis and fertility potential.

3. Antioxidants in male infertility treatment

Antioxidants are defined as chemicals compounds with the ability to donate
electrons and thereby neutralize an excessive production of ROS [118]. Humans
possess a well-sophisticated antioxidant system to shelter the body’s cells and tissues
against oxidation [119].

As a physiological response to OS, seminal plasma is endowed with various
scavengers acting enzymes indexed as total antioxidant capacity (TAC) measured
to be 10x higher comparing to blood plasma [120].
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The anti-oxidant defense system implicates a co-action of different endo/exoge-
nous players to scavenge the potential oxidative damage of ROS [121]. These consist
of CAT, SOD, glutathione peroxidase (GPx), peroxiredoxins and glutathione-S-
transferase [122], and water-soluble and fat-soluble vitamins [123]. The role and
effect of endogenous and exogenous antioxidants are discussed below.

3.1 Endogenous antioxidants

The major endogenous antioxidant enzymes are: (1) CAT, (2) SOD and (3) GPx.
Studies about their efficacy in clinical trials are presented in Table 3.

3.1.1 Catalase

Activity of catalase (tetrameric protein) is consisted in dissolving hydrogen per-
oxide into water and oxygen, through the oxidation of hydrogen ion donors, such as
methanol (CH3OH), ethanol (CH3CH2OH), with the consumption of 1 mol of H2O2

[128]. In addition, CAT has an important role in terms of physiological effects during
sperm capacitation, inducing NO activity and the removal of ROS [129].

3.1.2 Superoxide dismutase (SOD)

SOD is known as metallo-enzyme, as it has the catalytic metal in the active site
[130]. The SOD enzyme consists of three different classes existing in both extra-
and intracellular compartments. SOD-1 or CuZnSOD is the first intracellular
enzyme, with Cu and Zn in the active center; it is usually localized in the cytosol
[131]. SOD-2 or MnSOD is the second intracellular isoform, localizing in mitochon-
dria and showing Mn in the active center [132]. The extracellular form of SOD (EC-
SOD or SOD-3) is a glycosylated homotetramer mainly secreted into the extracel-
lular area. It is upregulated by cytokines, downregulated by TNF-α, and anchored to
the extracellular matrix [133]. CuZnSOD is highly active (75%) in comparison with
SOD-3 (25%) [119, 130].

3.1.3 Glutathione peroxidase (GPX)

GPx is a cytosolic antioxidant seleno-enzyme mainly expressed in the epididymis
and testis [134]. GPx catalyzes the reduction of detrimental hydroperoxides with
thiol cofactors [119]. A “catalytic triad” is formed by the selenocysteine in the active
site with tryptophan and glutamine: this activates the selenium portion and

Enzyme Study findings Ref.

CAT • ↑ CAT activity in the group that received antioxidant therapy, comparing to
control samples that received placebo.

• Positive correlation between levels of CAT and fertilization rates.
• Studies are limited in this field.

[124, 125]

SOD • Its levels are positively associated with sperm concentration (p<0.001) and
motility (p=0.008).

• Negative relationship was found with DNA fragmentation (p=0.014).

[126]

GPx • 10x greater GPx activity in the fertile group comparing with the GPx activity
in infertile men.

• Statistically significant (p<0.001).

[127]

Table 3.
The role of endogenous antioxidants enzymes.
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neutralizes peroxides [135]. It is mainly expressed in the mitochondrial sperm matrix,
while nuclear isoform of GPx has been correlated with sperm DNA preservation from
oxidative detrimental impact and chromatin condensation [136]. GPx reduces fat
hydroperoxides into alcohols and free H2O2 to H2O, it is fundamental for protecting
lipid integrity and maintaining sperm viability and membrane integrity [134].

3.2 Exogenous antioxidants

Most common exogenous antioxidants refer to carnitines, α-tocopherol, ascorbic
acid, carotenoids, zinc and selenium. Spermatozoa carry with them minimal
endogenous antioxidant amounts, thus during the entire process of spermatogene-
sis, sperm rely on exogenous antioxidants [137]. Studies about their efficacy in
clinical trials are presented in Table 4.

3.2.1 Carnitines

L-carnitine (LC) and L-acetyl carnitine (LAC), a water-soluble antioxidant, are
implicated in sperm metabolism, motility and viability [147]. It helps in preventing
lipid peroxidation, sperm DNA protection and apoptosis [148]. The highest con-
centration of carnitine is found in the epididymis and spermatozoa [132]. Studies of
the semen samples of infertile men, especially oligoasthenoteratozoospermic (OAT)
men, have shown lower carnitine levels compared to fertile men [133].

3.2.2 Vitamin C (L-ascorbic acid)

This is a water-soluble vitamin. Humans and other vertebrates lack the enzyme
L-glucono-gamma lactone oxidase (LGGLO), which is essential for in vivo synthe-
sis. Hence, its intake with diet or as a supplement is fundamental. Vitamin C
concentration is 10-times higher in seminal plasma comparing to serum [149]. It
nullifies the activity of •OH, O2•- and H2O2 radicals, thereby protecting against
oxidative damage [150].

3.2.3 Carotenoids

Carotenoids can be found naturally in fruits and vegetables. Carotenoid cannot be
synthesized by humans, by introduced by the diet. Lycopene, a fat-soluble aromatic
carotenoid, is reported to be strong neutralizer of �1O2, but a combination of carot-
enoids seem to be more effective [151]. It can alter the levels of antioxidant enzymes
by modification of the levels of ROS, making great contribution to the human anti-
oxidant system [43, 119]. There are studies on fertile men that show high concentra-
tion of Lycopene, and reduced levels in seminal plasma of infertile men [152].

3.2.4 Coenzyme Q-10 (CoQ10)

CoQ10 is an intermediate of the mitochondrial electron transport chain
[153, 154]. Low seminal plasma/sperm concentrations of CoQ10 have been
associated with reduced sperm motility [155].

3.2.5 Zinc (Zn)

Zn is one of the most abundant elements in human [156]. It acts as metallo-
protein cofactor in the metabolism of nucleic acids transcription, signal transduc-
tion, protein synthesis and cell death regulation [157]. Moreover, Zn is fundamental
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for optimal sustain of spermatogenesis and adequate function of the male repro-
ductive organs [158]. It also plays a key role in preventing LPO and preserves sperm
structure, by reducing generation of H2O2 and •OH, through separating active
redox transition metals, such as Fe and Cu [144].

3.2.6 Selenium (Se)

Se is an important trace mineral, implicated in many biological processes. Se is
the constituent of enzymes such as GPx and seleno-proteins, it shows a major
impact in redox defense system, spermatogenesis and increased fertility capacity in
both males and females [159]. It protects sperm DNA against OS damage, although
the mechanism is still unclear [160].

3.2.7 Role and effect of vitamin E in male reproduction

Vitamin E is the major lipophilic antioxidant [156] and it has been recognized as
an essential nutrient for reproduction since its discovery in 1922 [161]. It neutralizes
•OH and O2•- by lessening lipid per-oxidation commenced by ROS, thus protecting
cell membranes from oxidation [160]. Vitamin E ameliorates other scavenging
oxidants manners and helps maintaining sperm morphology and motility (which

Antioxidants Study findings Ref.

LC & LAC • Analyzed in certain systematic reviews and meta-analysis.
• Intake (two times daily, not more than 30 weeks) is associated with a

remarkable increase in sperm motility and morphology.

[138, 139]

Vit. C • Studies suggest positive association between levels of ascorbic acid in
seminal plasma and sperm morphology and viability.

• Very effective in controlling sperm agglutination.
• Kobori et al. treated 169 males for 6 months with vitamin C, E and

CoQ10, and reported a noteworthy improvement of sperm
concentration and sperm motility.

[140, 141]

Carotenoids • In a randomized clinical trial, Nouri et al. included 44 patients with
oligozoospermia.

• Tretament with 25 mg lycopene resulted in increased sperm count,
concentration, total motility and TAC.

[142]

CoQ10 • Alahmar et al., study treated 65 oligoasthenozoospermic men and 40
fertile control groupwith 200 mg/day CoQ10 for 3 months.

• Authors observed a significant improvement in total sperm motility,
sperm concentration, TAC, and GPx levels as well as reduced SDF.

[143]

Zn • Randomized cross-sectional study and case study, combined antioxidant
formula.

• Significantly correlated with sperm density (r = 0.341, p < 0.0001),
motility (r = 0.253, p < 0.0001) and viability (r = 0.286, p < 0.0001)

• Decrease levels of MDA, enhancing sperm motility and concentration
(p < 0.001).

• No significant change of Protein Carbonyl (PC) (p=0.554).

[144, 145]

Se • Longitudinal study by Mossa et al.
• Included 12 males, treated twice daily with 50 microgram in 3 months

period.
• Significantly increase in sperm count (39.24 � 27.4–58.1 � 21.6;

p<0.01), motility (22.14 � 12.9–50.7 � 17.6; p<0.01) and morphology
(68 � 5.7–82.1 � 6.4; p<0.01).

[146]

Table 4.
The role and effect of exogenous antioxidants enzymes.
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depends on the integrity of the mitochondrial sheath) [162]. Effects and the roles of
vitamin E are presented in Figure 3.

Various vitamin e isoforms have been found, but their role and importance
remains enigmatic, and of the eight naturally occurring forms, only α-tocopherol is
maintained in the plasma [163]. Therefore, vitamin E is crucial in maintaining all
the necessary functions of healthy sperm and protecting it from detrimental effects
of OS. Studies show lower levels of vitamin E in infertile men compared to fertile
men [135], allowing somehow to increase concentration of the peroxidation by-
product MDA in the seminal fluid [164]. It is mainly used in combination with other
vitamins and minerals. In vitro and in vivo studies which show improvements
exclusively in the sperm motility and other semen parameters, successful pregnan-
cies and mitigation of oxidative stress markers, presented in Table 5.

Vitamin E intake and its dosage should exclusively be determined by a
healthcare professional because of adverse events due to vitamin toxicity. The
recommended daily dose of vitamin E is 15 mg (30 IU) for adults [173], a dose of
200–800 mg/day may cause gastrointestinal distress, while a daily dose greater than
1000 mg (1500 IU) is associated with increased risk of hemorrhage (antiplatelet
effects), thrombophlebitis,, elevated creatinine, gonadal dysfunction and death
[163, 174].

Infertile patients which want to increase concentrations vitamin E, its sources
can be found in nuts, seeds, vegetable oils, leafy vegetables and fortified cereals.

It needs proper and critical analysis for establishing the correct dosage and
duration of antioxidants administration. In case of raised OS status, remedy must be
administered at least for 12 weeks, according to the proper minimal period for
spermatogonia (72 � 3 days), or for three to six months [175, 176].

Referring to the studies analyzed above, vitamin E consumption has its obvious
beneficial effects. But, the question here is whether vitamin E is more effective
solely or in a combination? If used solely, is the efficacy more accentuated in in vivo

Figure 3.
Effects of vitamin E in male reproduction physiology.
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Study design Number of study

subjects/abnormality

Dose/duration Results Ref.

Vitamin E in vivo studies

Double-blind,
placebo-
controlled,
randomized
study

101 couples (50 in the
vitamin E group and 51 in
the placebo group)

400 mg/daily
p.o

↑motility in the vitamin E
group;
Morphology was better in the
placebo group;
Statistically significant higher
live-birth rate per transfer in
the vitamin e group.

[165]

Randomized
placebo-
controlled
double-blind
trial

87 asthenospermic men
(52 treated with vitamin
E; 35 placebo treatment)

100 mg
s.3x1 p.o./
6 months

↑motility in the vitamin E
group, comparing to placebo
group (p<0.001);
↑Pregnancy (81% with a live
birth);
↓ MDA levels (sperm LPO).

[162]

Randomized
controlled study

45 infertile men after
varicocelectomy, n=22
receiving vitamin E and
n=23 control group
without supplementation.

300 mg
s.2x1 p.o./
12 months

No significant differences
were found in terms of sperm
count, sperm motility and
pregnancy rates comparing to
control group.

[166]

Vitamin E in vitro studies

Double-blind
randomized
placebo cross-
over controlled
trial

30 healthy men with high
levels of ROS in semen.

300 mg
s.2x1 p.o./
3 months

Improvement of the
performance of the
spermatozoa in the zona
pellucida binding test
(p=0.004);
No significant effect was
demonstrated in the
conventional semen
parameters and levels of ROS;

[167]

Evaluation
study

43 subjects, normal (n=23)
and abnormal (n=20).

100 or
200 μmol
Vitamin E to
cryopres-
ervation
medium

↑ post-thaw motility
(p=0.041);
No improvements in sperm
vitality and the degree of DNA
fragmentation.

[168]

Experimental
study

50 asthenoterato-
zoospermic men

2 mM
(milli-molar)
vitamin E.

Significantly higher total
sperm motility (p<0.001),
progressive motility
(p<0.001) and viability
(p<0.001) compared with
control group after 2, 4 and
6 hours of incubation;
MDA levels were decreased
significantly after 6 hours
(p<0.001).

[169]

Vitamin E in combination with one or more vitamins

Randomized
controlled trial

54 voluntary infertile men Vit. E 100 mg
s.2x2/3 months
Selenium
35 μg
s.3x2/3 months

Significant improve in sperm
motility (p<0.05), without
significant effects on other
parameters;
Significant decrease in the
MDA concentration.

[170]

Comparative
prospective
randomized trial

90 idiopathic
oligoastheno-zoospermic
men

Vit. E 400 mg
s.1x1/6 months
Clomiphene

Significant increase in sperm
concentration (p=0.001);
Improvement in the mean

[171]
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or in vitro studies? Data presented above from different studies demonstrate the
complexity and the unpredictability of vitamin E or antioxidant supplementation,
even though there are studies that suggest improvements in sperm parameters,
decrease of oxidative stress status, improvements in zona pellucida binding test and
higher pregnancy rates.

Vitamin E doesn’t work only as an antioxidant, but it is also involved in the
modulation of cellular responses by modulating enzymes or by regulating the
activity of specific transcription factors [173, 177].

4. Conclusion

ROS are very important in certain physiological processes; however they can be
very dangerous for male fertility potential if the levels overcome a physiological
threshold.

Therefore, normal fine redox equilibrium between ROS and antioxidants is
extremely important. The understanding of this fine balance will facilitate steps
towards proper diagnosis and treatment in ideal dosages of antioxidant treatment.

The most widely utilized antioxidants either as single therapy or combined are:
vitamin C, E, NAC, carnitines, CoQ10, zinc, selenium, and lycopene.

According to current literature we can conclude that vitamin E used alone is
more effective when used for in vitro procedures, and very effective used in a dual,
triple or more combinations in terms of sperm parameters and oxidative stress
status.

Further augmentative clinical trials are needful to ascertain the right and effec-
tive antioxidant combination, for reliable and appropriate guiding of this sensitive
medical issue.

Study design Number of study

subjects/abnormality

Dose/duration Results Ref.

citrate 25 mg
s.1x1/6 months

total sperm motility
(p<0.001).

Randomized
controlled trial

60 asthenozoospermic
men

Vit. E 400 mg
s.1x1/2 months
Vit. C 1000 mg
s.1x1/2 months

Increased sperm total motility
(p≤0.05);
No significant effect on other
parameters.

[172]

Table 5.
The role and effect of vitamin E solely and in combination.
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