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Chapter

Boundary Element Method for the
Mixed BBM-KdV Equation
Compared to Non Standard
Boundary Conditions
Mostafa Abounouh, Hassan Al-Moatassime,

Sabah Kaouri and Youssef Ouakrim

Abstract

In this chapter, we are interested in the numerical resolution of the mixed
BBM-KdV equation defined in unbounded domain. Boundary Element Method
(BEM) are introduced to truncate the equation into a considered bounded domain.
BEM uses domain decomposition techniques to construct Boundary Condition (BC)
as transmission between the bounded domain and its complementary. We then pre-
sent a suitable approximation of these BC using Discrete Galerkin Method. Numerical
simulations are made to show the efficiency of these BC.We also compare with
another method that truncates the equation from unbounded to bounded domain,
called Non Standard Boundary Conditions (NSBC) which introduces new variables to
catch information at the boundary and compose a system to connect all these variables
in the bounded domain. Further discussions are made to highlight the advantages of
each method as well as the difficulties encountered in the numerical resolution.

Keywords: wave equations, transparent boundary condition, boundary element
method, non-standard boundary conditions, finite difference method

1. Introduction

We consider a combination of two linearized typical dispersive partial differen-
tial equations that model solitary waves and all interactions between them, given as
follows

∂tu t, xð Þ þ α∂3xxxu t, xð Þ � β∂3txxu t, xð Þ þ γ∂xu t, xð Þ ¼ 0 t, xð Þ∈
∗
þ � 

u 0, xð Þ ¼ u0 xð Þ x∈

lim
∣x∣!�∞

u t, xð Þ ¼ 0 t∈
∗
þ

8

>

>

<

>

>

:

(1)

such that α, β are dispersion parameters and are positive numbers, while γ ∈ is
the velocity number. In the case α ¼ 0, we obtain the BBM equation [1] and when
β ¼ 0, we get the KdV equation [2]. Our main purpose is to obtain numerical
approximation of Eq. (1) when taken in a bounded domain 0,T½ � � a, b½ � with
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suitable boundary conditions with no spurious reflections. For this regard, we use
two different techniques that are BEM and NSBC.

The Boundary Element Method (BEM), also known as the Boundary Integral
Equation Method (BIEM), is an alternative deterministic method that incorporates a
mesh located, only, at domain boundaries and therefore attractive for free surface
problems. There are two types of BEM, the direct BEM which requires a closed
boundary so that the physical variables (e.g. pressure and normal velocity in acoustics)
can only be considered from one side of the surface (interior or exterior), while the
indirect (IBEM) can consider both sides of the surface and does not need a closed
surface. In the first part of this chapter, we use this technique of BEM to derive the BC
to the Eq. (1) in the domain [0,T] � [a, b]. More precisely, we are going to introduce
the BEM to establish BC satisfied by the Eq. (1) on two interface points a and b by
solving the same equation in the complementary domain n a, b½ �. The BEM has
significant advantages over the finite element or difference methods (FEM or FDM),
as there is no need for discretizing the domain n a, b½ � into elements. It only uses
infinite boundary condition and transmission condition to compute the solution at a
and b as integral equations. Consequently, this integral equations will be fixed as the
boundary conditions of the problem (1) on the bounded domain [0,T] � a, b½ �.
Therefore, the boundary condition are approximated as Fredholm Integral Equations
of second kind.

Despite the meshing effort is limited and the system matrices are smaller, the
BEM also has disadvantages over the Finite Element Method or Difference Finite
Method. In fact, the BEM matrices are mostly populated with complex coefficients.
Furthermore, singularities may arise in the solution. These deteriorate the efficiency
of the solution and must be prevented [2].

The outline of this chapter is organized as follows. In section 2, we describe the
BEM for the mixed BBM-KdV equation [3]. Next, we discuss the special case of the
BBM equation and give the approximation of the resulting equation Finite Differ-
ence Method. Section 3 presents briefly another method to derive boundary condi-
tions for BBM equation called NSBC introduced in [4]. Finally in section 4,
comparison of both methods is given with numerical experiments to highlight the
transparency of both BC obtained in sections 2 and 3.

2. Boundary element method for the mixed BBM-KdV equation

Being in one dimensional space, , the boundary of any bounded interval
reduces to two points. Hence, we use the BEM to find two values that might depend
on time. For this regard, we consider a bounded domain ΩT ¼�0,T �Ω½ where Ω ¼
�a, b½ and a, b,T ∈ such that a< b,T >0. Note Σ ¼ a, bf g and ΣT ¼�0,T �Σ½ . we
take the decomposition  ¼ Ωg ∪Ω∪Ωd, such that, Ωg ¼� �∞, a� and Ωd ¼ b, þ∞½½ .
The corresponding equations to (1) using Dirichlet-to-Neumann domain
decomposition write

∂tu t, xð Þ þ α∂3xxxu t, xð Þ � β∂3txxu t, xð Þ þ γ∂xu t, xð Þ ¼ 0 inΩT

u 0, xð Þ ¼ u0 xð Þ atΩ

∂nu ¼ ∂nw atΣT

8

>

<

>

:

(2)

∂tw t, xð Þ þ α∂3xxxw t, xð Þ � β∂3txxw t, xð Þ þ γ∂xw t, xð Þ ¼ 0 inΩgT
∪ΩdT

w 0, xð Þ ¼ 0 inΩg ∪Ωd

w ¼ u inΣgT
∪ΣdT

lim
∣x∣!þ∞

w t, xð Þ ¼ 0 at �0,T½

8

>

>

>

>

<

>

>

>

>

:

(3)
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The main object of this section is to prove the following result.
Lemma 2.1 The solution of the evolution Eq. (3) satisfies the following integral

equations

w t, að Þ �U2L�1 λ1 sð Þ2
s

 !

∗wx t, að Þ �U2L�1 λ1 sð Þ
s

� �

∗wxx t, að Þ ¼ 0

w t, bð Þ � L�1 1

λ1 sð Þ2

 !

∗wxx t, bð Þ ¼ 0,

wx t, bð Þ � L�1 1

λ1 sð Þ

� �

∗wxx t, bð Þ ¼ 0

(4)

where L�1 f sð Þð Þ stands for the inverse Laplace transform of f , ∗ denotes the
convolution operator and λ1 a function of the time co-variable s.

Proof. We apply the Laplace transformation with respect to the time variable t
to the exterior problems (3), recall the Laplace transformation

L wð Þ s, xð Þ≔ ~w s, xð Þ ¼
ðþ∞

0
w t, xð Þe�tsdt, (5)

where s stands for the co-variable of time t and verify R sð Þ>0.
We obtain

s~w s, xð Þ þ α∂xxx ~w� βs∂xx ~wþ γ∂x ~w ¼ 0, x≥ b, x≤ a,R sð Þ>0 (6)

which is a cubic ordinary differential equation whose solutions are of the form
are given explicitly by

ŵ s, xð Þ ¼ c1 sð Þeλ1 sð Þx þ c2 sð Þeλ2 sð Þx þ c3 sð Þeλ3 sð Þx, x∈n a, b½ � (7)

where λ1 sð Þ, λ2 sð Þ, λ3 sð Þ denote the roots of the depressed cubic equation

αλ3 � βsλ2 þ γλþ s ¼ 0 (8)

The three solutions are given by

λk sð Þ ¼ jk�1ζ sð Þ � Θ1 sð Þ
jk�1ζ sð Þ

þ Θ2 sð Þ, k ¼ 1, 2, 3 (9)

where the complex j is given by j ¼ exp 2iπ=3ð Þ,

ζ sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4αγ3 � β2 s2 γ2 þ 18αβ s2 γ � 4β3 s4 þ 27α2 s2
p

2332α2
� 9αβ sγ � 2β3 s3 þ 27α2 s

54α3

 !13

,

Θ1 sð Þ ¼ 3αγ � β2 s2

9α2
,

Θ2 sð Þ ¼ βs

3α
:

(10)

Assume that R sð Þ> 2β3þ9γα2

27α2 , then roots of the cubic Eq. (8) possess the following

separation property
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R λ1ð Þ< β

3α
, R λ2ð Þ> β

3α
and R λ3ð Þ> β

3α
: (11)

In fact, we consider the change of variable λ ¼ z� β

3α. Then the cubic Eq. (8)

becomes z3 þ pzþ q ¼ 0 such that p ¼ 3αγ�β2

3α2 and q ¼ 27α2sþ2β3�9αβγ
27α .

Hence under the condition R qð Þ ¼ 27α2R sð Þþ2β3�9αβγ
27α , it follows that the roots

ri, i ¼ 1, 2, 3 of the equation z3 þ pzþ q ¼ 0 satisfy

R r1ð Þ<0, R r2ð Þ>0, R r3ð Þ>0

Now back to Eq. (7), for x≥ b we have from the infinite condition that the

coefficients c2 and c3 must vanishe, hence ~w x, sð Þ ¼ c1 sð Þer1 sð Þx, deriving over x and
using the continuity of w in the interface yield

ŵ s, bð Þ � 1

λ21 sð Þ
ŵxx s, bð Þ ¼ 0, ŵx s, bð Þ � 1

λ1 sð Þ ŵxx s, bð Þ ¼ 0 (12)

Idem for x≤ a, we have c1 ¼ 0 and hence

ŵxx s, að Þ � λ2 sð Þ þ λ3 sð Þð Þŵx s, að Þ þ λ2 sð Þλ3 sð Þŵ s, að Þ ¼ 0: (13)

As λ1, λ2, and λ3 are roots of the cubic Eq. (8) we obtain immediately

λ1 sð Þλ2 sð Þλ3 sð Þ ¼ � s

α
and λ2 sð Þ þ λ3 sð Þ þ λ1 sð Þ ¼ � β

α
(14)

Then the Eq. (13) becomes in terms of λ1 sð Þ

ŵxx s, að Þ þ λ1 sð Þ þ β

s

� �

ŵx s, að Þ � s

αλ1 sð Þ ŵ s, að Þ ¼ 0 (15)

Now applying the inverse Laplace transform to Eqs. (8) and (10), we infer

w t, að Þ � αL�1 λ21 sð Þsþ λ1 sð Þβ
s

� �

∗wx t, að Þ � αL�1 λ1 sð Þ
s

� �

∗wxx t, að Þ ¼ 0

w t, bð Þ � L�1 1

λ21 sð Þ

� �

∗wxx t, bð Þ ¼ 0, wx t, bð Þ � L�1 1

λ1 sð Þ

� �

∗wxx t, bð Þ ¼ 0

(16)

Therefore, we get the following result describing the problem in the bounded
domain satisfied by the restriction on ΩT of the original problem (1).

Theorem 1.1 Let α, β be non negative numbers and γ ∈. The restriction of (1) to
Ω is described by the following Initial Boundary Value Problem (IBVP)

∂tuþ α∂xxxu� β∂txxuþ γ∂xu ¼ 0 inΩT

u 0, xð Þ ¼ u0 xð Þ atΩ

∂nu t, xð Þ ¼ Bu t, xð Þ atΣT

8

>

>

<

>

>

:

(17)

where B is derived on ΣT from equations

u t, að Þ � αL�1 λ21 sð Þsþ βλ1 sð Þ
s

� �

∗ ux t, að Þ � αL�1 λ1 sð Þ
s

� �

∗ uxx t, að Þ ¼ 0
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u t, bð Þ � L�1 1

λ21 sð Þ

� �

∗ uxx t, bð Þ ¼ 0, ux t, bð Þ � L�1 1

λ1 sð Þ

� �

∗ uxx t, bð Þ ¼ 0

We emphasize that those boundary conditions strongly depend on α and β

through the root λ1 sð Þ. Some simplifications can be obtained for particular cases
allowing direct evaluation of the inverse Laplace transform. Taking for example the
BBM equation (for α ¼ 0), we can get after applying Laplace transformation to (3),

∂x ~w s, bð Þ ¼ γ

2βs
~w s, bð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4βs2
p

2βs
~w s, bð Þ

¼ γ

2β

~w s, bð Þ
s

� γ2

2β

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4βs2
p

~w s, bð Þ
s

� 2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4βs2
p ~w s, bð Þ:

(18)

∂x ~w s, að Þ ¼ γ

2βs
~w s, að Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4βs2
p

2βs
~w s, að Þ

¼ γ

2β

~w s, að Þ
s

þ γ2

2β

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4βs2
p

~w s, að Þ
s

þ 2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ2 þ 4βs2
p ~w s, að Þ:

(19)

In this case, we obtain convolution products with Bessel functions after the
Laplace inverse transformation as follows

∂xw t, bð Þ ¼ C1It wð Þ tð Þ � C2 Jc0 ∗ It wð Þ
� �

tð Þ þ C3 Jc1 ∗w
� �

tð Þ,

∂xw t, að Þ ¼ C1It wð Þ tð Þ þ C2 Jc0 ∗ It wð Þ
� �

tð Þ � C3 Jc1 ∗w
� �

tð Þ:

where we have used the expressions

ffiffiffiffiffiffiffiffiffiffiffiffiffi

c

c2 þ s2

r

¼ L H tð ÞJ0 ctð Þð Þ sð Þ≔L H tð ÞJc0 tð Þ
� �

sð Þ , and Jc0
� �0 ¼ �Jc1,

and the notations c ¼ γ

2
ffiffi

β
p , C1 ¼ γ

2β , C2 ¼ γ

2

� �3
2β�

5
4, C3 ¼

ffiffiffiffiffiffiffiffi

2

γ
ffiffi

β
p

q

:.

Recall that the Bessel functions can be defined by the following integrals

Jc0 tð Þ ¼ 1

π

ðπ

0
cos ctsinτð Þdτ, Jc1 tð Þ ¼ 1

π

ðπ

0
cos ctsinτ � τð Þdτ:

From this, we may compute

∂nw t, bð Þ ¼ �C1It wð Þ tð Þ þ C2 Jc0 ∗ It wð Þ
� �

tð Þ � C3 Jc1 ∗w
� �

tð Þ,

∂nw t, að Þ ¼ C1It wð Þ tð Þ þ C2 Jc0 ∗ It wð Þ
� �

tð Þ � C3 Jc1 ∗w
� �

tð Þ:

Thus the boundary operator B in (2) writes, in the case α ¼ 0,

Bu t, xð Þ≔
C1Itu tð Þ þ C2 Jc0 ∗ Itu

� �

tð Þ � C3 Jc1 ∗ u
� �

tð Þ x ¼ a

�C1Itu tð Þ þ C2 Jc0 ∗ Itu
� �

tð Þ � C3 Jc1 ∗ u
� �

tð Þ x ¼ b

8

<

:

(20)

Next, we propose an approximation, always for the case α ¼ 0, of the BBM
equation in ΩT supplemented with constructed boundary conditions.
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2.1 Numerical approximation

This subsection is devoted to the numerical approximation of the obtained IBVP
(17) for α ¼ 0 and B given in (20). Our strategy is to seek numerical simulations
that permits to avoid any boundary reflections and in some way renders the fully
discrete scheme unconditionally stable.

Let N,M be integers, we define time step Δt ¼ T
M and spatial step h ¼ b�a

N . The
grids tn ¼ nΔt, 0≤ n≤M and xi ¼ aþ ih, 0≤ i≤N are used to discretize ΩT.
Throughout this paper, we denote uni the considered approximation of u tn, xið Þ and
the set l

k ¼ m∈, k≤m≤ lf g:

2.1.1 Approximation of the governing equation

We describe a discretization for the BBM equation by the Crank-Nicholson time
scheme as follows

u tnþ1, xð Þ � u tn, xð Þ
Δt

� β
∂xxu tnþ1, xð Þ � ∂xxu tn, xð Þ

Δt
þ γ

∂xu tnþ1, xð Þ þ ∂xu tn, xð Þ
2

¼ 0,

(21)

u t0, xð Þ ¼ u0 xð Þ, n∈
M�1
0 :

For the space finite difference scheme, we use the approximations

∂xu t, xð Þ≈ 1

2h
u t, xþ hð Þ � u t, x� hÞð Þ,ð

∂xxu t, xð Þ≈ 1

h2
u t, xþ hð Þ � 2u t, xÞ þ u t, x� hÞð Þ:ðð

The fully discretization then writes,

unþ1
i � uni
Δt

� β
unþ1
iþ1 � 2unþ1

i þ unþ1
i�1

� �

� uniþ1 � 2uni þ uni�1

� �

h2Δt

þγ
unþ1
iþ1 � unþ1

i�1

� �

þ uniþ1 � uni�1

� �

4h
¼ 0, i, nð Þ∈

N�1
1 � 

M�1
0

u0i ¼ u0 xið Þ, i∈
N
0 :

(22)

2.1.2 Approximation of the boundary condition

The constructed boundary conditions (BC) contains time convolutions that are
non-local and introduces many difficulties, for example, using a direct implemen-
tation leads to long and low accuracy. Several techniques have been used to over-
come these problems by trying to localize the BC, see [5–8] for more details. The
resulting localized BC are easy to implement and more efficient but tends to depend
sensitively on the initial data. In our case, we utilize the Discrete Galerkin Method.
The BC are formulated as Fredholm integral equations of second kind. The basic
idea is to write the boundary condition on (20) in the form

∂nu t, að Þ �
ðt

0
K1 t, sð Þu s, að Þds ¼ 0, (23)

∂nu t, bð Þ �
ðt

0
K2 t, sð Þu s, bð Þds ¼ 0: (24)

6
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where, the introduced KernelsK1,K2 represent a linear combination of the two
Bessel functions of order 0 and 1 at the time t� sð Þ. After a space discretizationweobtain

u t, x0ð Þ �
ðt

0
K1 t, sð Þu s, x0ð Þds ¼ u t, x1ð Þ, (25)

u t, xNð Þ �
ðt

0
K2 t, sð Þu s, xNð Þds ¼ u t, xN�1ð Þ, (26)

where K1 ¼ �hK1 and K2 ¼ hK2. Both resulting Eqs. (25) and (26) can be
identified to the linear integral equation

y tð Þ �
ð

D

K t, sð Þy sð Þdσ sð Þ ¼ z tð Þ, t∈D: (27)

The Eq. (27) is a Fredholm integral equation of second kind, where D is a closed
bounded set in 

m, withm≥ 1. The approximation of such integral equation could be
made by a discrete Galerkin method using the quadrature rule of Gauss-Legendre as
presented in [9]. Based on this, the BC can be similarly discretized while considering
the domain D as the time interval 0, t½ �. Precisely, we use the Gauss Legendre Quadra-
ture of order q, labeled GLQq with zeros ξ j and weights w j being in the interval �1, 1½ �
for j∈

q
0. Let i∈

N�1
0 , we introduce the following transformation

Fi : �1, 1½ � ! ti, tiþ1½ �

ξ ↦ ti
1� ξ

2
þ tiþ1

1þ ξ

2

(28)

The approximation of the BC is now given by

u tnþ1, x0ð Þ �
ðtnþ1

0
K1 tnþ1, sð Þu s, x0ð Þds ¼ u tnþ1, x1ð Þ (29)

u tnþ1, xNð Þ �
ðtnþ1

0
K2 tnþ1, sð Þu s, xNð Þds ¼ u tnþ1, xN�1ð Þ (30)

that is

unþ1
0 �

ðtnþ1

0
K1 tnþ1, sð Þu s, x0ð Þds ¼ unþ1

1 (31)

unþ1
N �

ðtnþ1

0
K2 tnþ1, sð Þu s, xNð Þds ¼ unþ1

N�1 (32)

For the seek of simplicity, we rewrite the integral terms of (31) and (32) in the form

ðtnþ1

0
Ki tnþ1, sð Þu s, xkð Þds ¼ Ai

ðtnþ1

0
u s, xkð Þdsþ Bi

ðtnþ1

0
Jc0 tnþ1 � sð Þ

ðs

0
u r, xkð Þdr

� �

ds

þDi

ðtnþ1

0
Jc0 tnþ1 � sð Þu s, xkð Þds

≔AiI1 tnþ1, xkð Þ þ BiI2 tnþ1, xkð Þ þDiI3 tnþ1, xkð Þ,

such that i, kð Þ∈ 1, 0ð Þ, 2,Nð Þf g, A1 ¼ A2 ¼ �hC1,B2 ¼ �B1 ¼ hC2 and D1 ¼
�D2 ¼ hC3, all constants Ci are defined in (??). Thus, basing on the approach
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presented in [9], the GLQq applied to the integrals previously defined is described

by the following, for n∈
M�1
0 and k∈ 0,Nf g,

I1 tnþ1, xkð Þ ¼ Δt

2

X

n

i¼0

X

q

j¼0

w ju Fi ξ j

� �

, xk
� �

: (33)

The second integral is more complicated since it involves two composing inte-
grals, using Gauss-Legendre quadrature twice yields

I2 tnþ1, xkð Þ ¼ Δt2

4

X

n

i¼0

X

q

j¼0

w jJ0 tnþ1 � Fi ξ j

� �� �

X

j

l¼0

X

q

m¼0

wmu Fl ξmð Þ, xkð Þ (34)

and the remained integral is approximated by

I3 tnþ1, xkð Þ ¼ Δt

2

X

n

i¼0

X

q

j¼0

w jJ1 tnþ1 � Fi ξ j

� �� �

u Fi ξ j

� �

, xk
� �

: (35)

From approximations (33)–(35), the numerical solution on the interface of (17)
can be given by

unþ1
0 ¼ unþ1

1 þ f nþ1
1 , (36)

unþ1
N ¼ unþ1

N�1 þ f nþ1
2 : (37)

We accomplish this by simply adding (36) and (37) to the discretization of the
interior governing Eq. (22). We obtain an implicit scheme that we illustrate by the
following system in matrix form

I þ ~Aþ ~B
� �

Unþ1 ¼ I þ A� Bð ÞUn þ Fn, n∈
M�1
0 ,

unþ1
0 ¼ unþ1

1 þ f nþ1
1 ,

unþ1
N ¼ unþ1

N�1 þ f nþ1
2 :

8

>

>

>

>

>

<

>

>

>

>

>

:

(38)

with

Un ¼
un1
⋮

unN�1

0

B

@

1

C

A
I ¼

1 0

⋱

0 1

0

B

@

1

C

A
, Fn ¼

Cd1 þ Cd2ð Þ f n1 � un1
� �

0

⋮

0

Cd1 � Cd2ð Þ f n2 � unN�1

� �

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

,

A ¼ Cd1

2 �1 0

�1 ⋱ �1

0 �1 2

0

B

B

@

1

C

C

A

, B ¼ Cd2

0 1 0

�1 ⋱ 1

0 �1 0

0

B

B

@

1

C

C

A

and
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~A ¼ Cd1

2� Cd1 �1 0

�1 ⋱ �1

0 �1 2� Cd1

0

B

B

@

1

C

C

A

, ~B ¼ Cd2

�Cd2 1 0

�1 ⋱ 1

0 �1 Cd2

0

B

B

@

1

C

C

A

:

where the discretization constants are Cd1 ¼ β

h2
,Cd2 ¼ γΔt

4h .

3. Non standard boundary conditions for the BBM equation

In [4], we have presented a new method to derive transparent boundary condi-
tions for the BBM equation. These boundary conditions have the advantage of being
local in time but needs an additional function construct the BC which means bigger
system to be solved. We recall that the problem designed to be the restriction in ΩT

of the BBM initial Eq. (1) with α ¼ 0 is given by

∂tu� β∂txxuþ γ∂xu ¼ f in �0,T���a, b½
∂tv� β∂txxvþ γ∂xv ¼ g in �0,T���a, b½

∂xu ¼ v on �0,T� � a, bf g
β∂txv� γv ¼ ∂tu� f on �0,T� � a, bf g

u 0, xð Þ ¼ u0 xð Þ on a, b½ �
v 0, xð Þ ¼ v0 xð Þ on a, b½ �

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

(39)

4. Numerical examples

We take an initial condition as solitary wave like function locally supported in Ω.
The evolution of the solutions are plotted in different time steps before, under and
after traveling the right boundary of the considered bounded domain. We save a
reference solution that is numerically calculated in a broaden domain of Ω with
Dirichlet boundary condition. We compute infinite error between numerical solu-
tions using both formulations presented in this paper and the reference solution.
We denote GLQ i for approached solution with BEM and Gauss Legendre Quadra-
ture in (2) for i∈ 0, 1, 2f g, while NSBC refers to numerical solution with non
standard boundary conditions given in (3). We define the following errors

∥ u� uref
� �

t, að Þ∥
∞
¼ sup

t∈ 0,T½ �
∣u t, að Þ � uref t, að Þ∣, (40)

∥ u� uref
� �

t, bð Þ∥
∞
¼ sup

t∈ 0,T½ �
∣u t, bð Þ � uref t, bð Þ∣, (41)

∥ u� uref
� �

t, xð Þ∥
∞
¼ sup

t, xð Þ∈ 0,T½ ���a, b ∣u t, xð Þ�uref t, xð Þ∣:½
(42)

Let β ¼ γ ¼ 1, T ¼ 10 and u0 xð Þ ¼ sech2 xð Þ. The considered initial data is locally

supported in the interval Ω ¼� � 10, 10½, since u0 10ð Þ ¼ u0 �10ð Þ≈ 8, 25:10�9.

We fix h ¼ 10�2 and we vary the time step Δt. For a better comparison of these
methods, we compute CPU time, in seconds, needed for each one to obtain
numerical solution.
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Table 1 shows that both methods give a good approximation of the restriction to
ΩT of the reference solution. NSBC give better approximation than GLQ . We can
remark a slow convergence of GLQ i with respect to i and also time step. However,
NSBC gives a good approximation in as much as Δt goes to zero. Furthermore,
GLQ i is more expensive in CPU time when i increases than NSBC due to the
presence of non local convolutions in time in the boundary condition.

We also plot in Figure 1, captions at different times of either reference solution
and approximated solutions using NSBC and GLQ i for i ¼ 2. We can see that NSBC
follows the refrence solution better than GLQ especially at last times in the right
figure. One remarks that no reflections turn back to the bounded domain when the
wave is going out from the right boundary using both methods.

BC dt u� urefð Þ t, aÞð k
∞

	

	 u� urefð Þ t, bÞð k
∞

	

	 u� urefð Þ t,xÞð k
∞

	

	 CPU time(s)

GLQ0 10�2 1:06� 10�4 6:33� 10�2 6:03� 10�2 4

GLQ1 1:06� 10�4 6:3� 10�2 5:9304� 10�2 9

GLQ2 1:06� 10�4 5:895� 10�2 5:9187 � 10�2 15

NSBC 7:39� 10�5 5:8� 10�3 6:8� 10�3 5

GLQ0 10�3 1:06� 10�4 5:92� 10�2 5:86� 10�2 39

GLQ1 1:06� 10�4 5:86� 10�2 5:857 � 10�2 62

GLQ2 1:06� 10�4 5:852� 10�2 5:85� 10�2 80

NSBC 6:7 � 10�5 1:41� 10�3 1:4� 10�3 50

GLQ0 10�4 1:06� 10�4 5:855� 10�2 5:858� 10�2 436

GLQ1 1:06� 10�4 5:853� 10�2 5:852� 10�2 1040

GLQ2 1:06� 10�4 5:85� 10�2 5:85� 10�2 3205

NSBC 5:9� 10�6 7:35� 10�4 7:3� 10�4 1015

Table 1.
Infinite errors using different boundary conditions.

Figure 1.
Reference solution and approximated solutions NSBC and GLQ i for i ¼ 2 at different times for Δt ¼ 10

�3.
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5. Conclusion

We have compared two methods of deriving and approaching boundary condi-
tions for the BBM equation. We presented the BEM for a general equation that is the
mixed BBM-KdV equation and that shows the hardness to put easy implemented
BC. Furthermore, being non local in time, BC seems to be low accurate and slowly
convergent as presented in numerical example. However, this point opens many
possibilities trying to improve the accuracy of such BC whether by improving the
approximation of convolution product, that comes from Inverse Laplace transfor-
mation, via quadrature or exploring a numerical equivalent to such operation such
as Z transformation. We have proposed an other manner to derive local BC that
gives better approximation than non local BC. All these conclusions have been made
in one space dimension but nothing can be said about the comparison in higher
dimension to decide which method is more adapted, this matter will be our interest
in future works.
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