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Nanoparticles
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and Nagwa Mohammed Amin Aref

1. Introduction

Interaction between Barley yellow dwarf virus, BYDV-PAV, and gold nanoparti-
cles AuNPs application revealed great effect whether in vitro or Vivo. The significant 
effect of virus particles occurred inside the plant cell due to the existence of AuNPs 
treatment. It was clear that using tiny AuNPs 3.151 to 31.67 nm had a potential 
agent to ruined virus particles inside the infected cells. AuNPs cause damage to 
the virus-like particles (VLPs) of the barley yellow dwarf virus-PAV. Where they 
observed puffed and deteriorated VLPs decorated with AuNPs, as well as destroyed 
and vanished particles, using Transmission Electron Microscopy TEM. Generally, 
the plant cell contained different organelles that exhibited ultrastructure changes in 
Nucleus, Chloroplast, Plant cell wall, Mitochondria, cytoplasmic matrix, and viable 
cellular composition of the infected cell with AuNPs. TEM is a powerful tool in 
elucidating plant cells’ fine details at the nanoscale. The present Atlas describes each 
organelle’s structure of plant cells revealed by TEM in healthy, infected, and treated 
with AuNPs in Figure 1.

The purpose of this work is expressed via TEM, which is a very accurate tool 
for judging the AuNPs behavior inside the plant infected cell. Recent remarkable 
innovations in KSU. Platforms [1, 2] provide crucial resources to promote research 
in AuNPs applications and applied plant species as Hordeum vulgare (Barley) due to 
lacking knowledge in the field of virus pathogenicity at the level of ultrastructure. A 
combinatorial approach using the integration of virus with AuNPs in our proteome 
platform is now an effective strategy for clarifying molecular systems integral to 
improving plant productivity of the frequency and importance of ultrastructure 
abnormalities in Barley crop development caused by BYDV-PAV. It was finding out 
the critical feedback of using AuNPs applications on plant cells by examining the 
virus’s behavior conjugated with AuNPs by ultra-structure in TEM on the dis-
eased plants.

The method of inhibiting a plant virus using AuNPs is a method of inducing 
plant resistance against viral disease caused by BYDV by introducing a thoracically 
adequate amount of polydispersed AuNPs system integrated with the virus particles 
wherein virus particles were dissolved and melted in Figure 2. The application of 
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nanotechnology in agriculture, even at its global level, is at its nascent stage. The 
most crucial moment of plant virus entry considering is inducing viral infection 
crossing the cell/wall barriers. In our study, we knocked out and interfered with the 
virus as bio Nanoparticles with other metal AuNPs on the plant; [3] we selected the 
most severe BYDV isolates for Nano application on the plants [4].

The studied BYDV is the type member of the luteovirus group [5]. The 
Latin”luteo” name means yellow [6] and describes the most typical infected plants 
by luteoviruses. BYDV considered a model for dealing with the “yellowing” virus 
diseases, as reported [7]. Most infections appear as necrosis in the phloem, which 
leads to external symptoms such as stunning and leaf chlorosis [5]. The exact symp-
toms were reported [8] that might cup inward, tender, and show more stiffness than 
usual. BYDV is spread by aphids and induces the most widely and most distributed 
and most destructive virus disease globally.

2. Gold nanoparticles have adual positive effect

The prospect antiviral characteristic of Metal nanoparticles (MeNPs) in nano-
agriculture drive them as a potential factor for commanding these histological 
agents. It is essential to detect the dosage of NPs, the application intervals, their 
effect as a biostimulant. The clarification of the mechanisms of action, are not fully 
understood [9]. Application of AuNPs in the presence of virus infection encour-
ages the plants to produce Reactive Oxygen Species (ROS) continually in structures 
such as chloroplasts, mitochondria, peroxisomes, the endoplasmic reticulum (ER), 

Figure 1. 
The plant cell contained different organelles that exhibited ultrastructure changes in nucleus, chloroplast, 
plant cell wall, and mitochondria that describes each of them by TEM in healthy, infected, and treated with 
(AuNPs) as interaction preteome of BYDV- PAV.
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and plasma membranes [10]. These resemble components of the defensive system 
that have been classified according to their catalytic activity, molecular weight, the 
compartment where they act, and level of defense or mechanism of action [11]. 
The positive effect of AuNPs, therefore, needs further study to explore the physi-
ological and molecular mechanisms. However, due to the tiny size, reactivity, and 
efficient penetration ability, metal nanoparticles could reach many intracellular 
and extracellular plant sites. That may trigger a set of physiological processes such 
as senescence affecting plant growth, crop yield, and ecological productivity [12]. 
Nanoparticles (NPs) have unique physicochemical properties, i.e., high surface 
area, high reactivity, tunable pore size, and particle morphology. The appropri-
ate elucidation of the physiological, biochemical, and molecular mechanisms of 
nanoparticles in plants leads to better plant growth and development [13]. The 
chemical reactions, especially reduction–oxidation reactions, were catalyzed by 
Ag, Au, Fe, and Co. The released nano ions may alter proteins while entering into 
cells. Mechanical effects rely on the size of nanoparticles [14]. For example, the cell 
wall damage can be caused by the high concentration adsorption of hydrophobic 
nanoparticle retention and may cause clog pores, which can interfere with water 
uptake [15]. The ability to pass through the cell wall might not be a prerequisite for 
causing oxidative stress and toxicity. Some researchers suggest that despite nano-
materials’ inability to pass through plants’ cell walls, they can cause oxidative stress 
and eventually lead to chromosome condensation [16].

Similarly, CuO nanoparticles can also cause oxidative damage to plant DNA and 
can be detected in plant cells [17]. Particles with anoxic surface often form a layer 
of OH− groups at the surface; these negatively charged groups attract positively 
charged side groups of proteins [14]. Surface effects have engaged a great deal of 
attention in the field of nanotoxicology.

The positive, neutral, and negative charge of Au nanoparticles are resemble hydro-
ponic exposure to Rice plants. The distribution of the bioaccumulated Au nanopar-
ticles due to the negative surface charge of the nanoparticles, which is more toxic in 
above-ground organs [18]. The small particle modulation of 15 nm or 25 nm AuNPs 

Figure 2. 
Methodology, pathological alternation of the plant cellular components, and the dual beneficial effect of 
AuNPs on the plant performance through the following treatments in the electron micrographs; I. heathy cells 
from barley leaves, II. Infected cells from by BYDV- PAV from barley leaves, III. Pretreated leaves of barley with 
AuNPs and infected by BYDV-PAV.
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was transported to the shoot in poplar. At the same time, larger particles (50 nm) could 
hold their size in vivo. AuNPs were located within the roots in a large amount than in 
leaves. AuNPs were detected in different tissues, phloem complex, xylem, cell wall, 
plastids, mitochondria, and more abundantly in the plasmodesmata [12]. Negatively 
charged, anionic carboxylate AuNPs conferred protection to the model lipid mem-
brane against the extreme pH (=12) via shielding effects, whereas positively charged, 
cationic amino-AuNPs could penetrate and disrupt the model membrane [19].

Nanotoxicity is based on empirical data by an exact predictive model, which is 
explained by the interaction between surface charge and particle size that affects 
AgNPs toxicity in both the prokaryotic and eukaryotic model organisms [20]. The 
interaction between particle size and potential surface charge influencing ENM 
phytotoxicity has not received much attention. Therefore, the potential effect surface 
charge density remains to be tested in plants. ORF3 encodes a major coat protein 
(CP) of 22 kDa [21]. The coat protein plays a crucial role in maintaining a high level 
of accumulation of genomic RNA, though unnecessary for PAV replication [22]. 
ORF4 is entirely nested within ORF3 and codes for a 17 kDa nonstructural protein 
required for BYDV-PAV to spread systemically in plants [23]. The expression of ORF 
4 is associated with a unique regulatory mechanism of the ribosome leaky scanning 
mechanism [24]. The ORF4 translation product is similar to that of the homology 
of ORF4 in potato leafroll virus (PLRV), which has biochemical properties specific 
to known movement proteins, including the ability to be phosphorylated, binding 
nonspecifically to nucleic acids [25, 26] and localization to the plasmodesmata [27]. 
PAV ORF5 is fused to CP as a readthrough domain and encodes a 50 kDa protein 
expressed as a 72 kDa fusion protein via a readthrough suppression of the ORF3 stop 
codon [23, 28–30]. A frameshift mutation within ORF6 was reported to be incom-
patible with BYDV-PAV RNA replication in protoplasts [31]. In [32], it is found that 
the RNA sequence encoding or flanking ORF6, rather than the protein product of 
ORF6, is required for PAV replication in oat protoplasts [33].

The viral infection starts with virus replication in the infected cell initially and 
spread to neighboring cells through plasmodesmata which are considered intercel-
lular conduit connecting cell walls. This process is called cell-to-cell (short-distance) 
movement, facilitated by viral movement protein (MP). The following phase is 
termed (long-distance) movement which viruses could enter the vascular tissue, 
dispense, and flood into non-infected tissues, helped by the phloem stream [34]. It 
is presumed that the cell-to-cell movement is an active function, requiring specific 
interaction between the virus and plasmodesmata, whereas systemic viral spread 
through the vascular tissue is a passive process, driven by the flow of photoassimilates 
[35]. The discovery that a 30 kDa movement protein (MP) encoded by the Tobacco 
mosaic virus (TMV) was required for viral cell-to-cell movement [36, 37] exploring 
the trafficking mechanisms of a more comprehensive viral array opened a new path. 
Trafficking viral protein and RNA by viral MP into the phloem and their inter-organ 
regulation of plant development were rarely studied for some viruses [38] and [39]. 
The viral nucleic acid conjugate with the MP, which could transport it through 
plasmodesmata. The first viral MP of the Tobacco Mosaic Virus (TMV) was discov-
ered that had 30 kDa protein (P30) and was able to bind single-stranded nucleic acid 
[40], mediated by two independently active domains of the MP [41]. The P30-TMV 
RNA complex measures a diameter of 1.5–3.5 nm [41] and [42] and may interact with 
the cytoskeletal elements to facilitate the transport of the P30- TMV RNA complex 
from cytoplasm to plasmodesmata [43] and [44]. The diameter is even smaller than a 
protein-free, folded TMV RNA, allowing easy access through dilated plasmodesmata 
[45, 46]. The MP could bind nonspecifically to single-stranded RNA and DNA in vitro 
[25] and associate with plasmodesmata in host plants [47]. ORF 4 proteins in luteo-
viruses may provide a clue for assisting virus cell-to-cell spread in host plants [48] as 
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there is a high similarity of amino acid sequence between ORF 4 protein encoded by 
luteoviruses and PLRV MP [49, 50]. BYDV-PAV MP may also help transport the viral 
genome into the nucleus as the MP is present in the cytoplasm and the nucleus [51]. 
After entry into the cytoplasm, protein synthesis is initiated [52] and enhances repli-
cation and transcription efficiency; viruses use the strategy of compartmentalization 
in specific intracellular components [53]. Its replication is almost totally restricted 
within the plant phloem tissue [54, 55], i.e., phloem parenchyma cells, companion 
cells, and sieve tubes. The restricted site of infection in phloem tissue is an essential 
feature of the Luteoviridae [56].

The systemic spread is suspected to be associated with vascular transport of 
virions due to the discovery of BYDV particles in vasculature samples [57, 58]. The 
critical role of MP was emphasized by the association between the long-distance 
movement of some viruses and viral gene expression. For example, geminiviruses 
coded two proteins responsible for long-distance transportation and viral DNA with 
a single-stranded genome in and out of the nuclei [59, 60]. However, studies of the 
function of putative luteoviral MPs remain limited [61]. A 17 kDa protein encoded 
by ORF 4 is required for BYDV-PAV to spread systemically in plants [62, 63]. The 
replication of the plant virus genome occurs in host cells [64]. The genome of viruses 
must be transported into the nucleus by mechanisms requiring viral MP [65].

Three stages of infection were proposed by [57, 33]. At the first stage, densely 
staining material appeared in plasmodesmata, and an amorphous substance and 
viral RNA containing filaments appeared in the host cytoplasm, Figures 5 (I)-(M) 
in chapter 3. In the second stage, filaments became visible in the nuclear pores. 
During this stage, the nuclear outline became distorted and massive clumping of 
heterochromatin occurs, Figures (5) and (6) in chapter 1. In the nucleus, viral par-
ticles were seen at the last stage after the disintegration of the nuclear membrane. 
The virus could only infect phloem parenchyma, sieve elements, and companion 
cells, while it could not be seen in the mestome sheath or the xylem.

The characterization of VLPs was defined by their diameter, their circular out-
lines, and high electron opacity. Viral particles were detected within areas contain-
ing filamentous material Figures (2) and (3) in chapter 4.

Our study concludes that Nanoscience leads to developing a range of inexpen-
sive nanotech applications for enhanced plant growth. The included data proved 
an efficient means to control virus infection in a fashion way to reduce collateral 
damage. AuNPs have a dual positive effect on controlling the plant viral disease and 
enhance strong plant growth performance.
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