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Chapter

Soil Carbon Storage Potential of 
Tropical Grasses: A Review
Bezaye Gorfu Tessema, Heiko Daniel, Zenebe Adimassu  
and Brian Wilson

Abstract

Environmental degradation and climate change are key current threats to world 
agriculture and food security and human–induced changes have been significant 
driving forces of this global environmental change. An important component is 
land degradation which results in a diminished soil organic carbon (SOC) stock 
with concomitant loss of soil condition and function. Land management to improve 
soil organic matter content, condition and productivity is therefore a key strategy 
to safeguard agricultural production, food supply and environmental quality. Soil 
organic carbon sequestration through the use of plant species with high photosyn-
thetic efficiency, deep roots and high biomass production is one important strategy 
to achieve this. Tropical pastures, which are adapted to a wide range of environ-
mental conditions have particular potential in this regard and have been used 
extensively for land rehabilitation. Tropical pastures also have advantages over trees 
for biomass and carbon accumulation due to their rapid establishment, suitability 
for annual harvest, continual and rapid growth rates. In addition, tropical pastures 
have the potential for SOC storage in subsoil horizons due to their deep root systems 
and can be used as biomass energy crops, which could further promote their use 
as a climate change mitigation option. Here we aimed to review current knowledge 
regarding the SOC storage potential of tropical grasses worldwide and identi-
fied knowledge gaps and current research needs for the use of tropical grasses in 
agricultural production system.

Keywords: Soil organic carbon, Tropical perennial grass, climate change mitigation

1. Introduction

Environmental degradation and climate change are key current threats to world 
agriculture and food security [1–5]. Human–induced changes to land cover have 
been significant driving forces of this global environmental change, of which, 
soil degradation resulting from land conversion, agricultural intensification, soil 
disturbance and increased erosion have been key factors [6–9]. An important 
component of this land degradation globally has been a diminished SOC stock with 
concomitant loss of soil condition and function, compromising food production 
and agricultural sustainability [10–12]. Land and soil management to increase soil 
organic matter content, soil condition and productivity is therefore a key need glob-
ally to safeguard agricultural production, food supply and environmental quality.
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Organic carbon in soils globally is estimated to be between 1500 and 1600 Gt 
[13, 14] to 1.0 m depth which represents a significant component of the global 
carbon cycle, storing more carbon than is contained in vegetation and the atmo-
sphere combined [15–17]. It has been estimated that, worldwide, soils have lost 
between 42 and 78 Gt of their original SOC as a result of management pressures 
[18]. With this carbon depletion, however, comes a significant opportunity, since 
soils are believed to have the capacity to store an additional 0.4–1.2 Gt C year−1 
with the introduction of more judicious land management practices [3, 7, 19–22]. 
As such, soils globally have considerable potential to offset greenhouse gas 
(GHG) emissions and SOC storage has been widely promoted as an important 
strategy to help meet national and international emissions reduction targets [23]. 
Additional SOC storage might therefore have the dual benefit of contributing to 
our response to climate change globally whilst helping to restore soil condition 
and function to promote sustainable land management, improved production 
and productivity [3, 7, 19, 20, 24].

Methodologies and management practices that reduce SOC loss or promote 
the storage of additional soil carbon are being actively investigated globally. It 
has been widely reported that cultivation accelerates organic matter decomposi-
tion by exposing sites within soil aggregates that were previously protected  
[25–29] while soil erosion, vegetation clearing and removal of crop residue are 
also known to result in long–term soil carbon loss [30, 31]. However, there are 
management practices which seem to either arrest SOC loss (e.G. minimum 
tillage) or to promote carbon storage such as afforestation, pasture conversion, 
grazing management, cover crops, water harvesting, erosion control and the 
use of soil amendments including biochar [32]. Not all of these are practical in 
production landscapes globally and not all will be equally effective in the man-
agement of SOC. The effectiveness of various management practices is therefore 
being explored to facilitate optimum carbon storage that can be integrated with 
agricultural production systems.

An approach that has attracted particular attention is the use of perennial grass 
species within the production system, which appear to significantly increase SOC 
across a range of environments and this is particularly true where these perennial 
grasses replace cropping systems [33–36]. Pastures are varied in terms of their 
geographical distribution and species composition comprising native and exotic, 
annual and perennial grasses, legumes, herbs and shrubs [37]. They are the primary 
resource for many farm industries and are the basis for the production of meat, 
wool, milk and fodder. Schuman et al. [38] estimated the SOC under grazing lands 
of the world to be 10–30% of the total global SOC stock, while Janssens et al. [39] 
estimated the overall C sink in grassland soils of most European countries to average 
approximately 60 g C m−2 year−1.

Tropical perennial grass species have been particularly promoted due to the high 
biomass and carbon accumulation resulting from their excellent photosynthetic 
efficiency, rapid establishment, fast growth, deep root systems and potential annual 
harvest [28, 40, 41] and Parton et al. [42] suggested that tropical grasses have 
significant potential as a carbon sink. However, there is a research need to fully 
quantify their capacity to store additional soil carbon relative to other management 
systems and hence, their potential for greenhouse gas (GHG) abatement and soil 
condition recovery [43–45].

Here we aimed to review current knowledge with regard to the SOC stor-
age potential of tropical grasses worldwide given their wide distribution and 
extensive use, where current agricultural policy environments have identified 
land management innovations as key entry point to achieve co-benefits of resil-
ient agriculture, poverty alleviation, and climate change mitigation. Hence, we 



3

Soil Carbon Storage Potential of Tropical Grasses: A Review
DOI: http://dx.doi.org/10.5772/intechopen.97835

identify knowledge gaps and current research needs to fully explore the potential 
of tropical grass species for SOC change.

2. SOC storage potential of tropical grasses

A number of studies have considered the soil carbon storage potential of tropical 
pastures by comparison with other management systems. An empirical, five year 
study of tropical ecosystems in South America by Amézquita et al. [46], demon-
strated that although tropical pastures were second only to native forest in the quan-
tity of SOC stored, organic carbon in the soils of these pasture systems represented 
a higher proportion (95–98%) of the total ecosystem carbon than comparable native 
tropical forest systems and silvo–pastoral systems. Desjardins et al. [47], reported 
that where tropical forest was converted to tropical pasture in Brazilian Amazonia, 
a slight increase in SOC content occurred in both sandy and clay soils while Post 
and Kwon [48] described the similarity of the average rates of SOC accumulation in 
forest and grasslands of 33.8 and 33.2 g C m−2 y−1, respectively through time fol-
lowing management although above ground carbon is lost. In Australia, Chan and 
McCoy [43] also identified the potential of introduced perennial pasture (Kikuyu) 
to store a mean of 73 Mg C ha−1 in soil which was similar to soils under native trees 
(77 Mg ha−1). Under some circumstances, tropical pastures have been reported to 
have a greater capacity to store SOC compared with trees or forest. For example, 

Grass type Age (Year) Sampling 

depth (cm)

Mg C 

ha−1 yr−1

Mg C 

ha−1

Country/

region

Source

African grass — — 8.67 — Latin America [50]

Andropogon 
guyanus

0–100 14.45 — Latin America [50, 51]

Brachiaria 
dictyoneura

3.5 — 8.57 30 Latin America [52]

Lemongrass — 0–30 3.08 — India [53]

“ — 0–30 5.38 — India [54]

Palmarosa — 0–30 2.79 — India [53]

“ — 0–30 6.14 — India [54]

Kikuyu 3 0–10 2.6 34 g 
(kg−1)

Australia [55]

“ 15 0–20 — 67.2 Australia [43]

“ — 0–30 0.9 — West 
Australia

[56, 57]

“ — 0–30 0.26 — South 
Australia

[56, 57]

Miscanthus 10 0–80 0.78 — Europe [58]

“ 2.5 0–30 0.73 1.82 UK [59]

“ 2.5 0–30 0.87 2.17 UK [59]

Vetiver 5 0–30 5.54 — India [53, 54]

“ 7 0–30 1.61% Ethiopia [60]

Table 1. 
Total soil carbon stored under different tropical grasses with different soil sampling depth and age of 
plantation.
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Guo et al. [49], reported 15–20% larger soil C stocks under native pasture compared 
with a 16 year old pine plantation to 1.0 m in the soil profile. These findings seem to 
be convincing, although some caution must be attached to many such results given 
that they typically do not account for above-ground biomass and are rarely reported 
on an equivalent mass basis. There is nevertheless, growing evidence that tropical 
pastures might have the capacity to store SOC that is at least equivalent to that of 
forest systems in terms of rate and quantity of accumulation. However, the quantity 
and rate of carbon accumulation would appear to be moderated by environmental 
conditions and both preceding and ongoing management practices. Consideration 
and knowledge of the behavior and potential carbon storage of particular tropical 
grass species has much to add to this debate.

Some specific tropical grass species (Table 1) such as Andropogon guyanus (gamba 
grass, Rhodesian bluegrass, tambuki grass), Lemongrass (Cymbopogon citratus), 
Palmarosa (Cymbopogon martinii), Kikuyu (Pennisetum clandestinum); Miscanthus 
(M. giganteus), Vetiver (Chrysopogon zizanioides) have been highlighted for improving 
soil carbon storage potential even though their efficiency is determined by a range 
of environmental and management factors [46, 60–64]. However, Fearnside and 
Barbosa [62], found that management practices could on the other hand determine 
whether tropical pasture soils could be net sinks or sources of carbon, demonstrating 
in Brazilian Amazonia, that under “typical” (without inputs or other practices) and 
“ideal” (with variety of appropriate practices) management, tropical pasture soils 
were a net carbon source releasing an average of 12 Mg C ha−1 following deforestation.

3. Processes of SOC storage

The process by which organic carbon stored in soils follows various pathways 
such as roots, root exudates and litter (both above- and below-ground). Plant litter 
consists of dead roots, is a primary source of soil organic matter which is the larg-
est terrestrial pool of carbon [65]. Despite, often considered separate processes of 
litter decomposition and soil organic matter stabilization is an important control 
of carbon storage and SOC dynamics [66, 67]. Decomposition of plant litter is one 
of the main processes driving nutrient and carbon (C) cycling in terrestrial ecosys-
tems [68]. The effect of litter quality on SOM stabilization is inconsistent and litter 
addition promotes SOC mineralization, but this promotion alters by soil moisture 
and litter type [69]. Hence, understanding the interactions between the initial 
composition and subsequent decomposition of plant litter help to understand the 
flow of organic matter between soil carbon pools [70]. Root exudates are also one 
of the various pathways through which the carbons fixed released into soils [71]. 
Plants release a part of their metabolome into soils and thereby provide informa-
tion about the potential biological function of exudates in the rhizosphere [72].

Root biomass production is an important plant component that can contribute 
to soil carbon sequestration. A strong fibrous root system, penetrating deep into the 
soil profile and growing vertically rather than horizontally, is therefore desirable to 
maximize soil carbon sequestration. Hence, the large root systems of tropical grasses 
might potentially facilitate long term deep carbon storage and reduce the chance of 
decomposition and carbon loss [44]. For example, the roots of vetiver grass have 
been found to contribute significantly more to additional SOC storage than those of 
other grass species [60, 63, 73]. Although the extent of SOC sequestration potential 
of tropical grass species still requires further research, they would appear to have 
particular promise with regard to soil carbon storage compared with other species.

Due to their large biomass production and their extensive and fast growing 
root system, tropical perennial grasses would seem to have the capacity to rapidly 
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store or contribute large quantities of carbon in addition to their other varied uses 
[53, 74]. Deep rooted tropical perennial grasses have been identified as the most 
promising plants that could contribute to SOC storage and thus climate change 
mitigation [44, 75–78]. Awoke [79] highlighted further the potential of tropical 
grasses for both above- and below-ground C sequestration by planting strategically 
on appropriate lands.

Most of studies relating to tropical grasses to date have focused on the actual 
biomass production potential. However, there are only few studies which have 
considered the actual net accumulation of carbon stored in the soil under tropical 
grasses (Table 1) highlighting the need for controlled studies to determine not only 
biomass and inputs but also the net effect of tropical perennial grasses in terms of 
carbon storage and the mechanisms, stability and longevity of the carbon stored 
such as the rate of new carbon turnover and carbon cycling of the newly added 
carbon and the extent to which it is retained in the soil system.

4. Effect of cropland conversion to tropical pastures on soil carbon

Cropland conversion to pastures has recently become a common practice and is 
believed to have considerable potential to store significant quantities of additional 
SOC [19, 38, 80]. For example, Conant et al. [33] and Conant [81], reviewed stud-
ies worldwide and concluded that cropland conversion to grasslands can create a 
significant carbon sink, with a mean 5% annual increase in SOC. In the mid–western 
United States, agricultural land conversion to perennial grassland showed a constant 
rate of 62 g C m−2 year−1 SOC accumulation over 40 years in the top 10 cm [82]. 
Similarly, Abberton et al. [83] reported that, in temperate regions, most grasslands 
can be considered soil carbon sinks of up to 40 g C m−2 year−1 following cropland 
conversion. Post and Kwon [48], further estimated that land use change from 
cropping to grassland could result in an increase of 33.2 g soil C m−2 year−1 in the 
USA. While a meta–analysis in temperate grasslands showed that at the 0–30 cm soil 
depth over 20 years SOC sequestration reached 44 g C m−2 year−1 which is half of the 
rate (95 g C m−2 year−1) at which SOC is lost over a 20 year period following per-
manent grassland conversion to an annual crop [84]. These estimates suggest that 
SOC recovery is possible but is usually slower than initial loss. Research in the south 
eastern United States also suggested up to 100 g C m−2 year−1 could be sequestered 
in soil following conversion of cropland into optimally grazed pastures (where the 
available pasture matches the animal needs). These increases have been attributed 
to the fast growth habit of pastures, negligible erosion and the minimal disturbance 
to soil compared to cropping [28]. Although focused principally on temperate grass 
pasture species, these studies demonstrate the potential increase of SOC as a result 
of cropland conversion to grasslands.

5. Form and resilience of carbon stored under tropical grasses

Many of tropical pasture species have a distinctive carbon fixing (photosyn-
thesis) pathway and are referred to as C4 plants [43]. All plant species have the 
more primitive C3 pathway, described by the Calvin Cycle [85] but an additional 
C4 pathway evolved in species in the wet and dry tropics. C4 pastures are those that 
have the photosynthetic processes divided between mesophyll and bundle sheath 
cells that are anatomically and biochemically separate, while C3 pastures are those 
which use only the Calvin cycle photosynthesis pathway for fixing CO2 which takes 
place inside of the chloroplast in mesophyll cells [86, 87].
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In terms of photosynthetic efficiency, C4 grasses are approximately 50% more 
efficient than C3 plants as a result of this distinctive carbon fixation mechanism 
[88]. Wang et al. [87], indicated that more efficient use of light and CO2 in C4 plants 
results in an increase in both biomass production and CO2 fixation. Hence, as a 
result of their high photosynthetic efficiency and productivity, tropical C4 grasses 
might be expected to have larger potential for SOC sequestration compared with 
temperate and annual pastures [55]. Most tropical pastures are important peren-
nials and provide a permanent soil cover and thus prevent soil surface erosion 
[89], which is of particular importance in the prevention of SOC loss by erosion. 
Greenland [90] hypothesized that, with suitable management practices, tropical 
grasses could have a significant potential as a soil carbon sink. Our knowledge of 
perennial tropical species growth, interaction with the soil, potential quantities and 
mechanisms of carbon storage remains incomplete [50].

It has been speculated that carbon storage in sub–soils might be an important 
mechanism leading to increased SOC storage in soils [44, 77] and it is known that 
tropical grasses translocate large quantities of carbon to their root systems [44]. 
This suggests an effective translocation to deeper soil layers where soil carbon is 
typically more protected from decomposition processes [91–94]. Accumulation of 
carbon in deeper soil layers might therefore be an important mechanism for carbon 
storage under this vegetation type [59, 89, 95]. The deep rootedness of tropical pas-
tures might, therefore, potentially play an important role in transporting carbon 
to deeper soil layers and therefore facilitate SOC storage. Indeed, Fisher et al. [52], 
estimated that the introduction of deep rooted African grass pastures in Colombia 
might account for the sequestration of 100–507 Mt. soil carbon year−1 if their study 
sites were indeed representative of similar pastures throughout South America. 
These studies indicate the potential benefits of introducing deep rooted tropical 
perennial grasses for SOC storage but also the need for further carbon inventory.

6. Factors affecting SOC sequestration

Tropical pastures grow continually year round and are adapted to a wide range of 
soil and climate conditions because of the close interaction between climate factors 
and soil properties [28, 96]. In addition to soil type, management and site history 
could be important factors determining the direction and magnitude of change 
in soil carbon stock [28]. Similarly Chan and McCoy [43], indicated the higher 
effectiveness of pastures in increasing SOC storage under appropriate management. 
Wilson and Lonergan [97], also demonstrated in Australia that native and improved 
pastures in this environment had the same SOC quantity and that historical and 
contemporary management practice is a key factor influencing net SOC. The man-
agement of tropical pastures is therefore a critical determinant of whether the soils 
under this land use will represent a source or a sink of atmospheric carbon [62]. Poor 
pasture management such as over grazing, frequent burning and conversion to cul-
tivated agricultural land could result in degradation and low productivity which can 
reverse the carbon sequestration potential of tropical pastures leading to carbon loss 
by erosion and oxidation [98]. Hence, the effects of tropical pastures on soil carbon 
are likely to vary because of environmental and management factors. For example 
Dalal et al. [99], demonstrated historical management as a key driver of SOC stock 
particularly in the surface soil layers. Therefore, there is a need for controlled studies 
that measure soil carbon with some certainty of the effects of both environmental 
and management factors.

Clay soils in general play a greater role to slow the rate of decomposition, due 
to both physical and chemical protection of SOC and typically promote larger soil 
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carbon concentrations compared with sandy soils due to these SOC stabilization 
processes [100–102]. Similarly, a water saturated soil might have lower rates of 
organic matter breakdown because of a lack of oxygen for soil organisms compared 
to soils exposed to the atmosphere. Therefore, soil improvement and adding essen-
tial inputs are important to increase the rate of organic carbon addition and pasture 
production [28]. In addition, McKenzie and Mason [28], indicated that deep soil 
profiles with fertile subsoil allow deep root penetration into subsoil which is much 
cooler (less likely to promote decomposition) than the topsoil. Hence, maximizing 
the carbon input by increasing the net primary production through nutrient addi-
tion, increased nutrient and water use efficiency and minimizing the rate of organic 
matter decomposition after deposition in soil are important factors which can help 
to increase the amount of carbon sequestered from the atmosphere [96].

Carbon accumulation in pasture lands can also be determined by the length of time 
the land remains under pasture [64]. Hence, regardless of technologies or mecha-
nisms, the length of time must also be taken into account when considering long–term 
carbon storage. Bouman et al. [103], stated that, due to various economic and biophys-
ical dimensions, sustainability of tropical pastures can also be affected by the pasture 
type, age, and management which in turn can affect the carbon accumulation. Hence, 
McDermot and Elavarthi [104], recommended that best management practices, site 
specific policies and using technological options can offer good opportunities to gener-
ate positive effects on soil carbon accumulation by using tropical grasses.

Therefore, factors such as input versus outputs, climatic conditions, soil type 
and properties, land use control, management practices are the factors affecting 
SOC storage. Whenever there is a vegetation cover change from C3 to C4 plants, the 
ratio of stable carbon isotopes (δ

13C) can be used to track changes in SOC between 
the C3 and C4 plants and the quantity of “new” carbon added [99, 105, 106]. The use 
of stable isotopes offers a useful quantitative technique to allow the estimation of 
organic carbon storage and turnover in soils, even when TOC changes are of limited 
magnitude [107].

7. Opportunities and economic benefits of tropical pastures

Biomass energy is currently receiving considerable attention in response to 
climate change and ever-increasing global energy demand [108–111] and tropi-
cal pastures would appear to have potential for the production of biofuels. For 
example, Clifton-Brown et al. [40], suggested that Miscanthus which is known for 
its high biomass production has value as a potential biofuel and the area over which 
it grows could therefore be expanded significantly throughout Europe. Miscanthus 
is grown in many European countries such as Austria, Denmark, France, Germany, 
Hungary, Poland, Switzerland and the United Kingdom. In France for instance, 
Miscanthus cultivation has increased since the first plantation in 2006 [112]. The EU 
Biofuel directive promotes the expansion of biofuels and Miscanthus particularly as 
a biomass energy source [113]. Hence, growing biomass energy crops (mainly tropi-
cal perennial grasses) specially in Europe is becoming common and expanding to 
consider for potential soil carbon storage and this needs to be explored further even 
in other parts of the world and using other different potential grasses.

8. Conclusion

Tropical pastures are potential candidates to contribute to climate change miti-
gation efforts through additional SOC storage due to their high biomass production, 
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fast growth rates, and deep root systems. Using tropical grasses has also a low cost 
of implementation to rehabilitate degraded lands and improve soil productivity 
through increasing SOC. The existing literature on tropical grasses potential for soil 
carbon sequestration provides positive indications that significant soil carbon stor-
age is possible. However, a number of further investigations are required to provide 
a sound basis on which management decisions involving tropical grasses can be 
made. We therefore recommend the following priority research actions to provide 
the required information:

• Cropland conversion to tropical perennial pastures and its potential to achieve 
multiple outcomes including soil health, soil security and sustainability in 
addition to soil carbon storage.

• A range of tropical grass species should be assessed to determine their 
potential to store additional carbon under specific climatic and management 
conditions.

• There is a need to assess the processes and mechanisms of SOC storage in 
deeper soil profiles under tropical perennial grasses to provide accurate 
estimates of SOC stocks.

• The rate of soil carbon turnover and cycling of the new carbon added 
and the extent to which it is retained in the soil system needs to be fully 
quantified.

• Best management practices, site specific policies and technological options 
which can positively affect soil carbon storage should be identified and clearly 
defined.
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