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Chapter

General Introduction to
Ferroelectrics
Muzaffar Iqbal Khan and Trilok Chandra Upadhyay

Abstract

In this chapter “General introduction to ferroelectrics” we contribute the basic
idea of the fundamental properties of ferroelectrics. We focus on the following
properties in the chapter such as basic introduction, classification, ferroelectric
phase transitions, spontaneous polarization, local field, dielectric properties, polar-
izability, thermodynamics of ferroelectricity and applications of ferroelectrics. Fer-
roelectric materials are unusual dielectric which possesses reversible spontaneous
electric polarization which can be reversed by application of stress or electric field
which exhibit a range of properties. These properties are widely used in the today’s
scientific and industrial technology. The large number of areas due to their peculiar
and interesting properties such as high permittivity capacitors, ferroelectric non-
volatile FeRAM memories, pyroelectric sensors, piezoelectric and transducers,
electrooptic and optoelectronic devices, etc.

Keywords: dielectrics, ferroelectrics, polarization, piezoelectric, pyroelectric,
hysteresis loop, phase transitions

1. Introduction

The investigations of dielectrics, ferroelectrics, sensor, dipolar glasses and com-
posite materials have attracted great attention in solid-state physics and material
science in recent years. These studies reveal inter-and intra-molecular interactions
and encourage increasing applications of these materials in modern technology.
Dielectric substances are insulators or poor conductor of electricity. In these mate-
rials, the electrostatic field persists for a long time. These materials do not have free
electrons, but the application of the electric field changes their behaviour. They
have the ability to be polarized under the action of the electric field [1]. Dielectric
materials are classified into two main categories (i) Non-ferroelectric (called nor-
mal dielectric or paraelectric) materials and (ii) Ferroelectric materials. The non-
ferroelectric materials are divided into three categories according to the prevailing
polarization mechanism as (i) non-polar dielectrics, (ii) polar dielectrics and (iii)
dipolar dielectrics [1]. The non-polar dielectric materials consist of one type of
atoms. These types of dielectric materials become polarized in an external electric
field due to the relative displacement of electric charge with respect to the nucleus.
The polar dielectric materials are made up of molecules without a permanent dipole
moment, and dipolar dielectrics include materials whose molecules possess a
permanent dipole moment.
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Ferroelectric materials are unusual dielectrics that possess reversible spontane-
ous electric polarization, which can be reversed by applying stress or electric field.
This property of showing spontaneous polarization persists over a certain tempera-
ture interval [2]. Above the critical temperature, called Curie temperature or tran-
sition temperature, the substance loses its property of spontaneous polarization and
becomes paraelectric. This change of phase property, i.e., ferroelectric phase to
paraelectric phase, is associated with anomalous behaviour of many physical prop-
erties along with a change of crystal structure from low to a high symmetry. The
alignment of the electric dipoles may extend only over a region of the crystal, while
in another region, the direction of spontaneous polarization may be reversed. Such
regions of uniform polarization are called domains, a term acquired from ferro-
magnetism. If we first applied a small uniform electric field (E), directed, (say) in
the positive direction, we will induce uniform polarization P (a linear relationship
between P and E) because the field is not larger enough to switch any of the
domains with the unfavorable direction of polarization and the crystal will behave
like the normal dielectric [2, 3].

A material can be either piezoelectric, pyroelectric or ferroelectric, only if its
crystalline symmetry is inherent (i.e., it lacks an inversion centre). A basic principle
due to Neumann is that any physical property exhibited by a crystal must have at
least the symmetry of the point group of the crystal. Thus, the above properties,
which are inherently asymmetric, can only arise in asymmetric crystals. All crystal
structures can be divided into 32 crystal classes. Of the 32 crystallographic point
groups, 11 exhibit centre symmetry, leaving 21 non-centrosymmetric point groups.
One of the 21 groups, however, have an inversion centre, causing it to lose its non-
centrosymmetric nature, leaving 20 non-centrosymmetric point groups which have
asymmetric properties. All the crystals in these 20 classes are piezoelectric [3, 4].
When such a non-centrosymmetric crystal is subjected to mechanical stress, the
ions are displaced from each other in an asymmetric manner, and the crystal
becomes electrically polarized. This is called the piezoelectric effect. The inverse
effect of it, i.e., an applied electric field produces strain (causes the material to
either expand or contract, depending on the field direction) has also been observed.
The piezoelectric effect is often used to convert electrical energy into mechanical
energy and vice-versa. Quartz is the best example of piezoelectric material and the
one most frequently used in transducers. Out of the 20 piezoelectric point groups,
only 10 have a unique polar-axis responsible for the appearance of a spontaneous
electric polarization even in the absence of an applied electric field [3, 4]. If a
piezoelectric material also shows the change in spontaneous polarization (Ps) upon a
change in temperature, according to the relation, ∆Ps ¼ λ∆T, where λ is the pyro-
electric coefficient. This is called the pyroelectric effect. A pyroelectric material
changes its unit cell dimensions up to temperature change. This causes the unit cell
to either expand or contract, including a temperature-dependent polarization. The
simplest example of a pyroelectric material is Wurtzite (hexagonal ZnS). In some
pyroelectric materials, the spontaneous polarization can be reversed by an exter-
nally applied electric field, giving a dielectric hysteresis loop. Such materials are
called ferroelectric materials, and the phenomenon of reversing the direction of
polarity is called the ferroelectric effect. It is to be noted that both piezoelectric and
pyroelectric are inherent properties of a material. On the other hand, ferroelectric-
ity is an effect produced in a pyroelectric material by the application of an external
electric field. Classification of these materials based on symmetry is shown sche-
matically in Figure 1. The occurrence of ferroelectricity may be understood in terms
of either (i) polarization catastrophe or (ii) transverse optical phonon mode [5, 6].

The relationship between the piezoelectric, pyroelectric and ferroelectric
materials is shown schematically in Figure 2. A dielectric material is an electrical
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insulator that can be polarized under an external applied electric field. Dielectric
materials are often characterized by their dielectric permittivity, which describes
the material’s resistance against polarization by an external electric field [7, 8]. A
group of dielectrics that show a change of strain or stress due to an applied external
electric field or conversely to the change of the polarization due to a mechanical
excitation are called piezoelectrics. Pyroelectrics are a group of piezoelectrics that
show a change of polarization due to a change in temperature. Ferroelectric
materials have both pyroelectric and piezoelectric properties.

Ferroelectricity is the phenomenon that refers to the state of spontaneous polar-
ization, usually vanishes above a certain temperature called Curie or transition
temperature (TcÞ. At the Tc, the crystal undergoes a phase transition from the polar
state to the non-polar state. Three well-known characteristics of ferroelectrics are
(i) their reversible polarization, (ii) their anomalous properties and (iii) their non-
linearities. Above the transition temperature (TcÞ, the crystal is said to be the
paraelectric state. The term paraelectric is analogous with paramagnetism; simi-
larly, there is usually a rapid drop in the dielectric constant (εÞ as the temperature

Figure 1.
Classification of piezoelectric and pyroelectric materials [6].

Figure 2.
Venn diagram showing the relationship between various types of dielectric materials [8].
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increases [5–9]. In ferroelectrics, the temperature dependence of dielectric constant
above the Curie point can be explained by the simple law called Curie–Weiss law

ε ¼ ε0 þ
C

T � T0ð Þ
(1)

where ε0 is the part of dielectric constant independent of temperature, C is the
Curie constant and T0 the Curie–Weiss temperature and it is different from the
Curie point Tc (contributed by electronic polarization). The phase transition at Tc

can be first-order or of the higher (second) order. In the case of a first-order phase
transition, T0 <Tc, while for the second-order phase transition T0 ¼ Tc. Usually,
the temperature-independent term ε0 can be neglected since it is much smaller than
the term C

T�T0ð Þ when T is near T0.

2. Ferroelectric phase transitions

A phase transition is the transformation of the thermodynamic system from one
phase or state of matter to another. It is a collective phenomenon in which critical
behaviour depends on a small number of parameters and is universal for many
systems. During a phase transition of a given medium, certain properties of the
medium change, often discontinuously, as a result of some external condition, such
as temperature, pressure, etc. Phase transition involves some change of symmetry.
According to Paul Ehrenfest, phase transitions can be divided into two groups
known as first- and second-order phase transitions, depending on whether the
transition is discontinuous or continuous, respectively. Paul Ehrenfest classified
phase transitions based on the behaviour of the thermodynamic Gibbs free energy
as a function of other thermodynamic variables. Under this scheme, phase transi-
tions were labeled by the lowest derivative of the Gibbs free energy that is discon-
tinuous at the transition. First-order phase transitions exhibit a discontinuity in the
first derivative of the Gibbs free energy with respect to the thermodynamic variable
[10]. Second-order phase transitions are continuous in the first derivative but
exhibit discontinuity in a second derivative of the Gibbs free energy with respect to
a thermodynamic variable [10]. In the first-order phase transition, volume, entropy
and polarization of the crystal change discontinuously at the transition point. In the
second-order phase transition, the specific heat changes discontinuously, ‘whereas
volume, entropy and polarization change continuously at the phase transition point.
In the first-order phase transition, the energy appearing as latent heat in an infi-
nitely narrow temperature range interval, while in the second-order phase transi-
tion, there is no release of the latent heat but the expansion of the coefficient
exhibits anomalous behaviour over a finite range of temperature [11, 12].

In ferroelectrics, two common types of phase transition are identified. These are
named depending on how the order parameter (polarization) changes during the
transition. It is common to observe that as the temperature is raised, the bulk polar-
ization decreases and vanishes abruptly at a Curie temperature (TcÞ. This is a phase
transition, just as in a ferromagnet raised above its Curie temperature or a solid raised
above its melting point. It arises microscopically because as the temperature is raised,
the thermal vibrations of the atoms in the solid cause fluctuations, which overcome
the potential barrier between the two (or more) wells. For example, in a molecular
crystal such as NaNO2, where we imagine that each molecule can fluctuate between
two configurations. Each of which has a double potential well, as shown in Figure 3
and some interactions between the dipoles that tend to align them [13].
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The detailed microscopic theory of how this happens will be different from
material to material, but the macroscopic properties of the phase transition will be
similar across many different classes of materials. A first-order phase transition is
one that has a discontinuity in the order parameter itself, while a second-order
phase transition is one that has a discontinuity in the first derivative of the order-
parameter. In a first-order transition, the polarization varies continuously until the
Curie temperature, at which there is a discontinuity shown in Figure 4a. In a
second-order transition, the order parameter itself is a continuous function of
temperature, but there is a discontinuity in its first derivative at Curie temperature
shown in Figure 4b [13].

3. Spontaneous polarization

The intensity of polarization (P) is defined as the electric dipole moment per unit
volume of the dielectric material. Spontaneous polarization (PsÞ is a polarization that

Figure 3.
Schematic potential well [13].

Figure 4.
Plots of spontaneous polarization versus temperature: (a) first-order transition (b) second order
transition [13].
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occurs under the influence of an internal process in a dielectric, without the effect of
external factors. A ferroelectric crystal generally consists of regions called domains of
homogeneous polarization, within each of which the polarization is in the same
direction, but in the adjacent domains, the polarization is in different directions so
that the net polarization of the specimen is equal to zero in the beginning when no
electric field (E ¼ 0) is applied. The polarization varies in a non-linear configuration
with an electric field (E). This non-linear relation exhibits the closed curve called the
hysteresis loop in the polarization when an electric field is applied, as shown in
Figure 5 [2–6]. When the electric field (E ¼ 0) is zero, the spontaneous polarization
(PsÞ in a single domain specimen is either positive or negative in sign. As an applied
electric field strength gradually increases in the direction of spontaneous polarization
(PsÞ, the polarization (P) increases due to induced polarization such as electronic,
ionic and dipolar types. As the electric field is increased further, more and more
domains rotate along the direction of the electric field (E) until the polarization
reaches a maximum value called the saturation value.

At this stage, the whole specimen represents a single domain. This is usually
accompanied by a distortion in the crystal along the polarization direction. The
extrapolation of the saturation value to zero field gives the magnitude of the spon-
taneous polarization (PsÞ. This value of Ps is the same as possessed by each domain
before the application of the electric field. However, if the applied electric field
decreases, the polarization also decreases but follows another path and does not
become zero for zero electric field. The remaining polarization at this stage is called
remnant polarization �Prð Þ and the intercept on the E-axis, where Pr refers to the
whole crystal block. In order to destroy the remnant polarization (PrÞ, the polariza-
tion of nearly half of the crystal is to be reversed by reversing the direction of the
field, the electric field required to make the polarization zero is called the coercive
field (EcÞ. Furthermore, an increase in the reverse field results in the saturation of
polarization in the reverse direction. Reversing the electric field again, the hystere-
sis curve will be obtained. The relation between polarization (P) and applied electric
field Eð Þ is thus represented by a hysteresis loop (BDFGHB) which is the most
important characteristic of the ferroelectric crystals. The most important feature of
a ferroelectric is thus not the fact that it has a spontaneous polarization (PsÞ but
rather the fact that this spontaneous polarization can be reversed by means of an
electric field [2–14].

Figure 5.
Ferroelectric (P-E) hysteresis loop [13].
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4. Dielectric properties

4.1 Local field

The electric field acting at the site of atom or molecule is, in general, signifi-
cantly different from the macroscopic filed E and is known as the local field Elocð Þ.
This field is responsible for the polarization of each atom or molecule of a material
[5, 6]. For an atomic site with cubic crystal symmetry, the local field Elocð Þ is
expressed by the Lorentz-relation as

Eloc ¼ E0 þ EP þ
P

3ε0
¼ Eþ

P

3ε0
(2)

where E ¼ E0 þ EP. The field EP is called the polarization field as it tends to
oppose the external applied field E0. Thus, apart from the macroscopic field Eð Þ, the
local field also contains a term called Lorentz field Elocð Þ. The difference between
the macroscopic field Eð Þ and the Lorentz field Elocð Þ may be understood as follows.
The macroscopic field is macroscopic in nature, is an average value and is constant
throughout the medium. On the other hand, the Lorentz field Elocð Þ is a
microscopic field and is periodic in nature. This is quite large at molecular sites
representing that the molecules are more effectively polarized than they are under
the average field.

4.2 Polarization and dielectric susceptibility

Generally, at ordinary electric fields, the magnitude of polarization (P) is
directly proportional to the macroscopic electric field Eð Þ at a given point of a
dielectric [5–15]. It is expressed as

P∝E ) P ¼ ε0χeE (3)

where ε0 is the permittivity of free space and χe is the dielectric susceptibility.
Thus, except for a constant factor ε0ð Þ, the dielectric susceptibility is a measure of
the polarization produced in the material per unit electric field. If the dielectric
material slab is placed in a uniform electric field (E) with its normal parallel to the
field. The dielectric displacement vector (D) for an isotropic or cubic medium
relative to vacuum is defined in terms of the macroscopic field Eð Þ as

D ¼ ε0εrE ¼ εE ¼ ε0Eþ P (4)

where εr is called the relative permittivity or dielectric constant of medium and
ε0 is the permittivity or dielectric constant of free space, and P is the polarization. It
is a scalar quantity for an isotropic medium and is always dimensionless. The
dielectric constant (also called as permittivity of medium) is a measure of the
degree to which a medium can resist the flow of charge, defined as the ratio of the
dielectric displacement D to the macroscopic field intensity Eð Þ as

εr ¼
D

ε0E
¼

ε0Eþ P

ε0E
¼ 1þ

P

ε0E
¼ 1þ χe (5)

Eq. (5) gives the dielectric constant of an isotropic medium or cubic medium.
This is represented by a scalar quantity. The dielectric susceptibility (χeÞ is related to
the dielectric constant defined as
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χe ¼
P

ε0E
¼ εr � 1 (6)

Thus, like susceptibility, the dielectric constant (εrÞ is also a measure of the
polarization (P) of the material. The larger the polarization per unit resultant
macroscopic field, the greater will be the dielectric constant of the dielectric
medium. However, for anisotropic medium, the dielectric response (εror χeÞ
depends on the direction of the field and described by the components of the
susceptibility tensor or of the dielectric tensor of the second rank

Pμ ¼ χμνε0Eν; εμν ¼ δμν þ χμν (7)

4.3 Dielectric constant and polarizability

The polarizability αð Þ of an atom is defined in terms of the local electric field
(Lorentz field) at the atom. The induced dipoles of moments (p) are proportional to
the local field (ElocÞ can be expressed as

p ¼ αEloc (8)

where α is known as the polarizability of an atom. For a non-spherical atom or
isotropic medium, α will be a tensor quantity [6–16]. Thus, polarizability is an
atomic property, whereas dielectric constant is a macroscopic property that
depends upon the arrangement of atoms within the crystal. If all the atoms have the
same polarizability (αÞ and there are N number of atoms per unit volume, the total
polarization of the crystal may be expressed as the product of the polarizabilities of
the atoms times the local field

P ¼
X

j

N jp j ¼
X

j

N jα jEloc jð Þ (9)

where the summation is over all the atoms or atomic sites. N j is the concentra-
tion and αj is the polarizability of atom j and Eloc jð Þ is the local field at atom sites j.
For an isotropic dielectric medium, the local field given by the Lorentz relation
Eq. (2) inside the crystal is everywhere the same so that it can be taken out of the
summation sign from Eq. (9). Substituting the value of the local field from Eq. (2),
the Eq. (9) becomes

P ¼ Eþ
P

3ε0

� �

X

j

N jα j (10)

On rearranging the terms and making use of Eq. (5) gives

χe ¼
P

ε0E
¼

P

jN jα j

ε0 �
1
3

P

jN jα j

� � (11)

Using Eq. (6), we get

εr ¼ 1þ

P

j
N jα j

ε0

1� 1
3ε0

P

jN jα j
¼

1þ 2
3ε0

P

jN jα j

1� 1
3ε0

P

jN jα j
(12)
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Solving for
P

jN jα j we get

εr � 1

εr þ 2
¼

1

3ε0

X

j

N jα j (13)

This is known as the Clausius-Mossotti relation. It relates the dielectric constant
to the atomic polarizability, but only for crystal structures for which the Lorentz
field Eq. (2) obtains. The total polarization (αÞ can be expressed as the sum of three
types of basic polarizability representing the most important contributions to the
polarization [2–17] given as

α ¼ αe þ αi þ αd (14)

where αe, αi and αd are the electronic, ionic and dipolar polarizabilities, respec-
tively shown in Figure 6.

i. Electronic polarizability (αeÞ: The electronic polarizability (αeÞ arises due to
the displacement of electrons in an atom relative to the atomic nucleus in
the external electric field, as shown in Figure 6a. The polarization, as well
as the dielectric constant of a material at optical frequencies, results mainly
from the electronic polarizability (αeÞ. The optical range Eq. (13) reduces as

n2 � 1

n2 þ 2
¼

1

3ε0

X

j

N jα j electronicð Þ (15)

where n being the refractive index which is related to the dielectric
constant (εrÞ by the relation

n2 ¼ εr (16)

ii. Ionic polarizability (αiÞ: The ionic polarizability (αiÞ arises due to the
relative displacement of positive and negative ions from their equilibrium
positions to a distance less than the distance between adjacent ions. The
cations are displaced parallel to the Lorentz field, and the anions are
displaced in the opposite direction, as shown in Figure 6b [5–18].

Figure 6.
Atomic contributions to electric polarization [18].
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If the relative displacement of the positive and negative ions is d and the
charge on each ion is q, then the dipole moment per molecule is �p ¼ qd and
the ionic polarization becomes

Pion ¼ Nqd (17)

where N is the number of atoms per unit volume.

iii. Dipolar polarizability (αdÞ: The dipolar polarizability, also called
orientational polarizability, is important only in materials that contain
complex ions having permanent dipole moment. In the absence of an
external electric field, the dipoles have random orientations, and there is no
net polarization. However, when the electric field is applied, the dipoles
orient themselves along the direction of the field and produce dipolar or
orientational polarization, as shown in Figure 6c. Such an orientation is
opposed by the thermal agitation which tends. According to Debye’s
quantum theory, dipolar polarizability (αdÞ per dipole is given by

αd ¼
�p

E
¼

p2

3kT
(18)

where k is the Boltzmann’s constant, T is the absolute temperature, and p is
the dipole moment of the atom. The polarization contributed by electronic
polarizability (αeÞ and ionic polarizability (αiÞ is called distortion
polarization. Since αe and αi are temperature independent, the part of
dielectric constant depending on them is essentially independent of the
temperature. The contribution to the polarization made by dipolar
polarizability (αdÞ which is a function of temperature in accordance with
Eq. (18). The contributions to the total polarizability (polarizability versus
frequency curve) are shown in Figure 7 [2–17].

We find that in the optical frequency range, the dielectric constant (ε0) arises
entirely due to the electronic polarizability. The ionic and dipolar contributions are
small at high frequencies because of the inertia of the ions and molecules.

Figure 7.
Frequency dependence of the various contributions to the polarizability [6].
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5. Classification of ferroelectrics

Ferroelectric crystals have been classified into the following types [1–6].

1.According to the chemical composition of the crystal.

a. Hydrogen bonded and its isomorphs such as KH2PO4 (KDP), triglycine
sulphate (TGS), Rochelle salt (RS) and lead hydrogen phosphate (LHP)
etc.

b. Double oxides such as BaTiO3, potassium niobite (KNbO3) and lithium
niobate (LiNbO3) etc.

2.Based on the number of directions allowed to the spontaneous polarization are
of two types.

a. Single-axis of polarization such as Rochelle salt, KDP etc.

b. Several-axes of polarization such as BaTiO3 etc.

3.According to the existence or lack of centre of symmetry in non-polar phase.

a. Non-centre of symmetrical non-polar phase such as KDP and Rochelle
salt.

b. Centre of symmetrical non-polar phase such as BaTiO3 and TGS crystals,
etc.

4.According to the nature of the phase change.

a. Order–disorder type such as KDP, RS, TGS, LHP and CsH2PO4 (CDP) etc.

b. Displacive type such as BaTiO3, LiNbO3 and KNbO3 etc.

In the order–disorder group of ferroelectrics, the ferroelectric phase transition is
associated with an individual ordering of ions. These are the crystals that contain
H-bonds and in which the motion of protons is related to the ferroelectric proper-
ties. The examples are KH2PO4, RS, TGS, CsH2PO4, PbHPO4 and RbH2PO4, etc. The
displacive group of ferroelectrics is the one in which the ferroelectric phase transi-
tion is associated with the displacement of a whole sublattice of ions of one type
relative to a sublattice of another type. The displacive type ferroelectrics possess
perovskite ABO3 type structures. Examples are BaTiO3, LiNbO3 and KNbO3, etc.
Consider the case of BaTiO3 crystal, as shown in Figure 8. The unit cell is cubic with

Ba2þ ions occupying at the corners, O2� ions occupying the face centres and Ti4þ

ion occupying the body centre of the cube. Thus, each Ti4þ ion is surrounded by six

O2� ions in an octahedral configuration. Above the Curie temperature (T >TcÞ, the
prototype crystal structure is cubic, the centres of gravity of positive and negative
charges exactly coincide with each other to produce a net dipole moment is zero.

Below the Curie temperature (T <TcÞ, the structure is slightly deformed with Ti4þ

at the body centre while Ba2þ ions at cube corners slightly move upwards, and the
structure becomes tetragonal with centres of the positive (þ) and negative (�Þ
charges not coinciding with each other.
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This situation leads to net dipole moment and hence produces the spontaneous
polarization Psð Þ of the crystal [6–18]. Figure 9 shows that in displacive ferroelec-
trics active atom has a single potential, while in the order–disorder ferroelectrics,
the active atom has a double-well potential [19]. In the order–disorder systems, the
proton can tunnel through the barrier, which separates the two minima of the
potential energy in the hydrogen bond, and the ground state of the system splits
into two levels separated by an energy Ω. The magnitude of Ω depends on the
overlap of the wave functions appropriate to a proton located in each of the two
separated minima.

6. Thermodynamics of ferroelectricity

Many of the experimental results on the macroscopic properties of ferroelectrics
such as polarization and dielectric constant as well as their temperature, electric
field and pressure dependence, etc. In 1920, Valasek [20] was discovered

Figure 8.
Structures of BaTiO3: T >Tc left and T <Tc right [18].

Figure 9.
Single cell potential for (a) displacive (b) order–disorder ferroelectrics [19].
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ferroelectricity in Rochelle salt. Thereafter, for about twenty years, the mechanism
of ferroelectricity remained a mystery. In the period between 1935 and 1938, ferro-
electricity in KDP crystal and its isostructural crystals was observed [21]. In order to
explain ferroelectricity in KDP, a microscopic model Hamiltonian of disordered
proton compositions was proposed, based on which a pseudospin model was devel-
oped by Slater [22] and Takagi [23] later independently. Ferroelectricity in Barium
titanate (BaTiO3) was reported in 1945–1946 [24, 25], and a microscopic model of

Ti4þ ion displacement was proposed by Slater in 1950 [26]. Devonshire [27]
developed a phenomenological approach based on Landu-Ginburg phase transition
theories [28, 29] to explain ferroelectric phase transitions. Later on, the thermody-
namic theories of piezoelectricity were summarized by Cady [30] and Mason [31]
independently. The most important concept in the theory of solid-state phase tran-
sitions is the concept of a “soft mode”, which was developed on the basis of lattice
dynamics by Cochran [32, 33] and Anderson [34]. According to the concept of a
“soft mode”, ferroelectric order stems from the instability of a transverse vibra-
tional mode or a ferroelectric mode. Detailed lattice dynamic calculations for ferro-
electric crystals and more rigorous mathematical treatments of the soft mode in
ferroelectrics and anti-ferroelectrics have been made by Blinc and Zeks [35] and
others [36]. Later on, ten years ago, it was believed that there were two different
types of ferroelectric phase transition mechanism: displacement type and order–
disorder type. However, several ferroelectric phenomena discovered that could be
explained neither by a displacement type mechanism nor by an order–disorder type
mechanism unequivocally. Therefore, several unified models based on a combina-
tion of both mechanisms have been proposed [37], such as in the general model
developed by Stamenkovic et al. [38], two basic ordering parameters associated
with the motion of active atoms etc. Based on the theory of phase transition of
Landau-Ginzburg [28, 29] and Devonshire [27], developed the phenomenological
theory of ferroelectricity by choosing the polarization as an order parameter. The
most convenient treatment of the ferroelectric phase transition by using the elastic
Gibbs function G1 as a state function of the ferroelectric system and the tempera-
ture (TÞ, stress (ΛÞ and polarization (P) as independent variables [39, 40]. The
Gibb’s free energy function is expressed as

G1 ¼ U � Tσ þ
X

i, j

SiΛ j (19)

where U is the internal energy of the system, T is the temperature and σ is the

entropy, Si and Λ j are the i
th and jth component of mechanical strain and stress.

Making the use of a differential form of the internal energy

dU ¼ Tdσ �
X

i, j

Λ jdSi þ
X

n,m

EndPm (20)

where En is the components of the electric field. Therefore, we can write the
differential form of elastic Gibbs function

dG1 ¼ �σdT þ
X

i, j

SidΛ j þ
X

n,m

EndPm i, j ¼ 1, 2, … 6;m, n ¼ 1, 2, 3ð Þ (21)

where En is the components of the electric field, we have En ¼
dG1

dPn

� �

T,Λ
and

Si ¼ � dG1

dΛi

� �

T,P
. Since the Gibbs free energy density G ¼ G1 � EnPm, the stable state

13

General Introduction to Ferroelectrics
DOI: http://dx.doi.org/10.5772/intechopen.97720



of the system can be determined by the minimum of Gibb’s free energy (G). If T
and Λi are constants, G1 is a function of the polarization P (if G1 and Pn are known,
then En are entirely determined).

6.1 Equation of state

We consider a ferroelectric crystal having an intrinsic spontaneous polarization
(Ps) along a specific-axis in the space coordinate system and assume that the
external pressure is constant (say one atmosphere). As G1 of the system is not
changed by reversing the direction of the axes of space coordinate system, G1 is
independent of the direction of polarization (P). Thus, G1 is an even function of P.
Therefore, we can expand G1 as a power series, in even powers of polarization P and
neglecting the odd powers of P for symmetry reasons

G1 T,Pð Þ ¼ G10 Tð Þ þ
1

2
β Tð ÞP2 þ

1

4
ξ1 Tð ÞP4 þ

1

6
ξ2 Tð ÞP6 þ … (22)

where G10 Tð Þ is the value of elastic Gibb’s free energy (G1Þ of the system at P ¼
0 and in general, the coefficients G10, β, ξ1 and ξ2 … ., are the functions of
temperature (T). A stable state of a thermodynamic system is characterized by a
minimum value of the Gibbs free energy G. We have G1 ¼ G when E ¼ 0, G can be
replaced by G1. When a crystal exhibits a stable spontaneous polarization (Ps) at a
certain temperature, the conditions for a minimum of G1 are

∂G1

∂P

� �

Ps

¼ 0,
∂
2G1

∂P2

� �

Ps

>0 or
∂E

∂P

� �

Ps

¼ χ�1
>0 (23)

Using Eq. (22) into (23), we obtained the equation of state for the ferroelectric
system of the form

Ps β þ ξ1Ps
2 þ ξ2Ps

4
� �

¼ 0 (24)

χ�1 ¼ β þ 3ξ1Ps
2 þ 5ξ2Ps

4
� �

>0 (25)

Eq. (24) has two roots: (i) the first root Ps ¼ 0 corresponds to a paraelectric
phase and (ii) the second root Ps 6¼ 0 corresponds to a ferroelectric phase.

6.2 Paraelectric phase

Suppose spontaneous polarization Ps ¼ 0; from Eq. (25), the reciprocal of the
dielectric susceptibility can be explained as.

χ�1 ¼ β Tð Þ>0 (26)

It is obvious that the value of β have a positive value when a stable state of the
crystal is a paraelectric phase. Therefore, the boundary conditions at the critical
temperature is β Tð Þð ÞT0

≥0. Expanding β Tð Þ as a Taylor’s series in T � T0ð Þ and

taking into account only the first-order term in T � T0ð Þ, we have

β Tð Þ ¼
T � T0ð Þ

C
(27)
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By combining Eqs. (26) and (27) we get

χ ¼
C

T � T0ð Þ
(28)

whereC is the Curie–Weiss constant. This is the Curie–Weiss law, which applies to
the dielectric susceptibility in a paraelectric phase. In the case of spontaneous polariza-
tion Ps 6¼ 0, wewill see that the one result corresponds to a second-order phase transi-
tion when ξ1 >0, and that the other result to a first-order phase transition when ξ1 <0.

6.3 Second-order phase transitions

Consider first case ξ1 >0. The roots of Eq. (24) for Ps
2 6¼ 0 are

Ps
2 ¼

�ξ1 � ξ1
2 � 4βξ2

� �1=2
h i

2ξ2
ξ1, ξ2 >0, β<0ð Þ (29)

One of the two roots of Ps
2 is always negative and corresponding to an imaginary

value of Ps. When β<0, we may get a positive root of Ps
2 and corresponding to a

real value of Ps. However, for a real ferroelectric crystal βj jξ2 ≪ ξ1
2.

6.4 Susceptibility

When the temperature is below Tc. From Eq. (26), we get reciprocal of the
dielectric susceptibility

χ�1 ¼
∂E

∂P

� �

P¼Ps

¼ β þ 3ξ1Ps
2 þ 5ξ2Ps

4 (30)

The term of ξ2Ps
4 can be neglected when the temperature is below and near Tc

because then Ps is very small and using the relation Ps
2 ¼ � β

ξ1
, β<0, ξ1 >0ð Þ into

Eq. (30) we have.

χ�1 ¼ �2β ¼ �2
T � Tcð Þ

C
, T <Tcð Þ (31)

We plot the reciprocal of the susceptibility as a function of temperature in
Figure 10a. This theoretical plot agrees well with the experimental data; the slope of the
χ�1 curve in the ferroelectric phase is twice that of the χ�1 curve in the paraelectric phase.

6.5 Free energy

For ξ1 >0, using Eq. (22), G1 � G10 is plotted as a function of the polarization
(P) at several temperatures (Tc1 <Tc <Tc2Þ in Figure 10b. Since the sign of β,
positive at T ¼ Tc and at Tc2, turns negative at Tc1, the curve representing
(G1 � G10) changes from a minimum at Tc2 to maximum at Tc1 at P ¼ 0. At Tc1, the
two minima of the free energy (P 6¼ 0) corresponds to stable ferroelectric states.

6.6 Ferroelectric hysteresis loop

Using the value of β ¼ T�Tcð Þ
C and Ei ¼

∂G1

∂Pi

� �

T,Λ
impiles
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E ¼ βPþ ξ1P
3 þ ξ2P

5 (32)

We get (P� E) curve at different temperatures corresponding to different β
values are displayed in Figure 10c. In fact, at temperature Tc1 <Tcð Þ, the segment in
the curve from point A to point C corresponds to an unstable state, since the slope in
this segment corresponds to β>0. The experimental curves always jump directly
from the state A to the state B and also directly from C to D. Thus, the observed
results are hysteresis loop.

6.7 Spontaneous polarization

When E ¼ 0, we putting Eq. (27) into relation P2
s ¼ � β

ξ1
, (β<0, ξ1 >0Þ, we get

P2
s ¼

Tc � Tð Þ

ξ1C
(33)

The function Ps changes continuously with temperature and becomes zero at Tc

as shown in Figure 10d. This theoretical curve agrees with the experimental results
in ferroelectric crystals exhibiting second-order phase transitions.

6.8 First order phase transitions (ξ1<0)

As explained above the condition for the occurrence of spontaneous polarization
(Ps) is that β should be negative while ξ1 should be positive and there is second-
order transition, for first-order transition, the coefficient β is negative and also ξ1 is
negative as temperature is lowered. The Gibbs free energy curves with function of
polarization (P) at different temperatures for this transition are shown in
Figure 11a. It is obvious that the polarization state (P 6¼ 0) is stable at the temper-
ature Tc1 <Tcð ) in the Figure 11b. The P-E curves at various temperatures are
plotted in Figure 11b from the hysteresis loop occurs at Tc1 <Tcð ). For E ¼ 0, the
spontaneous polarization (Ps) satisfies the Eq. (28) and from the Eq. (22), using the
condition G1 ¼ G10 we get the following relations given by.

Figure 10.
Functional relations of (a) χ�1 versus T; (b) G1 �G10 versus P; (c) P versus E and (d) P versus T near the
second-order phase transition [40].
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P2
s Tcð Þ ¼

3 ξ1j j

4ξ2
, β ¼

3ξ1
2

16ξ2
,P4

s Tcð Þ ¼
3β

ξ2
(34)

Combing the Eq. (30) with Eq. (34) and keeping in the mind that ξ1 <0 in the
second term of Eq. (30) we get.

χ�1 ¼ 4β ¼ 4
T � Tcð Þ

C
(35)

At the transition temperature Tcð Þ, the χ�1 in a first order transition is not zero
but it is positive quantity as can be seen from Eq. (35). The variation of temperature
dependence of inverse (χ�1) above and below the transition temperature Tcð Þ is
shown in Figure 11c. The χ�1 at a temperature just below Tc is four times that at a
temperature above Tc. The curve for the polarization (P) with temperature (T) is
shown in Figure 11d.

7. Model theories of ferroelectricity

Various physicists have developed model theories of ferroelectricity. An intro-
ductory idea of model theories that have been developed to explain the phenome-
non of ferroelectricity is given below. Many experimental and theoretical attempts
were made to explain the phenomenon of ferroelectricity in single and polycrystals
and proposed a number of theories. The first theoretical explanation of the ferro-
electric properties of Rochelle salt was proposed by Kurchatov [41]. Slater [22] put
forward the first molecular theory of ferroelectricity and suggested that the ferro-
electric behaviour in KDP and Rochelle salt is principally due to the ordering of H-
bonds. A general theory of ferroelectricity established at that time by Cochran’s
lattice dynamic theory [33] and Lines statistical theory [42] have provided for major
understanding of the ferroelectric phenomena of ferroelectricity.

A simple order–disorder model Hamiltonian was proposed by Mason [43]. In
this model, a proton motion along an H-bond. A proton may transfer from one-well
to another, and vice versa, stochastically over a potential barrier, and this model

Figure 11.
Functional relations of (a) G1 � G10 versus P; (b) P versus E; (c) χ�1 versus T and (d) P versus T near the
first-order phase transition [40].
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does not explain the isotope effect. Blinc [44] introduced the concept of proton
tunneling motion between the two equilibrium sites in the double-well minimum
O-H–O bond potential. The Blinc’s [44] concept was quickly put into the simple
formalism of the pseudospin-model by De Gennes [45] and independently by
Matsubara [46]. De Gennes [45] showed that the proton in a double minimum type
potential has described by a one-half pseudospin. The pseudospin model Hamilto-
nian developed to explain the proton system and the triggering of phase transition
can be ascribed to the ordering of the proton in the double-well potential. The
dipoles formed by the proton ordering make a small contribution to the spontane-
ous polarization Psð Þ which is the result of heavy atoms displacements along the
ferroelectric axis. The major contribution to the spontaneous polarization Psð Þ is the
displacement of heavy atoms projected on c-axis. To account for the displacement
of the heavy atoms, Kobayashi [47] included pseudospin lattice interaction into the
pseudospin model. The net result of this approach was to enhance the effective
dipolar proton-proton interaction.

Later on, Arefev et al. [48] and Brout et al. [49] suggested that essentially the
same concept could also be applied such that KDP etc. In this case, where the
permanent electric dipoles move-in a potential with more than one equilibrium
position and the soft mode collective excitations are not phonons but rather the
unstable pseudospin phonon coupled-wave. Kaminow [50] experimentally con-
firmed the existence of soft mode in KDP crystal, and the other investigators also
confirmed the soft mode in other ferroelectric crystals. It is now well recognized
that the several interesting properties of ferroelectrics are associated with the high-
temperature dependence of the soft mode. Cowely [51] has given a microscopic
theory of ferroelectricity in which the temperature dependence of the normal mode
(soft mode) arises from anharmonic interactions between normal modes. These
anharmonic interactions in a crystal are quite small, at least at low temperatures, so
that an anharmonic crystal provides an example of the many-body system in which
interactions between the elementary excitations are both small and non-singular. In
the harmonic approximation, the equations of motion of the shell model can be
obtained from a quadratic function of the displacements of the ions and of the
electronic dipoles produced on the ions during the lattice vibrations. The
anharmonic interactions arise from the cubic and higher terms in potential func-
tion, and in general, there will be anharmonic interactions between all the displace-

ments and all the dipoles. In the ferroelectrics, the root at wave vector k
!
¼ 0 is

imaginary in the harmonic approximation showing the instability of the lattice [51].
This indicates that the harmonic forces alone are not sufficient to stabilize the
system at any temperature. The stabilization of the mode can only be brought about
by a consideration of anharmonic interactions terms. The anharmonic interactions
thus play a fundamental role as regards the stability of the crystal system. A number
of physical properties of solids could be well explained by considering the effects of
phonon anharmonic interactions.

A very successful attempt has been made to give a microscopic theory of ferro-
electric crystals given by Cochran [33, 52]. This lattice dynamical theory is based on
the hypothesis that the ferroelectric transitions are the results of the instability of the
crystal lattice with respect to one of the homogeneous (wave number k ¼ 2π

λ
¼ 0)

transverse optic mode. If a crystal is fully or partly ionic, lattice vibrations are
accompanied by polarization oscillations having an equal frequency which provide a
Lorentz field called local field interacting with the ions through long-range Coulomb
forces. The crystal becomes unstable for one particular mode of vibration at which
the long-range forces are equal and opposite to the short-range forces. A relation
given by Lyddane et al. [53] explains the relation between the ferroelectric properties
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and the thermodynamic properties of the crystals. For k ¼ 0 modes of diatomic
crystal, Lyddane et al. [53] relation gives the ratio of the static dielectric constant εsð Þ
of the crystal to the high-frequency dielectric constant εeð Þ in terms of the frequencies
of the longitudinal optical ωLð Þ and transverse optical ωTð Þ of infinite wavelength

εs

εe
¼

ωL
2

ωT
2

(36)

When ωT
2 ¼ 0, we get εs ¼ ∞. Cochran [32] developed a more general case in

which there are n atoms in the elementary cell as

εs

εe
¼

Y

n

j

ω j
2

� �

L

ω j
2

� �

T

(37)

This Eq. (36) produces one essential anomaly needed to explain a ferroelectric
transition. In order to complete understanding the ferroelectric behaviour, it is
necessary to investigate the temperature of ωT

2. In the ferroelectric crystal, the
static dielectric constant (εs) obeys Curie–Weiss law above Tc T >Tcð Þ . Eq. (37) was
derived for harmonic forces. In order to derive the temperature dependence of ωT

2

it will be necessary to introduce anharmonic interaction, which shows little effect
on any mode other thank ¼ 0 mode, and only that mode exhibits any anomalous
behaviour. Thus Eq. (37) through (36) implies that the transverse optical mode ωT

2

have anomalous temperature dependence given by the Curie–Weiss law by a rela-
tion ωT

2 ¼ K T � Tcð Þ, where the coefficient K is constant related to the tempera-
ture dependence dielectric constant ε Tð Þ through the Lyddane et al. [53] relation.

8. Applications of ferroelectrics

Ferroelectric materials have been extensive applications [3, 54] in a large num-
ber of areas due to their peculiar and interesting properties such as high permittivity
capacitors (BaTiO3), ferroelectric non-volatile FeRAM memories (due to bi-stable
polarization in modulation and deflector), pyroelectric sensors, piezoelectric and
electrostrictive transducers (TGS crystal), electrooptic and optoelectronic devices
(due to their non-linear polarizability), thermistors, storage and laser devices, sen-
sors, resonators and actuators which have revolutionized consumer electronics,
automobile industry, biomedical diagnosis, underwater acoustic technology,
defense-related sectors, gas sensing devices and surface acoustic wave technology,
etc. The major areas of applications [3, 54] of ferroelectrics have received a great
deal of attention amongst all the above capacitors, ferroelectric memories, pyro-
electric sensors, piezoelectric, electrostrictive transducers, electrooptic devices and
thermistors. The basic specifications required for capacitors are small size, large
capacitance (materials with a large dielectric constant are desired). High frequency
characteristics (ferroelectrics with a high dielectric constant are sometimes associ-
ated with dielectric dispersions, which must be taken into account for practical
applications). Ferroelectric relaxors such as Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)
O3 are some examples of these applications.

The bi-stable polarization of ferroelectrics makes them useful for binary mem-
ory systems. There are volatile and non-volatile memory devices in erasable semi-
conductor memories. Non-volatile memory does not require a holding voltage.
Dynamic random-access memory (DRAM), which is widely used because of its high
integration capability, is an example of volatile memory. Data stored in these
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memories are lost when the electric power is shut off. To record information of
polarization may be reversed or reoriented by application of an electric field greater
than the coercive field. For erasure, the polarization can be returned to its original
state with an applied field of opposite polarity. To read the stored information, it is
retrieved by electrical or optical means. Optical memory is an electrically addressed
light valve. For example, BaTiO3, (Pb,La)(Zr,Ti)O3 and Pb5Ge3O11 single crystals
are extensively used as light values. When a ferroelectric thin film with a large
polarization-electric field hysteresis is used as the memory capacitor, non-volatile
memory is realized. When a voltage is applied to the gate and the field-effect
transistor (FET) assumes the “on” state, a pulse voltage to the drain generates a
drain current dependent on the remanent polarization state. A large electric field is
applied to a ferroelectric film in every process in the ferroelectric RAM (FeRAM),
the polarization hysteresis characteristic degrades with increasing cycles. This
problem of ferroelectric films needs to be overcome for non-volatile memory appli-
cations. The development of the ferroelectric memory started with DRAMs is com-
posed of a FET and memory capacitor, then moved into FeRAMs and is now
focused on metal ferroelectric semiconductor field-effect transistors (MFSFETs).
BaTiO3, LiNbO3 and KH2PO4 crystals, etc., are some examples of these applications.

The pyroelectric properties of polar materials were studied a long time ago, and
such materials were belonged as electric stones, measuring the current or voltage
response of a crystal to a temperature change, either by continuous heating or by
the absorption of sinusoidally modulated radiation. This is basically due to the
temperature dependence of the spontaneous polarization of a polar material. The
pyroelectric sensors are widely used for monitoring temperature or infrared radia-
tion (IR). Practical applications of the pyroelectric material in temperature sensors
and infrared (IR) light detectors lead to some commercial making of ferroelectric
ceramics. Pyroelectric detectors can be used to record infrared images. The con-
verse effect is called the electrocaloric effect, which may be a future cooling system.
Materials such as TGS, LiTaO3, Sr1/2Ba1/2Nb2O6 etc. are some examples. Another
important application of piezoelectric devices. Certain materials produce electric
charges on their surfaces when mechanical stress is applied. The induced charges
are proportional to the mechanical stress. This is called the piezoelectric effect,
which was discovered in Quartz by Pierre and Jacques Curie in 1880. Materials
showing this phenomenon also conversely have a geometric strain proportional to
an applied electric field showing the converse piezoelectric effect, discovered by
Gabriel Lippmann in 1881. The root of the word “piezo”means “pressure” in Greek.
Hence the original meaning of the word piezoelectricity implied “pressure electric-
ity”. The phenomenon of Piezoelectricity is widely utilized in the fabrication of
various devices such as sensors, transducers, actuators, surface acoustic wave
(SAW) devices, frequency control devices etc. Quartz, BaTiO3, (Pb, Sm)TiO3,
LiNbO3, and LiTaO3 etc., are some materials that can be used for these applications.
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