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Chapter

Lipid Peroxidation as a Link 
between Unhealthy Diets and the 
Metabolic Syndrome
Arnold N. Onyango

Abstract

Unhealthy diets, such as those high in saturated fat and sugar accelerate the 
development of non-communicable diseases. The metabolic syndrome is a con-
glomeration of disorders such as abdominal obesity, hypertension, impaired glucose 
regulation and dyslipidemia, which increases the risk for diabetes and cardiovas-
cular disease. The prevalence of the metabolic syndrome is increasing globally, 
and dietary interventions may help to reverse this trend. A good understanding 
of its pathophysiological mechanisms is needed for the proper design of such 
interventions. This chapter discusses how lipid peroxidation is associated with the 
development of this syndrome, mainly through the formation of bioactive alde-
hydes, such as 4-hydroxy-2-nonenal, malondialdehyde, acrolein and glyoxal, which 
modify biomolecules to induce cellular dysfunction, including the enhancement 
of oxidative stress and inflammatory signaling. It gives a current understanding 
of the mechanisms of formation of these aldehydes and how dietary components 
such as saturated fatty acids promote oxidative stress, leading to lipid oxidation. It 
also outlines mechanisms, apart from free radical scavenging and singlet oxygen 
quenching, by which various dietary constituents prevent oxidative stress and lipid 
oxidation in vivo.

Keywords: Oxidative stress, lipid peroxidation, insulin resistance; metabolic syndrome

1. Introduction

The metabolic syndrome (MS) refers to the occurrence in an individual of mul-
tiple physiological disorders related to obesity, hypertension, dysregulated blood 
glucose and dysregulated blood lipids, and is a risk factor for diabetes and cardio-
vascular disease [1]. It has been defined more specifically, and in slightly different 
ways by the National Cholesterol Education Program (NCEP) Adult Treatment 
Panel III, and by the World Health Organization (WHO). According to the former, 
MS is characterized by at least three of the following five clinical or biochemical 
abnormalities: abdominal obesity, arterial hypertension, elevated fasting blood 
glucose, high plasma triglycerides, and reduced high density lipoprotein cholesterol 
(HDL-c) [2]. On the other hand, WHO defined it as the occurrence of impaired glu-
cose tolerance or impaired fasting glucose or diabetes and any two of the following: 
hypertension; elevated trigycerides or low HDL-c; abdominal obesity or obesity as 
determined by BMI; or microalbuminaria [1].
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A proper understanding of the etiology of MS is necessary for its prevention 
and treatment. This chapter focuses on the role of lipid peroxidation in this patho-
physiological process. It begins with a current understanding of the mechanisms of 
lipid oxidation, with emphasis on the formation of highly reactive lipid oxidation 
products such as 4-hydroxy-2-nonenal, malondialdehyde, acrolein and glyoxal. 
This is followed by a discussion of how these aldehydes and other lipid oxidation 
products contribute to the different MS components. The role of major dietary 
components in the initiation of oxidative stress and lipid oxidation, as well as 
mechanisms by which specific dietary components inhibit such undesirable events 
are also discussed.

2.  Mechanisms of lipid peroxidation (LPO) and the formation of 
bioactive lipid oxidation products

In cells, extensive lipid oxidation and the accumulation of lipid oxidation 
products occurs under conditions of oxidative stress, when the concentrations of 
reactive oxygen species (ROS) such as superoxide anions, hydrogen peroxide and 
singlet oxygen increase, and are not matched by an increase in the cellular anti-
oxidant capacity [3]. Electron leakage from the mitochondrial electron transport 
chain, or the actions of enzymes such as NADPH oxidases and xanthine oxidase 
generate superoxide anions (·- O2), which are converted by superoxide dismutase 
to hydrogen peroxide (H2O2), which may be converted by ferrous ions (Fe 2+) to 
hydroxyl radicals (·OH) according to the Fenton reaction Eq. (1). Superoxide anion 
also reacts with nitric oxide (NO), formed by nitric oxide synthases, to form the 
highly reactive peroxynitrite anion (-OONO), which reacts with H2O2 to form sin-
glet oxygen according to Eq. (2), and this is only one of many possible mechanisms 
of formation of singlet oxygen in biological systems [4–6].

 2 3 ·
HOOH OHFe Fe HO

+ + −+ → + +  (1)

 1

2 2
ONOO HOOH O H O

− −+ → + +ONO  (2)

Lipid peroxidation involves a reaction between unsaturated lipids and oxygen. 
This may be enzyme-catalysed or non-enzymatic. Non-enzymatic lipid oxidation 
is either mediated by singlet oxygen, or it may involve free radical oxidation [7]. 
Singlet oxygen reacts by electrophilic addition to any of the double bonds in an 
unsaturated fatty acid such as linoleic acid (LA) to form hydroperoxide isomers 
such as the 10-, 12- and 13-LA hydroperoxides (10-LA-OOH, 12-LA-OOH and 
13-LAOOH) as shown in Figure 1.

On the other hand, free radical oxidation begins by the abstraction of a hydro-
gen atom from a fatty acid, for example by the hydroxyl radical, to form a carbon 
centred radical, which rearranges to form a relatively stable conjugated radical 
(Figure 2). The latter reacts with oxygen to form a peroxyl radical, which abstracts 
a hydrogen from another fatty acid molecule to form a hydroperoxide and a new 
carbon centred radical, hence establishing a free radical chain reaction (Figure 2).

A fatty acid hydroperoxide can be converted to an alkoxyl radical by Fe2+ 
(Figure 3), in analogy to the conversion of H2O2 to the hydroxyl radical accord-
ing to Eq. (1). The alkoxyl radical can be converted to a number of non-aldehydic 
products, including a hydroxy acid and a keto-acid, or it can cyclize to form an 
epoxy-allylic radical whose further oxygenation affords a hydroperoxy-epoxide 
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(not shown) that can further be converted to various products including epoxy-
keto-acids, such as 12,13-epoxy-9-keto-10E-octadecenoic acid (Figure 3), which 
contributes to hypertension as discussed in Section 3.2.

An alkoxyl radical can also undergo beta scission (C-C cleavage) to form an 
aldehyde and a carbon centred radical, and this is only facile if the latter is a resonance 
stabilized allylic radical, such as would be formed from the 10-LA-OOH (Figure 4) or 
12-LA-OOH but not 13-LA-OOH [8]. Beta scission is also facile if the carbon bearing 
the alkoxyl radical occurs next to another oxygen-bearing carbon [9]. Various path-
ways fulfilling these conditions have been proposed for the formation of the major 
bioactive lipid-derived aldehydes such as MDA, HNE, acrolein and glyoxal [9, 10].

Acrolein is mainly formed from PUFAS with more than two double bonds, such 
as arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) 
and docosahexaenoic acid (DHA) [9]. Figure 5 shows examples of how MDA, 
HNE and glyoxal can all be formed from linoleic acid, the most abundant PUFA 
in most human tissues [3–6]. It starts with the 13-LA-OOH, formed by singlet 

Figure 1. 
Formation of different hydroperoxide isomers by the singlet oxygen-mediated oxidation of linoleic acid.

Figure 2. 
Free radical peroxidation of linoleic acid showing the formation of one of the two most readily formed 
hydroperoxides, the 9-hydroperoxide. The other easily formed hydroperoxide is the 13-hydroperoxide (shown in 
Figure 1).
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oxygen -mediated or free radical oxidation, which further reacts with singlet 
oxygen to form a hydroperoxy-dioxetane (addition of singlet oxygen to a conjugated 
double bond system forms dioxetanes rather than hydroperoxides). The dioxetane 
is unstable, and decomposes to form two aldehydes, namely 9-oxononanoic acid 
and 4-hydroperoxy-2-nonenal (4-HPNE). The former is one of the predominant 
products of linoleic acid oxidation, and contributes to hypertension through acti-
vating phospholipase A2 (Section 3.2). A primary amine (RNH2) such as lysine or 
phosphatidylethanolamine may catalyse the conversion of 4-HPNE via a dioxetanyl 
anion to a dioxetane whose cleavage affords MDA and hexanal (Figure 5). While it 
has long been known that linoleic acid is a precursor of MDA, albeit not as readily 
as from more highly unsaturated PUFAS, its mechanism of formation from linoleic 
acid remained elusive [11]. 4-HPNE can alternatively react with another singlet 
oxygen molecule to form a hydroperoxy-dioxetanyl aldehyde whose decomposi-
tion affords glyoxal and 2-hydroperoxy-heptanal (not shown). 4-HPNE can also 
be converted to an alkoxyl radical, which can abstract a hydrogen to form 4-HNE, 
or to an epoxy-alkyl radical which can rearrange to an ether radical whose further 

Figure 3. 
Conversion of the 13-hydroperoxide of linoleic acid (13-LA-OOH) via the corresponding alkoxyl radical to 
different types of non-aldehydic products.

Figure 4. 
b-Scission of an alkoxy radical to form an aldehyde (2-heptenal) and an allylic radical. Scission on the other 
side of the alkoxyl radical to form a vinyl radical and 12-oxo-9-dodecenoic acid is energetically unfavourable.
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reaction with oxygen leads to formation of a per acetal that can decompose to MDA 
and hexane. The epoxy-alkyl radical can also directly react with oxygen to form a 
hydroperoxy-epoxide whose decomposition affords glyoxal. In the cell, glutathione 
peroxidase may contribute to the conversion of 4-HPNE to 4-HNE.

3.  Lipid peroxidation products contribute to the development of the 
metabolic syndrome

Lipid oxidation products influence the pathogenesis of metabolic syndrome 
components such as obesity, hypertension, impaired fasting glucose/diabetes, and 
dyslipidemia, in various ways [12].

3.1 Obesity

Obesity occurs when adipocytes increase in number and/or size, coupled with 
increased fat storage and reduced fat oxidation. Adipose tissue (AT) is functionally 
classified as brown or white (BAT and WAT, respectively). BAT consists of adipo-
cytes specialized for thermogenesis, and hence contribute to reduction of obesity; 
while WAT, the major type of adipose tissue in humans, has less capacity for fat oxi-
dation, and may contribute to obesity [13]. White adipocytes can exist in or acquire 
a brown-like (beige or brite) phenotype with higher fat oxidation than ordinary 
white adipocytes, and a higher number of beige adipocytes reduces an individual’s 
susceptibility to obesity [13]. Expansion of WAT by differentiation of preadipocytes 
(hyperplasia) into mature adipocytes with adequate lipid filling and fat oxidation 

Figure 5. 
Mechanisms of the conversion of the 13-hydroperoxide of linoleic acid (LA-OOH) to 4-HNE, MDA, glyoxal, 
hexanal and 9-oxo-nonanoic acid. Other pathways to these products exist but are not shown.
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capacity is beneficial for safe storage of fat; but mere expansion of mature adipo-
cytes because of excessive lipid filling and reduced fat oxidation (hypertrophy) is 
associated with adverse health outcomes.

A certain amount of ROS is required for proper preadipocyte and mature 
adipocyte physiology. However, oxidative stress and excessive autophagy may 
inhibit preadipocyte differentiation and promote hypertrophy of mature adipocytes 
(Figure 6) [14]. Likewise, brown or beige adipocytes have many mitochondria for 
the enhanced fat oxidation, but mitochondrial oxidative stress causes loss of the 
mitochondria through mitophagy, thus leading to whitening, increased lipid storage 
and hypertrophy (Figure 6) [15]. Adenosine 5-monophosphate kinase (AMPK), 
sirtuins 1 and 3, protein kinase B (akt), peroxisome proliferator activated receptor 
gamma and alpha (PPARγ and PPARα, respectively), and PPARγ coactivator-1α 
(PGC-1α) are among the proteins that reduce oxidative stress and/or promote mito-
chondrial biogenesis in adipocytes [16, 17]. Both protein kinase A (PKA) and akt 
are required for PPARγ expression [18], which is required for differentiation of both 
brown and white adipocytes [19]. PPARγ promotes thermogenesis in mature brown 
adipocytes through activation of uncoupled protein 1 (UCP-1), and by upregulating 
glycerol kinase which catalyses glycerol-3-phosphate synthesis, which is required 
for TG synthesis [20]. While this looks paradoxical, TG synthesis may help reduce 
the lipotoxicity and oxidative stress induction by free fatty acids (discussed in 
Section 4), and allow targeted, β-adrenergic signaling-associated release of fatty 
acids for mitochondrial oxidation. AMPK activates autophagy and induces the 
transcription factor nrf2; and the latter upregulates antioxidant enzymes such as 
catalase, glutathione peroxidase, superoxide dismutase and heme oxygenase 1 [21]. 
Sirt1, which is mainly localized in the nucleus, increases the expression catalase and 
SOD as reviewed by Iside et al. [22]. In addition, it upregulates autophagy genes, 
and autophagy defect associated with its inhibition promotes release of exosomes 
which induce toll-like receptor 4 (TLR4) signaling, downstream activation of 
nuclear factor kappa B (NF-kB), and NF-kB-mediated upregulation of oxidative 
stress and inflammation-promoting genes [23].

Figure 6. 
Role of oxidative stress and lipid oxidation-induced carbonyl stress in the pathogenesis of hypertrophic obesity.
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Conditions that promote adipose tissue oxidative stress, including inappropriate 
diets (Section 4), induce lipid oxidation, and the latter generates carbonyl stress 
due to formation of various aldehydes as explained in Section 2. These aldehydes, 
including HNE and acrolein modify and inhibit AMPK and sirt1, thus amplifying 
oxidative stress and their own formation (Figure 6) [24–26]. HNE also carbonyl-
ates insulin receptor substrate1/2 (IRS1), leading to degradation and inhibition of 
the latter, thus inducing insulin resistance and downstream akt inhibition [27]. 
Thus, insulin resistant obese individuals have lower akt, AMPK ad sirt1 activity, but 
higher reactive carbonyls and carbonylated proteins [28]. Acrolein and HNE addi-
tionally aggravate oxidative stress through readily reacting with, and depleting the 
antioxidant glutathione [29, 30]. They modify the endoplasmic reticulum calcium 
pump SERCA, leading to its inhibition and ER stress [3], which aggravates oxidative 
stress, insulin resistance, sirt1 inhibition, expression of the pro-inflammatory cyto-
kines, TNFα and IL6, and adipocyte whitening [31, 32]. Glutathionylated HNE and 
other aldehydes released from adipocytes under conditions of oxidative stress pro-
mote macrophage infiltration into WAT, and their acquisition of a proinflammatory 
M1 phenotype [33]. Malondialdehyde reacts with albumin, and the MDA-albumin 
conjugates promote a proinflammatory phenotype in macrophages and T cells [34]. 
Cytokines such as interleukin1-β, released from inflammatory macrophages, in turn 
promote adipocyte oxidative stress and whitening [35].

3.2 Hypertension

Arterial hypertension occurs because of (i) increased renal retention of sodium 
and water (ii) dysregulation of vasodilators and vasoconstrictors and (iii) arte-
rial stiffness. Obesity is a major risk factor for hypertension [36]. For example, 
adiponectin inhibits adrenal production of aldosterone, a potent inducer of hyper-
tension [37], but obesity reduces adiponectin secretion and increases circulating 
aldosterone [38]. Thus, by promoting obesity, lipid peroxidation products indirectly 
promote hypertension. However, they also induce hypertension independently 
of obesity. For example, the non-aldehydic linoleic acid oxidation product, 
12,13-epoxy-9-keto-10-Ε-octadecenoic acid (Shown in Figure 3) also promotes 
adrenal production of aldosterone to induce hypertension [39].

Aldosterone binds to the renal tubular epithelial cell mineralocorticoid receptor, 
which, as a transcription factor, upregulates the expression of the epithelial sodium 
channel, which promotes sodium retention [40]. Independently of gene transcrip-
tion, aldosterone activates the non-receptor tyrosine kinase cSrc in these cells, 
probably through the angiotensin receptor type 1 (AT1R), and cSrc activates epider-
mal growth factor receptor (EGFR) signaling, leading to activation of the mitogen 
activated protein kinase Erk1/2 [40]. Erk1/2 activates Na+/K+ ATPase, which 
promotes sodium and water retention [41]. Aldosterone-cSrc signaling also induces 
oxidative stress [40], which induces formation of lipid oxidation products. 4-HNE, 
inhibits AMPK and sirt1, thus inhibiting eNOS, leading to reduced NO bioavail-
ability, and this causes increased transactivation of EGFR and downstream Erk1/2 
[42–44]. Thus, blood HNE levels are increased in hypertension [45], and the latter 
can be ameliorated by carbonyl quenching [46]. Oxidized low density lipoprotein, 
which contains oxidatively modified lipids such as HNE, induces oxidative stress in 
renal tubular endothelial cells, which activates the renal renin-angiotensin system 
(RAS); whose component, angiotensin 2, overstimulates sodium transporters and 
thus induces hypertension [47, 48]. Hypertension in turn promotes oxidative stress 
and LDL oxidation, thereby creating a vicious circle [49].

Inhibition of endothelial cell sirt1, sirt3 and AMPK, which can be mediated by 
LPO products, causes inhibition of endothelial nitric oxide synthase (eNOS) and 
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decreases production of NO, the main arterial vasodilator [50–52]. HNE induces 
endothelial cell insulin resistance, and the associated akt inhibition both inhibits 
eNOS and upregulates the vasoconstrictor, endothelin [3, 53]. The dysfunctional 
endothelial cells further produce pro-inflammatory factors such as TNFα, IL-1β, 
IL-8 and MCP-1 which recruit circulating neutrophils, platelets and monocytes, 
and the latter differentiate into macrophages [53, 54]. Neutrophils, monocytes 
and macrophages secrete myeloperoxidase [55]. Myeloperoxidase oxidizes LDL 
[56]. It also promotes the activation of endothelial cyp4a12a, which catalyzes the 
formation of 20-hydroxy-eicosatetraenoic acid (20-HETE) from arachidonic acid 
[57]. 20-HETE upregulates endothelial RAS components including angiotensin 2, a 
potent vasoconstrictor, which also induces aldosterone secretion [58]. Both angio-
tensin 2 and aldosterone aggravate endothelial oxidative stress and dysfunction. 
Androgens promote 20-HETE synthesis, and this may explain the higher occur-
rence of hypertension in men than women [58].

Stiffness of the coronary artery and other major arteries inhibits their systolic 
dilatation, and thus promotes systolic hypertension [59]. Degradation of the elastic 
fiber, elastin, in the walls of the major arteries, and its replacement with collagen 
fibres is a hallmark of the pathogenesis of arterial stiffness [59]. The myeloper-
oxidase product, 20-HETE, activates matrix metalloproteinase 12 (MMP-12, 
macrophage elastase), which degrades elastin [60]. Myeloperoxidase additionally 
inhibits the elastase inhibitor, α1, and this is antagonized by sulfur compounds 
such as glutathione [61]. Acrolein and HNE, on the other hand, deplete glutathione 
[62]. 20-HETE additionally sensitizes vascular smooth muscle cells to stimuli that 
promote their dedifferentiation and proliferation [58], which contributes to arterial 
stiffening especially of the muscular arteries [63]. One of the most readily formed 
aldehydic linoleic acid oxidation products, 9-oxononanoic acid (Figure 3) activates 
phospholipase A2 (PLA2) leading to generation of eicosanoids and thromboxane 
A2 in blood [64]. Thromboxane A2 causes vasoconstriction and the proliferation of 
smooth muscle cells [65].

Malondialdehyde forms collagen crosslinks that prevent collagen degradation, 
thus promoting arterial stiffness [66]. Thus, MDA-modified LDL independently 
predicts arterial stiffness [67]. Glyoxal contributes to arterial stiffness by reacting 
with collagen to form advanced glycation end products such as GOLA, GOLD, 
GODIC and carboxymethyl lysine (CML) [68]. CML induces endothelial oxidative 
stress through the RAGE receptor, which activates components of NF-kB signaling 
that promote expression of collagen 1 and 2 [69, 70].

3.3 Dyslipidemia

Dyslipidemia in metabolic syndrome is defined by elevated circulating triglyc-
erides (hypertriglyceridemia) or low levels of high-density lipoprotein cholesterol 
(low HDLc); and hepatic steatosis, a component of non-alcoholic fatty liver disease 
(NAFLD) is its main risk factor [71]. This is because, in hepatic steatosis, there 
occurs greater production and secretion of triglyceride-rich very low-density 
lipoproteins (VLDL), leading to hypertriglyceridemia; as well as higher hepatic 
lipase activity, which increases the hepatic uptake and degradation of HDL [71]. 
Hepatocyte oxidative stress, ER stress and associated lipid peroxidation are involved 
in the development of hepatic steatosis [72, 73], and this makes lipid peroxidation 
an important factor in the development of dyslipidemia [74].

Low HDLc also occurs in obesity independently of elevated triglyc-
erides, indicating that it occurs even independently of NAFLD [75]. 
Hypoadiponectinemia, which depends on obesity rather than NAFLD [76], 
may cause reduced HDLc through increased hepatic lipase activity; reduced 
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hepatic expression of the HDL protein apo A; reduced expression of the choles-
terol export protein ABCA1 which transfers cholesterol to HDL; and upregulated 
synthesis of LCAT which transfers cholesterol from HDLc to chylomicrons [77]. 
Obesity is also associated with increased plasma TNFα [78] which suppresses 
hepatocyte apo AI gene expression via ERK and JNK [79]. HNE contributes to 
JNK over-activation in hepatocytes [80].

3.4 Prediabetes and diabetes

Diabetes is a state of elevated postprandial and/or fasting blood glucose that, if 
not controlled, leads to the damage of various organs; while prediabetes refers to an 
intermediate level of fasting and/or postprandial blood glucose, higher than normal 
but less than diabetic blood glucose levels [1]. It is an earlier stage toward the 
development of diabetes, but which can revert to normoglycemia. The major causes 
of (pre)diabetes are pancreatic alpha and beta cell dysfunctions leading to glucagon 
over-secretion and insulin under-secretion, respectively; coupled with skeletal 
muscle, adipose and/or hepatic insulin resistance [81].

Both obesity and hypertension contribute to the pathogenesis of prediabe-
tes, hence the lipid oxidation products that induce obesity and hypertension 
indirectly promote diabetes thereby. Nevertheless, lipid oxidation products also 
directly promote (pre)diabetes. For example, malondialdehyde was found to 
dose-dependently reduce the insulin content in the pancreas and to contribute to 
beta cell death [82]. HDL prevents beta cell apoptosis and diabetes by promoting 
cholesterol efflux from these cells, but acrolein- or MDA-modified HDL loses 
this protective property [83–85]. oxLDL impairs insulin gene expression and 
causes death of pancreatic beta cells, through induction of oxidative stress and 
ER stress [86]. As already discussed, lipid oxidation products induce endothelial 
dysfunction. Pancreatic endothelial cell dysfunction contributes to diabetes, 
being associated with leukocyte recruitment and increased production of proin-
flammatory cytokines [87]. Cytokines such as IL-1β and TNFα induce alpha and 
beta cell oxidative stress [88] and associated lipid peroxidation. Insulin resistance, 
which can be induced by HNE and acrolein, is part of the alpha cell and beta cell 
dysfunctions leading to diabetes [81].

4.  Role of dietary constituents in inducing tissue oxidative stress, lipid 
peroxidation and the metabolic syndrome

Diets high in saturated fatty acids, cholesterol, sugar, salt, and red meat, con-
tribute to higher lipid oxidation in the tissues and organs that have a central role in 
the metabolic syndrome, such as adipose tissue, endothelial tissue, muscle, liver and 
pancreas.

Although saturated fatty acids do not undergo peroxidation, they contribute 
to the induction of oxidative stress in cells, which then leads to peroxidation of 
unsaturated fatty acids. For example, the most abundant saturated fatty acid in the 
diet, palmitic acid, is a key substrate for the first reaction in ceramide biosynthesis 
[89]. Ceramides induce oxidative stress, for example by inhibiting components of 
the electron transport chain [90].

Palmitate also induces oxidative stress and ER stress independently of ceramide. 
For example, it increases diacylglycerol levels, which is associated with activation 
of protein kinase C (PKC), which inhibits the Kreb’s cycle enzymes aconitase and 
isocitrate dehydrogenase [91]. Thus, the acetyl COA generated from peroxisomal 
and mitochondrial fatty acid beta oxidation accumulates in the cell, promoting 
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acetylation of mammalian target of rapamycin complex (MTORC-1) and high 
mobility group box-1 (HMGB-1), as has been demonstrated in hepatocytes [92]. 
Acetylation activates MTORC-1, which inhibits akt and further promotes oxidative 
stress by upregulating the expression of TLR4, thus upregulating the NF-kB-NADPH 
oxidase/iNOS axis [92]. Acetylation of HMGB-1 causes its translocation out of 
the cell, enabling it to induce oxidative stress by interacting with the receptor for 
advanced glycation end products (RAGE) as well as TLR4, which both induce NF-kB 
activation [93]. Obesity is associated with increased circulating HMGB-1, which 
accelerates the pathogenesis of obesity, hypertension and diabetes [72, 73, 94, 95]. 
TLR2/4 signaling also activates RAS components including angiotensin 2, whose 
signaling via its receptor AT1R induces NFkB and oxidative stress [3, 96].

PUFAS undergo peroxidation during cooking as well as in the digestive tract 
[97]. This is more pronounced when they are part of a meal containing meat, 
especially red meat, which has higher myoglobin content; since iron from the latter 
promotes lipid oxidation [98]. This leads to a postprandial increase in circulating 
carbonyls such as malondialdehyde and HNE, which promote oxidative stress, HDL 
modification and postprandial inflammation [98, 99]. On the other hand, absorbed, 
unoxidized unsaturated fatty acids including MUFAs and PUFAs reduce palmitate-
induced oxidative stress and lipotoxicity in many cell types by promoting the 
incorporation of palmitate into TGs for safe storage [100–102]. Nevertheless, high 
concentrations of arachidonic acid also induce deleterious effects. Thus, supple-
mentation of arachidonic acid to a high fat diet led to enhanced obesity in mice 
[103], which is attributable to the fact that this n-6 fatty acid promotes adipogenesis 
from preadipocytes, but its cyclooxygenase-mediated oxidation products, prosta-
glandins E2 and F2a (PGE2 and PGF2a) inhibit browning via ERK activation and 
associated decrease in UCP-1 expression [104, 105]. These prostaglandins activate 
NF-kB, diminish adiponectin production, upregulate pro-inflammatory mediators 
such as TNFα and MCP-1, and thus promote macrophage activation [106]. They 
promote oxidative stress and lipid oxidation, and the lipid oxidation product HNE 
in turn induces cyclooxygenase 2 [107]. Adipose inflammation has systemic effects, 
hence adipose tissue arachidonic acid was found to be independently associated 
with abdominal obesity, dyslipidemia, hypertension and fasting glucose [108]. 
Its myeloperoxidase products, 20-HETE is associated with insulin resistance and 
hyperglycemia [109]. Since humans synthesize arachidonic acid from linoleic acid, 
the arachidonic acid content in human adipose tissues does not necessarily reflect its 
dietary intake [110].

Although linoleic acid is a precursor of arachidonic acid, studies of its effects on 
the metabolic syndrome have given mixed results, with both harmful and protec-
tive roles reported [111–113]. The differences are partly due to genetic factors. For 
example, there are individual and ethnic differences in the expression of fatty acid 
desaturase 1 and 2 (FADS 1/2); with genotypes favouring greater FADS1/2 activ-
ity and arachidonic acid synthesis being associated with greater susceptibility to 
metabolic dysregulation [114, 115]. Black people and Indians significantly generate 
arachidonic acid from dietary linoleic acid, unlike people of European origin  
[114, 116]. A high adipose tissue linoleic: arachidonic acid is inversely associated 
with cardiovascular mortality and hypertension [112]. Likewise, a low linoleic: 
arachidonic acid ratio in plasma phospholipids is associated with hypertension 
[117]. Polymorphisms in the receptor for oxLDL, Lox-1, might also determine dif-
ferences in the response to increased dietary linoleic acid; since this PUFA increases 
Lox-1 expression in aortic endothelial cells [118]. The effects of linoleic acid may 
also be dependent on the overall diet. If the diet is high in other factors that induce 
oxidative stress such as dietary sugar and salt, the pro-oxidative environment 
thus created may abrogate potential linoleic acid benefits through its increased 
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oxidation. This is in analogy to the fact that high glycemic index foods abrogate the 
anti-obesity effects of fish oil [119]. A high linoleic acid diet may also be unfavour-
able for people who have already developed some component of the metabolic 
syndrome and thus have a more pro-inflammatory status.

Oleic acid is the major dietary fatty acid in the Mediterranean diet, which is 
generally associated with health benefits. This fatty acid is relatively resistant to 
peroxidation. Besides promoting the safe storage of palmitate in TGs, it induces 
thermogenesis by upregulating adipose triglyceride lipase and hormone sensitive 
lipase, which induce lipolysis coupled with fatty acid oxidation [120]. It promotes 
M2 macrophage phenotype in visceral adipose [121].

The dietary n-3 fatty acids are generally highly susceptible to oxidation because 
they all contain at least 3 double bonds. Although they are not 4-HNE precursors, 
decomposition of their hydroperoxides very readily produces acrolein, MDA, 
glyoxal and methylglyoxal. Despite this, they are largely beneficial, suppressing 
development of the metabolic syndrome [122]. In adipocytes, their binding to the 
GPR120/Ffar4 receptor inhibits TLR2 and TLR4 signaling and associated NFkB 
activation, oxidative stress and inflammation [123]. This receptor also upregulates 
miR-30b and 378, and induces FGF21 secretion, whose signaling activates AMPK, 
promotes browning and induces adiponectin [123–126]. The n-3 PUFAs are metab-
olized by cyclooxygenase to resolvins, protectins, maresins and isoprostanes which 
help in resolving inflammation [127].

A high dietary n-3: n-6 PUFA ratio has been found to be protective against the 
metabolic syndrome in some studies but not others [128, 129]. This might be partly 
due to inter-individual differences in the metabolism of n-6 fatty acids.

High carbohydrate diets promote obesity because excess sugars are stored 
as lipids. High sucrose or high fructose diets are particularly obesogenic [130]. 
Fructose metabolism robustly increases palmitate synthesis in adipocytes [131]. 
Moreover, fructose metabolism is associated with decreased cellular ATP, purine 
degradation and activation of xanthine oxidase which generates reactive oxygen 
species and associated lipid peroxidation [132], which is involved in adipocyte 
whitening and less thermogenesis. Uric acid, a product of purine degradation 
also induces oxidative stress through increased NADPH oxidase activity and RAS 
activation [131–134].

High salt (sodium chloride) diets promote obesity, by salt-induced activation 
of adipocyte Na/K+ ATPase, which is coupled to activation of src, which generates 
ROS, and transactivates PI3-K-Akt–MTOR and EGFR-ERK/MAPK pathways  
[135, 136]. This is associated with increased expression of proinflammatory media-
tors such as TNFα, MCP-1, COX-2, IL-17A, IL-6, leptin, and leptin [136, 137]. 
Sodium chloride also activates Na+/K+ ATPase and induces oxidative stress in 
endothelial cells and renal tubular epithelial cells, thereby promoting hypertension 
[132], and this is also subject to genetic susceptibility [138].

High dietary cholesterol is associated with a high risk of dyslipidemia [139]. 
Cholesterol-rich chylomicron remnants mainly deliver their cholesterol to the 
liver, and cholesterol accumulation in hepatocytes strongly induces oxidative 
stress, by modification of the mitochondrial membrane and limiting import of 
glutathione into the mitochondria, as well by inducing ER stress and proinflam-
matory cytokines [140].

The lipopolysaccharide (LPS) component of the walls of gram-negative bacteria 
is a pro-inflammatory molecule that contributes to metabolic low-grade inflamma-
tion (endotoxemia), by signaling through TLR2 and 4 in various cell types, leading 
to NFkB activation and release of pro-inflammatory cytokines. High sucrose and 
high saturated fat diets promote the growth of gram-negative bacteria, and thus 
increase the entry of LPS into the circulation [141].
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5.  Mechanisms of the antioxidant and metabolic syndrome-suppressing 
effects of dietary factors

While some food components promote a pro-oxidative and pro-inflammatory 
state as discussed in the previous section, other dietary factors inhibit oxidative stress 
and inflammation. They do this through various mechanisms, but the most widely 
considered mechanisms are those associated with lipid oxidation, including scaveng-
ing of free radicals such as peroxyl radicals and alkoxyl radicals, chelation of metal 
ions that participate in formation of such radicals, and singlet oxygen quenching.

5.1 Free radical scavenging and singlet oxygen quenching

Carotenoids, phenolic substances, tocopherols and ascorbic acid are well known 
for their antioxidant activities targeting the neutralization of reactive radicals and/
or singlet oxygen quenching. Thus, carotenoids reduce oxidative stress and lipid 
oxidation, resulting in adipocyte beiging and obesity prevention [142]. There 
is decreased adipose beta carotene in obese subjects, and this was suggested to 
at least partly be due to their depletion under the high ROS environment [142]. 
Likewise, tocopherols and tocotrienols have been shown to be protective against all 
components of the metabolic syndrome [143]. Thus, the high tocotrienol content 
of palm oil may reduce its potential harm from the high palmitate content [144]. 
Unfortunately, radical scavenging antioxidants also exhibit pro-oxidant activity, 
depending on their concentrations and the level of prooxidative factors [145]. 
Hence, there is need to consider a broad range of dietary factors that prevent oxida-
tive by alternative mechanisms, such as those outlined hereafter. A single molecule 
can act by multiple mechanisms, and the more mechanisms involved, the greater 
might be the benefit.

5.2 Insulin-mimicking

Insulin signaling activates akt, which reduces oxidative stress by promot-
ing mitophagy and by activating nrf2 to induce antioxidant enzymes [81, 146]. 
Moreover, nrf2, via heme oxygenase 1 (HO-1), inhibits NFkB and associated 
upregulation of NADPH oxidase and iNOS [147]. Quercetin and ferulic acid are 
examples of molecules that have demonstrated oxidative stress and metabolic syn-
drome amelioration at least partly through PI3K-akt signaling in various cell types 
[148–150]. Resveratrol and ferulic acid inhibit LPS- and oxidative stress-induced 
intestinal barrier injury through this signaling pathway [151, 152].

5.3 AMPK and SIRT1 activation

AMPK and/or sirt1 reduce mitochondrial oxidative stress in adipocytes, pancre-
atic beta cells, hepatocytes, endothelial cells, and thus are useful in preventing all 
aspects of the metabolic syndrome. In addition to insulin mimicking, quercetin and 
ferulic acid, also activate these proteins [153–155].

5.4 Adiponectin and adiponectin receptor enhancement

Compounds that activate AMPK, sirt1 and/or PI3K-akt in adipose tissues limit 
adipocyte hypertrophy and inflammation, and enhance adiponectin production. 
Adiponectin has systemic effects in reducing insulin resistance and oxidative stress, 
because it activates both PI3K-akt and AMPK in insulin target tissues, and also 
promotes anti-inflammatory polarization of macrophages [156]. Dietary compounds 
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than ameliorate metabolic syndrome through enhanced adiponectin secretion and/
or upregulating adiponectin receptor include n3-fatty acids, sesamin, the citrus 
derived polymethoxyflavonoids nobiletin and tangeretin, quercetin and resveratrol 
[157–160].

5.5 Ceramide reduction

Adiponectin signaling increases ceramidase activity, thus reducing ceramide 
levels [161]. Hence, the adiponectin and adiponectin receptor enhancers should 
contribute to reducing ceramide-induced oxidative stress. Not much research has 
been done along this line, but it has been reported that DHA inhibits ceramide 
biosynthesis [162]. In mice, dietary inulin reduces ceramide synthesis by suppress-
ing neutral sphingomyelinase expression and activity [163].

5.6 Vasodilation

Vasodilation reduces blood pressure, and thus reduces pressure-dependent 
oxidative stress as well as LDL oxidation and Lox-1 dependent oxidative stress 
[164]. Thus, for people with prehypertension or hypertension, vasodilation may be 
a major strategy for reducing oxidative stress and lipid oxidation. Cinnamaldehyde 
has vasodilatory and antihypertensive activity through effects on smooth muscle 
contractility [165]. Dietary nitrate achieves vasodilation through NO release, and 
this is associated not only with pressure regulation, but also other components of 
the metabolic syndrome including blood glucose and lipid improvement [166]. 
Adiponectin induces AMPK dependent eNOS activation in endothelial cells, hence 
adiponectin enhancers such as imperatorin also promote NO synthesis and vasodi-
latation [167].

5.7 Reactive carbonyl, ALEs and AGEs scavenging

Scavengers of reactive carbonyls such as HNE, acrolein and MDA have been 
demonstrated to ameliorate oxidative stress, lipid peroxidation and the metabolic 
syndrome. Examples of compounds with such effects include carnosine, carnosinol, 
epigallocatechin-3-gallate and the mulberry anthocyanins cyanidin 3-glucoside 
(C3G) and cyanidin 3-rutinoside (C3R) [46, 168–170]. Aminoguanidine attenuates 
hypertension by scavenging AGES [171].

5.8 Gut microbiota modulation

Probiotic microorganisms suppress the growth of pathogenic microorganisms. 
They also produce metabolites such as short chain fatty acids with beneficial effects 
on the metabolic syndrome. For example, butyrate promotes PI3K-akt signaling 
to prevent oxidative stress and maintain intestinal barrier integrity [172, 173]. 
Quercetin, resveratrol and n-3 fatty acids have been demonstrated to positively 
influence gut microbiota and decrease intestinal barrier permeability in animal 
studies [153, 174].

6. Conclusions

Lipid peroxidation is a major contributor to the pathogenesis of the metabolic 
syndrome, especially through highly reactive and bioactive aldehydes such as acro-
lein, 4-hydroxy-2-nonenal, malondialdehyde and glyoxal. Mechanisms of formation 
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of these products are now well-understood. For example, this article has highlighted 
that formation of MDA from linoleic acid may be easier than previously thought. 
The mentioned aldehydes propagate oxidative stress and inflammation by inducing 
insulin resistance, inhibiting sirt1 and AMPK, reducing adiponectin secretion, as 
well as forming AGEs and ALEs that activate the RAGE receptor. Inhibiting LPO 
and the LPO product-associated oxidative stress and inflammation is necessary for 
preventing and/or ameliorating progression of the metabolic syndrome. This may 
not be effectively accomplished by dietary agents that merely scavenge free radicals 
and/or quench singlet oxygen, but also by those that inhibit the signaling pathways 
that generate non-lipid ROS, or scavenge the reactive carbonyls, ALEs and AGEs. In 
addition, saturated fat, sugar, meat, and salt, that fuel the signaling pathways that 
initiate LPO should be reduced. The metabolic influence of some dietary compo-
nents such as salt and n-6 PUFAs is particularly influenced by genetics, and this 
should be duly considered when making dietary recommendations.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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