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Abstract

Metabolic engineering in plant can be describe as a tool using molecular 
biological technologies which promotes enzymatic reactions that can enhance 
the biosynthesis of existing compounds such as glycine betaine (GB) in plant 
species that are able to accumulate GB, or produce news compounds like GB in 
non-accumulators plants. Moreover we can include to these definition, the media-
tion in the degradation of diverse compounds in plant organism. For decades, one 
of the most popular ideas in metabolic engineering literature is the idea that the 
improvement of gly betaine or melatonin accumulation in plant under environ-
mental stress can be the main window to ameliorate stress tolerance in diverse 
plant species. A challenging problem in this domain is the integration of different 
molecular technologies like transgenesis, enzyme kinetics, promoter analysis, 
biochemistry and genetics, protein sorting, cloning or comparative physiology to 
reach that objective. A large number of approaches have been developed over the 
last few decades in metabolic engineering to overcome this problem. Therefore, we 
examine some previous work and propose some understanding about the use of 
metabolic engineering in plant stress tolerance. Moreover, this chapter will focus 
on melatonin (Hormone) and gly betaine (Osmolyte) biosynthesis pathways in 
engineering stress resistance.

Keywords: metabolic engineering, biosynthesis, molecular, abiotic stress,  
stress tolerance

1. Introduction

The global climate change influence negatively plant growth and development 
via the increase of the intensity of various abiotic stresses such as drought, chill-
ing, salinity, waterlogging or flooding. Environmental stresses are one of the most 
threatening factors that can cause massive losses in agricultural crop production, 
ranging from 50–70% [1]. Plant biotechnology and engineering are promising 
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platform for exploring the unlimited potential of many various plants species [2]. 
In recent years, plant metabolism engineering provides successful pathways to 
increase the production of metabolites that can significantly counterattack the 
damages caused by diverse abiotic stresses [3]. To improve stress tolerance in plant, 
various metabolic engineering technologies were used to introduce or increase the 
synthesis of diverse osmolytes, secondary metabolites or hormones. The adapta-
tion of various plant species to stressful environments can be managed through: 
(i) the identification of diverse mechanisms developed by plants to counterbalance 
abiotic stresses (ii) and the improvement of these processes in plants by metabolic 
engineering [4, 5]. Plant by-products including hormone (melatonin, MT) and 
osmoprotectant (glycine betaine, GB) that play a prominent roles in plant stress 
tolerance have been targeting in various plant species to counterattack environ-
mental stresses. The clarification of the biosynthetic pathway of various plant 
compounds has provided the possibility to metabolically engineer new capabilities 
in plants as well as successfully engineer whole pathways into microbial systems [6]. 
Under environmental stresses plant is able to accumulate different molecules such 
as melatonin or glycine betaine to provide stress tolerance by counteracting with 
oxidative stress caused by drought, chilling, salinity or heavy metal stresses [7–9]. 
The protective properties of GB and MT in plant under abiotic stresses had made 
these substances targets for plant engineering resistance.

The natural biosynthesis of glycine betaine takes place in marine algae and 
various higher plant species belong to diverse families, counting the Gramineae, 
Malvaceae, Asteraceae, or Amaranthaceae [10–14]. Glycine betaine accumulation 
in non-accumulators and accumulators plant species under environmental stresses 
has long been a target for engineering stress resistance [15, 16]. The biosynthesis of 
glycine betaine passes by choline → betaine aldehyde → glycine betaine pathways. 
Most of the enzymes involving in these pathways such as choline monooxygenase 
(CMO) or betaine aldehyde dehydrogenase (BADH) have been identified, and 
genes for some of them have been cloned [4, 13].

Indeed, GB as a non-toxic molecule is biosynthesized through two phases of 
choline oxidation: the first step (Choline → betaine aldehyde) is catalyzed by CMO, 
and the second step (Betaine aldehyde → glycine betaine) is activated by BADH 
[13, 17]. The expression of CMO or BADH in tobacco has been done via the cDNA 
from two natural glycine betaine accumulators; spinach and sugar beet plants. The 
35S promoter from plant virus, cauliflower mosaic virus which is a fundamental 
element of transgenic constructs in the majority of genetically modified plant spe-
cies was used in transgenic tobacco to control the expression of cDNA for BADH 
pathway [18]. Also, a crucial tool in metabolism engineering of glycine betaine 
pathway is the use of a single gene codA from Arthrobacter globiformis which is 
involved in the synthesis of GB [19]. However, GB accumulation in transgenic 
plants depends on the capacity of endogenous choline uptake, the type of gene 
that catalyzes the GB biosynthetic pathway, and the localization of the transgene 
product in a particular cellular compartment [20].

Melatonin a plant hormone identified in a wide variety of animals and plants, 
has been extensively studied in plants for its properties to counteract with various 
environmental and biotic stresses [21, 22]. Transcriptome analyses indicated that 
melatonin primarily affects the pathways of plant hormone signal transduction 
and biosynthesis of secondary metabolites [23]. In plant the biosynthesis of mela-
tonin is initiated with tryptophan which is converted in serotonin, and between 
the tryptophan and melatonin, the enzymes hydroxyindole-O-methyltransferase 
and caffeic acid O-methyltransferase (ASMT/COMT) catalyzed a reaction that 
produce an intermediate molecule named 5-methoxytryptamine [24–26]. The 
related enzymes involved in melatonin biosynthesis pathway have been targeted 
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to improve stress tolerance in diverse plant species. The over expression of COMT 
like gene (TaCOMT) in a transgenic Arabidopsis via various metabolic engineering 
techniques (cloning, transgenesis, genetics or promoter analysis) provided drought 
tolerance by increasing the concentration of melatonin [27]. Other enzymes such 
as serotonin N-acetyltransferase (MsSNAT) involve in melatonin biosynthesis have 
been targeted in rice [28] or Arabidopsis [29] to provide stress tolerance, either to 
clarify the role of melatonin in plant. This chapter will focus on the use of glycine 
betaine, spermidine and melatonin in plant metabolism engineering, particularly in 
stress engineering.

2. Glycine betaine and metabolism engineering

Glycinebetaine is a quaternary ammonium compound that appears commonly in 
a large diversity of plants, animals and microorganisms, the first betaine discovered 
was trimethylglycine (Figure 1) named also N, N,N-trimethylglycine [8, 12]. The 
glycine betaine as a osmolytes is a crucial non-toxic molecule that is accumulated in 
various plant species under environmental stresses [15].

2.1 Glycine betaine biosynthesis

GB synthesis begins with an essential molecule named choline, synthesized 
through three sequential adenosyl-methionine dependent methylations of 
phospho-ethanolamine catalyzed by the cytosolic enzyme phosphoethanolamine 
methyltransferase (phosphoethanolamine N-methyltransferase) [30]. In plant, the 
biosynthesis of GB is two steps of oxidation initiated with choline and then betaine 
aldehyde (Figure 2). In plant such as Arabidopsis the biosynthesis of choline can be 
resume by this following line: L-serine → ethanolamine → O-phosphoethanolamine 
→ N-methylethanolamine phosphate → N-dimethylethanolamine phos-
phate → phosphocholine → choline [31–33]. Pursuing the transformation of 
N-methylethanolamine phosphate by phosphoethanolamine methyltransferase 
(PeMt) the byproduct differs according to the plant species, for instance in that 
stage the spinach produce choline like in Arabidopsis choline biosynthesis pathway, 
meanwhile in tobacco PeMt catalyzed a reaction that synthesize phosphatidyl-
choline in the first place then metabolized to choline [8, 15]. The first stage of GB 
biosynthesis is modulated by CMO which is an Fd-dependent monooxygenase with 
a Rieske-type iron–sulfur (2Fe-2S) cluster-binding motif. The second stage of GB 

Figure 1. 
N,N,N-trimethylglycine.
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biosynthesis is catalyzed by BADH, an enzyme belong to the superfamily of alde-
hyde dehydrogenases which is an NAD+ or NADP+ dependent [17, 34].

2.2 Glycine betaine and environmental stress

Many plants are able to accumulate naturally GB and diverse osmoprotectants 
to balance the disruption of plant cell homeostasis caused by environmental stress 
such as drought, chilling, salinity or high temperature [8, 35, 36]. Many stud-
ies have been reported on the positive effect of endogenous GB in plants under 
abiotic stresses. The role of glycine betaine in osmotic adjustment was related in 
Amaranthus tricolor [37] and Hordeum maritimum [38] under salinity. The role of 
GB against oxidative stress via scavenging the reactive oxygen species and increas-
ing the antioxidant activities was reported in many studies [39–41]. For these rea-
sons, the use of glycine betaine in non accumulator and accumulator plant species 
become more popular in plant physiology. Indeed, several reports have related the 
positive effect of GB in transgenic plants (Table 1).

2.3 Glycine betaine engineering

The idea of introducing GB pathway and its high accumulation in plant under 
environmental stresses has long been a target for metabolism engineering stress 
tolerance. The feasibility of this process was based on comparative physiology 
and genetic evidence from a maize mutant [15, 54]. Metabolic engineering of the 
biosynthesis of GB from choline by using various genes such as codA or BADH gene 
gained more attention to improve stress tolerance in crop and woody plants that are 
incapable of synthesizing GB under abiotic stresses [8, 18, 55]. Moreover, genetic 
engineering is also use to increase GB accumulation in various plant species which 

Figure 2. 
Diagram of GB biosynthesis in brief.
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produce a low concentration of GB that might not be sufficient for osmoregulation 
to counteract with abiotic stress [56].

The genes (codA or cDNA BADH) and enzymes involve in GB biosynthesis 
have been identified and cloned. GB has been successfully synthesized in various 
targeted organisms and provided stress tolerance via genetic engineering (Table 2).

2.3.1 Genetic engineering of GB via codA gene

As shown in Table 2, many species that can accumulate or not GB have been 
targeted via genetic engineering to synthesize or over accumulate GB under both 
stressed and non-stressed conditions. The choline oxidase (codA) from A. globifor-
mis has been widely used in various transgenic plant species to synthesize GB, and 
codA has the ability to convert choline in one reaction [56].

The catalytic activity of choline oxidase (EC: 1.1.3.17) in A. globiformis results in 
this following equation: (Choline + H2O + 2 O2 = glycine betaine + H+ + 2 H2O2) [63]. 

Transgenic species GB Acc./

GB N-Acc.

Type of abiotic 

stress

Role in stress 

tolerance

References

Nicotiana tabacum GB N-Acc. Salinity Protection of the 

photosynthetic 

apparatus

[42]

Zea mays GB Acc. Chilling stress Protect 

photosynthesis, 

Homeostasis

[43]

Synechococcus sp. GB N-Acc. Low-Temperature Enhanced 

Photosynthesis

[44]

Oryza sativa GB N-Acc. Salinity, Chilling 

stress

Improve 

photosynthesis and 

phenotype

[45]

Gossypium hirsutum GB Acc. Drought Osmotic 

adjustment, 

enhance yield

[46]

Nicotiana tabacum GB N-Acc. Salinity Phenotypic traits [47]

Triticum aestivum GB Acc. Heat and drought 

stress

Promoted 

photosynthesis, 

antioxidant and 

water status

[48]

Lycopersicum 

esculentum

GB N-Acc. Salinity Protect 

photosynthesis and 

reproductive organs

[49]

Lycopersicum 

esculentum

GB N-Acc. High temperature Enhanced the 

expression of heat-

shock genes

[50]

Oryza sativa GB N-Acc. Water stress Enhance Survival 

rate and agronomic 

traits

[51]

Lycopersicum 

esculentum

GB N-Acc. Chilling stress Promoted ROS 

scavenge

[52]

Brassica chinensis GB N-Acc. High salinity and 

high temperature

Promote 

photosynthesis

[53]

Table 1. 
Reported roles of GB in transgenic plant under abiotic stresses.
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The codA gene is of particular interest with respect to the engineering of desir-
able productive traits in crop plants and stress tolerance. In transgenic tomato and 
brown mustard the codA was targeted to the chloroplast and cytosol which allowed 
GB accumulation for an increase of stress tolerance [19, 59]. Further, transgenic 
indica rice showed a significant increase of water-stress tolerance and transcriptome 
changes via codA gene expression [51]. One of the advantages of using choline 
oxidase pathway as a tool for engineering GB synthesis in plant is that the addi-
tion of a single gene codA is enough for the conversion of choline to GB [8]. The 
codA transgenic plant has showed their abilities to counteract with environmental 
stresses such as salinity, high temperature, high light, cold stress and freezing in 
different plant growth stages [64].

Transgenic 

species

GB Acc./

GB N-Acc.

Genes 

targeted

Protein 

Encoded

Organism 

sources/

Promoter

Roles in plant References

Oryza sativa GB N-Acc. codA Choline 

oxidase

Arthrobacter 

globiformis

Water stress 

tolerance

[51]

Zea mays/

Glycine max

GB Acc. GB1(novel 

gene)

GB1 

protein

Zea mays H-GB 

genotype /

- Agrobacterium

- Rice actin and

- 35S promoter

Enhanced 

endogenous 

GB synthesis

[57]

Nicotiana 

tabacum

GB N-Acc. cDNA 

sequence

BADH Spinacia oleracea 

and Beta vulgaris

Betaine 

aldehyde 

resistance

[13]

Lycopersicum 

esculentum

GB N-Acc. codA Choline 

oxidase

Arthrobacter 

globiformis

Modulation 

of phosphate 

homeostasis 

under stress

[58]

Lycopersicum 

esculentum

GB N-Acc. codA Choline 

oxidase

Arthrobacter 

globiformis

Reproductive 

organs 

regulation

[59]

Brassica 

juncea

GB Acc. codA Choline 

oxidase

Arthrobacter 

globiformis

Photo 

inhibition 

tolerance

[11]

Nicotiana 

tabacum

GB N-Acc. BADH 

cDNA

BADH Hordeum vulgare GB synthesis 

in non 

accumulator 

plant

[60]

Nicotiana 

tabacum

GB N-Acc. BADH 

cDNA

BADH Escherichia coli Salt tolerance [47]

Eucalyptus 

camaldulensis

GB Acc. codA Choline 

oxidase

Arthrobacter 

globiformis/

CaMV 35 

promoter

Enhance 

of GB 

biosynthesis

[61]

Eucalyptus 

globulus

GB Acc. codA Choline 

oxidase

Arthrobacter 

globiformis

GB 

accumulation

[62]

Triticum 

aestivum

GB Acc. BADH 

gene

BADH Atriplex 

hortensis

Stress 

tolerance

[48]

Table 2. 
Overview of GB genetic engineering in various plant species.
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2.3.2 Genetic engineering of GB via BADH gene

The other pathway that provided successful results in genetic engineering of GB 
biosynthesis in various transgenic plant species is the BADH pathway (Table 2). 
BADH is one of the most prominent genes involved in the biosynthetic pathway of 
GB, and its utilization in various plant species has led to an increased tolerance to a 
variety of environmental stresses [65]. Indeed, the second step of GB biosynthesis 
is performed by betaine aldehyde dehydrogenase (BADH) that can be encoded by 
betB or betA gene from E. coli. BADH is an NDA-dependent dehydrogenase that has 
been characterized and cloned from plants species belong to the Amaranthaceae 
and Gramineae families [15]. The BADH pathway has been targeted in the chlo-
roplasts in N. tabacum [13] and in peroxisomes in Gramineae [60]. Many studies 
showed positive results in stress tolerance in transgenic plants with genes betA, betB 
or both from Escherichia coli encoding Oxygen-dependent choline dehydrogenase 
(CHDH) and BADH [8]. The catalytic activities of CHDH (EC: 1.1.99.1) encode by 
betA from E. coli can be resume by this following Eq. (A + choline = AH2 + betaine 
aldehyde), A (hydrogen acceptor) and AH2 (hydrogen donor) [66]. Meanwhile the 
catalytic activities of the NAD/NADP-dependent betaine aldehyde dehydrogenase 
(EC: 1.2.1.8) are done by this equation: (betaine aldehyde + H2O + NAD+ = glycine 
betaine +2 H+ + NADH) [66, 67]. The equation for the catalytic activities is similar 
for chloroplastic betaine aldehyde dehydrogenase in sugar beet or spinach compared 
to those of E. coli.

3. Metabolism engineering of melatonin

Melatonin (Figure 3) as an ancient pleiotropic bio-molecule which can be traced 
back to the origin of life, is present in both animal and plant organisms [24, 68]. In 
plant, melatonin has been found in diverse family and at different stage of growth: 
Asteraceae, papaveracea, apiaceae, linaceae, fabaceae, poaceae, rosaceae, lamiaceae, 
solanaceae, musaceae or vitacea etc. [69].

Melatonin (N-acetyl-5-methoxytryptamine), a multifunctional plant hormone, 
was discovered in plants in 1995 [70]. Moreover, the presence of melatonin in plant 
was confirmed in Chenopodium rubrum via chromatography/tandem mass spec-
trometry and radio-immuno-assays [71]. Melatonin has multi-functional actions 

Figure 3. 
N-acetyl-5-methoxytryptamine.
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that improve cellular and organ health in various plant species and it is a powerful 
antioxidant in both animals and plants [72].

Melatonin functions as a metabolite with numerous roles in plant, including 
plant stress responses such as chilling, oxidative stress, drought, salt stress and 
nutrients deficiency, moreover melatonin can regulates plant growth and develop-
ment, such as root organogenesis, flowering, and senescence [9, 73, 74]. Plenty of 
studies have focused on the function and regulation of melatonin in transgenic 
plants because of its crucial role in plant regulation.

3.1 Melatonin biosynthesis pathways in plant

The Figure 4 shows a schematic representation of the biosynthesis of MT, in 
which the tryptophan is synthesized via shikimic acid pathway that is also respon-
sible for the synthesis of vitamins and aromatic amino acids such as phenylalanine 
and tyrosine. In plants, tryptophan is converted to Tryptamine via a reaction cata-
lyzed by tryptophan decarboxylase (TDC) [75], and the production of serotonin 
from Tryptamine is activated by tryptamine 5-hydroxylase [76]. The formation of 
melatonin is preceded by two reactions from serotonin; the first reaction catalyzed 
by ASMT transform serotonin to 5-methoxytryptamine, and the last step is cata-
lyzed by N-acetyltransferase [77].

As far as we know, there are 6 genes which are involved in plant melatonin bio-
synthesis: TDC, TPH, T5H, SNAT, ASMT, and COMT [68], and the keys enzymes 
they encoded are the; L-tryptophan decarboxylase, tryptophan hydroxylase, 
serotonin-N-acetyltransferase, N-acetylserotonin methyltransferase and hydroxy-
indole-O-methyltransferase [24].

Figure 4. 
A schematic representation of melatonin biosynthesis in brief.
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3.2 Melatonin involve in abiotic stress tolerance

Melatonin is well know as a hormone which can significantly increase the 
plant survival rates, photosynthetic efficiency and antioxidant activities in 
plant under environmental stress [74, 78]. For these reasons, many studies were 
focused on the effects of exogenous melatonin on various plant species under 
abiotic stress. Indeed, exogenous melatonin could stimulate the biosynthesis of 
cold tolerance agents and contribute to increase the plant growth and develop-
ment under cold stress [79]. As show Table 3, the alleviation of environmental 
stresses by melatonin has been investigated in many plant species: under drought 
(Zea mays) [89], under heavy metal (Caryaca thayensis) [90], under chill-
ing stress (Cynodon dactylon) [91] and under salinity (Cucumis sativus) [82]. 
Compared to glycine betaine genetic engineering in plant under stress, the use of 
melatonin in transgenic plant to provide stress tolerance is fewer. However, there 
is several studies that focused on the over expression of melatonin via metabolic 
 engineering (Table 3).

In Transgenic Arabidopsis the over expression of N-acetyltransferase gene 
increased salt tolerance via the increase in autophagy, and the reestablishment 
of redox and ion homeostasis [29]. Furthermore, increase of over-expressing 
N-acetyltransferase gene enhances the endogenous content in transgenic rice that 
provoked pleiotropic phenotypes, including enhanced seedling growth, delayed 
flowering, and low grain yield [28].

Plant species Transgenic/exogenous Stress Role in stress References

Oryza sativa Transgenic Chilling Promote 

photosynthesis

[80]

Malus hupehensis Exogenous MT Salt stress Boost antioxidant 

system

[81]

Arabidopsis 

thaliana

Transgenic Drought Enhanced melatonin 

content

[27]

Cucumis sativus Exogenous MT Salt stress Enhanced the rate of 

germination

[82]

Lycopersicum 

esculentum

Transgenic Drought Enhanced melatonin 

content

[83]

Oryza sativa Transgenic Heavy 

metal stress 

(Cadmium)

Enhanced stress 

tolerance

[84]

Oryza sativa Transgenic Herbicide oxidative stress 

resistance

[85]

Nicotiana 

sylvestris

Transgenic UV-B 

radiation

Reduced DNA 

damages

[86]

Phacelia 

tanacetifolia

Exogenous MT high 

temperature 

and light

Promoted 

germination

[87]

Lycopersicum 

esculentum

Transgenic Salt stress ROS scavenge [88]

Arabidopsis 

thaliana

Transgenic Salt stress Increase in 

autophagy 

and rebalance 

homeostasis

[29]

Table 3. 
Reported roles of MT exogenously applied and in transgenic plant under abiotic stresses.
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3.3 Melatonin in plant metabolism engineering

Previous studies using genetic engineering (transgenic plant) in various plants 
species with low or high MT accumulation has been achieved to determined the 
role of MT in plant growth regulation, stress tolerance or MT function in plant 
(Table 4). Indeed it was reported the implication of MT in seed germination, 
root development, fruit ripening, senescence, yield, circadian rhythm and plant 
homeostasis [98]. Ectopic over-expression (transgenesis) of human serotonin 
N-acetyltransferase increased endogenous melatonin that allowed transgenic rice 

Transgenic 

species

Genes 

targeted

Protein encoded Organism source/ 

transformer/vector

Functions References

Medicago 

sativa

MsASMT1 N-acetylserotonin 

methyltransferase

Alfalfa/Agrobacterium 

strain EHA105/pZh01-

MsASMT1 vector

Ameliorated 

Plant Growth

[92]

Panicum 

virgatum

AANAT 

and 

HIOMT

arylalkylamine 

N-acetyltransferase /

hydroxyindole 

O-methyltransferase

Ovine/Agrobacterium-

mediated method /

vector Ubi1301

Improved 

growth and 

salt tolerance

[93]

Oryza sativa ASDAC N-acetylserotonin 

deacetylase

Rice/Agrobacterium 

tumefaciens/

pTCK303:ASDAC 

RNAi binary and 

pIPKb002:ASDAC 

vector

Regulation of 

melatonin in 

plant

[94]

Arabidopsis 

thaliana

cDNA 

TaCOMT

Caffeic acid 

3-O-methyltransferase

Wheat/Agrobacterium 

tumefaciens 

strain GV3101 / 

pCAMBIA1302-

TaCOMT vector

Promoted 

drought 

tolerance

[27]

Oryza sativa OaSNAT 

(SNAT)

Serotonin 

N-acetyltransferase

Sheep/Agrobacterium-

mediated method

Homeostasic 

regulation of 

melatonin

[95]

Arabidopsis 

thaliana

MsSNAT serotonin 

N-acetyltransferase

Alfalfa/Agrobacterium-

mediated method

Salt tolerance [29]

Arabidopsis 

thaliana

MzASMT1 

(ASTM)

N-acetylserotonin-O-

methyltransferase

Apple/35S promoter Drought 

tolerance

[96]

Panicum 

virgatum

HIOMT hydroxyindole 

O-methyltransferase

Ovine/Agrobacterium-

mediated method

biosynthetic 

and 

physiological 

functional 

networks of 

melatonin

[97]

Nicotiana 

sylvestris

AANAT 

HIOMT

arylalkylamine 

N-acetyltransferase/

hydroxyindole-O-

methyltransferase

Agrobacterium 

tumefaciens-mediated 

transformation

Inhibited 

UV-B-

induced DNA 

damage

[86]

Lycopersicum 

esculentum

SlCOMT1 caffeic acid 

O-methyl-transferase

Tomato/Agrobacterium 

LBA4404/pMD18-T 

cloning, pCXSN-Myc, 

SlCOMT1-Myc over-

expression vectors

Salt tolerance [88]

Table 4. 
Overview of MT metabolic engineering in diverse plants.



11

Insights into Metabolic Engineering of the Biosynthesis of Glycine Betaine and Melatonin…
DOI: http://dx.doi.org/10.5772/intechopen.97770

Author details

Cisse El Hadji Malick*, Miao Ling-Feng, Li Da-Dong and Yang Fan
Key Laboratory of Agro-Forestry Environmental Processes and Ecological 
Regulation of Hainan Province, Center for Eco-Environmental Restoration 
Engineering of Hainan Province, School of Ecological and Environmental Sciences, 
Hainan University, Haikou, Hainan, China

*Address all correspondence to: kosmosofmalick@gmail.com

seedlings to face chilling stress [80]. The increase of endogenous melatonin in 
various transgenic plant organisms compared to the wild type has been reported in 
Arabidopsis thaliana [29], in Lycopersicum esculentum [88] or in Medicago sativa [92].

Most of the studies in MT transgenesis are based on the ability of Agrobacterium 
to transfer DNA to plant cells by genetic engineering (Table 4). Indeed 
Agrobacterium tumefaciens is a widespread naturally occurring soil bacterium 
which demonstrated a great ability to introduce new genetic material into diverse 
plant cell species [99]. The Agrobacterium-mediated transformation process can 
be resumed in this following line: 1- Isolation of the targeted genes → 2- devel-
opment of a functional transgenic construct → 3- insertion of the transgene 
→ 4- introduction of the T-DNA-containing-plasmid into Agrobacterium → 
5- mixture of the transformed Agrobacterium with plant cells → 6- regeneration 
of the transformed cells into transgenic plant → 7- testing for trait performance 
or transgene expression [99–101]. The catalytic activities of different enzymes 
involved in MT metabolic engineering have been elucidated in various species. The 
catalytic activity of Acetylserotonin O-methyltransferase (EC: 2.1.1.4) encoded by 
ASMT gene in Homo sapiens is done by this following line: (N-acetylserotonin + 
S-adenosyl-L-methionine = H+ + melatonin + S-adenosyl-L-homocysteine) [102]. 
The catalytic activity of Serotonin N-acetyltransferase (EC: 2.3.1.87) from Ovis 
aries (Sheep) encoded by AANAT gene is done by this reaction: (2-arylethylamine + 
acetyl-CoA = CoA + H+ + N-acetyl-2-arylethylamine) [103]. Moreover the catalytic 
activity of Caffeic acid 3-O-methyltransferase (EC: 2.1.1.68) implicated in many MT 
genetic engineering manipulations has been decoded in Medicago sativa (Alfalfa): 
((E)-caffeate + S-adenosyl-L-methionine = (E)-ferulate + H+ + S-adenosyl-L-
homocysteine) [104].

The elucidations of these reactions and techniques provided a huge benefit to 
increase the use of those compounds in metabolic engineering. There are others 
areas to explore and clarify to shed light the use of melatonin or glycine betaine 
metabolic engineering.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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