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Quantitative Dexterous Workspace Comparison 
of Serial and Parallel Planar Mechanisms 

Geoff T. Pond and Juan A. Carretero 
University of New Brunswick  

Canada 

1. Introduction 

The dexterity analysis of complex degree of freedom (DOF) mechanisms has thus far been 
problematic. A well accepted method of measuring the dexterity of spherical or translational 
manipulators has been the Jacobian matrix condition number as in (Gosselin & Angeles, 
1989) and (Badescu & Mavroidis, 2004). Unfortunately, the inconsistent units between 
elements within the Jacobian of a complex-DOF parallel manipulator do not allow such a 
measure to be generally made as discussed in (Tsai, 1999) and (Angeles, 2003). In the 
following section, the mathematical meaning of singular values and the condition number of 
a matrix are reviewed. Their application to studying robotic dexterity follows next. Later in 
this chapter, these principles are applied to the study and comparison of the dexterous 
workspace of both serial and parallel manipulators. 

1.1 Mathematical background 

The condition number of a matrix is defined as the ratio of the maximum and minimum 
singular values of the matrix. A brief explanation of the significance of the matrix’s singular 
values is important and is therefore provided here. Strang (Strang, 2003) shows that any 
matrix or transform, e.g., J, may be broken into three components through singular value 
decomposition: 

 (1) 

where V contains the eigenvectors of JT J, U contains the eigenvectors of JJT (u1 and u2 for the 

two dimensional case shown) and Σ  is a diagonal matrix containing the singular values of J. 

Both the matrices V and U are composed of unit vectors which are mutually perpendicular 

within each matrix. Figure 1 is adapted from Strang (2003), and graphically depicts the 

transform described in equation (1) for the two dimensional case. 

In terms of dexterity, the most interesting of the three component matrices of J is 
Σ consisting of the singular values of J each denoted by σi. Consider the conventional 
relation xJq $$ = , where in more general terms, x$ corresponds to some unit system output 

depicted in the furthest left side of Figure 1, q$ , the system input depicted in the furthest 

right of Figure 1, and J, the system transform between them. Generally, the maximum and 

Source: Parallel Manipulators, New Developments, Book edited by: Jee-Hwan Ryu, ISBN 978-3-902613-20-2, pp. 498, April 2008,  
I-Tech Education and Publishing, Vienna, Austria
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minimum singular values of J indicate a range within which the magnitude of vector q$  

must lie, for any unit output in x$ , i.e., 1=x$ . The condition number κ is then the ratio of the 

largest and smallest singular values: 

 
(2) 

 

 

Figure 1: The three steps in any matrix transformation: rotation, scaling, rotation (or 
reflection). 

Now, let the system output x$  correspond to the velocity vector of a manipulator’s end 

effector and q$ , the vector of actuator velocities. ‘Ideal dexterity’ occurs at isotropic 

conditions, that is at the lowest possible Jacobian condition number, i.e., 1 (Angeles, 2003). 

At such positions, a unit velocity in any feasible direction for the manipulator requires the 

same total effort in the actuators, i.e., the resolution of end effector pose is the same in each 

DOF. On the other hand, a condition number of  ∞  corresponds to a rank deficiency within 

the Jacobian matrix. At such configurations, some level of control over the system is lost. 

1.2 Application to robotics 

In robotics, the Jacobian, and hence its singular values and condition number, are dependant 

on the architecture of the manipulator as well as the position and orientation, together 

referred to as pose, of the manipulator’s end effector. As a result, the manipulator’s level of 

dexterity changes as it travels through its reachable workspace. A manipulator’s dexterous 

workspace is often defined as poses resulting in a Jacobian matrix condition number below a 

specified threshold. The higher level of dexterity required, or as conventionally defined, the 

lower the condition number, the smaller the dextrous workspace will be. This is due to an 

increasing Jacobian matrix condition number as the reachable workspace boundary is 

approached. Manipulator singularities exist when the Jacobian condition number becomes 

infinite, that is, either a) an instantaneously infinite actuator input velocity results in no 

change in the end effector pose, or b) the end effector pose may be altered without having 

changed the actuator inputs. 
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However, using the Jacobian condition number alone may provide misleading results, 
particularly when comparing multiple manipulators, as this chapter will later do. Consider 
two 2-DOF manipulators, of the same architecture but of different scale, and in the same 
pose. The first having Jacobian matrix singular values of 1 and 2, the second being 100 times 
larger having singular values of 100 and 200. Both result in the same condition number as 
they both require twice the effort in the second direction as they do to move in the first. That 
is, the magnitude of the vector q$ required to perform the motion in the second direction is 

twice as large in magnitude as the magnitude required to perform the motion in the first 
direction. In the case of the first system, the end effector pose is far more sensitive to the 
system inputs (recall that the sensitivity is indicated by the singular values, the condition 
number only indicates the ratio of this sensitivity for the fastest and slowest directions in the 
task space). For this reason, the entries of the Jacobian matrix must all share the same units, 
e.g., distances may be measured in m but not by a mix of m, cm, mm, etc. 
Larger singular values correspond to a better resolution over the pose of the end effector, 
hence better position control over the mechanism end effector pose is achieved. However, 
having small singular values also has a benefit. Having smaller singular values suggests that 
the same system outputs are achieved at lower system inputs when compared to a system 
with large singular values. This corresponds to higher end effector velocities for the same 
actuator input magnitude. Therefore, there is a trade-off between high end effector velocities 
(a Jacobian having small singular values), and fine resolution over the end effector pose 
which provides better stiffness and accuracy (a Jacobian having large singular values). 
In terms of dexterity, higher end effector velocities are generally of greater concern. In terms 
of either accuracy or stiffness / compliance, a finer resolution over the end effector pose is of 
greater importance. Therefore, examination of the Jacobian matrix condition number alone, 
does not fully describe the capabilities of a manipulator in the studied pose. 

1.3 Issues with using the Jacobian matrix condition number 

It is well known that the use of the condition number of a manipulator’s Jacobian matrix to 
measure dexterity may only be made when all the entries that constitute such a Jacobian 
matrix share the same units (Tsai, 1999; Angeles, 2003; Doty et al., 1995). This limits the use 
of the Jacobian condition number to manipulators that have only one type of actuator (i.e., 
either revolute or prismatic, but not a combination of both). Furthermore, use of the Jacobian 
condition number is restricted to manipulators having only degrees of freedom (DOF) in 
either Cartesian or rotational directions only, but not combinations of both. The only 
mechanisms that fall into this category are 3-DOF (or less) rotational and 3-DOF (or less) 
translational manipulators. Otherwise, if the manipulator has a mix of revolute and 
prismatic actuators, or has complex degrees of freedom, their associated Jacobian matrix is 
dimensionally inconsistent. 
As stated earlier, the Jacobian condition number has been a popular measure of dexterity in 
many works for either of these types of rotational or translational mechanisms (Gosselin & 
Angeles, 1989; Tsai & Joshi, 2000; Badescu & Mavroidis, 2004). For manipulators outside of 
this category, the condition number of conventional Jacobian matrices developed by 
methods such as screw theory or by partial derivatives, is not suitable for dexterity 
measurement due to their inherent mixture of units between the different columns of J (Tsai, 
1999; Angeles, 2003; Doty et al., 1995). This leaves no method for the general algebraic 
formulation of dimensionally homogeneous Jacobian matrices. Therefore, no method is left 
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for reliably measuring or quantifying the dexterity of a vast majority of mechanisms 
introduced in the literature that have mobility in both translational and rotational DOF, i.e., 
complex DOF mechanisms (e.g., Stewart, 1965; Lee & Shah, 1988; Siciliano, 1999; Carretero et 
al., 2000). 
Gosselin (1992) introduced a method for formulating a dimensionally-homogeneous 
Jacobian matrix for both planar and some spatial mechanisms. Planar mechanisms have two 
translational and one rotational DOF. For the planar case, this Jacobian matrix relates the 
actuator velocities to the x and y components of the velocities of two points on the end 
effector platform. Kim and Ryu (2003) furthered this work by developing a general method 
using the x, y and z velocity components of three points (as opposed to two in (Gosselin, 
1992)) on the end effector platform (A1, A2 and A3) to formulate a Jacobian matrix which 
maps m actuator velocities (where m denotes the number of actuators) to the nine Cartesian 
velocity components of the three points Ai (i.e., three for each point Ai). Assuming all 
actuators are of the same type, this m×9 Jacobian is dimensionally-homogeneous, regardless 
of the conventionally defined independent end effector variables (i.e., translational and/or 
angular velocities). However, of the total nine x, y and z velocity components (three for each 
point), at most only n are independent for a mechanism whose task space is n-DOF, where n 
≤  6. This suggests that (9 − n) terms of the end effector velocity vector may be defined as 
dependent variables. As this velocity vector and therefore the associated Jacobian includes 
dependent motions, it is not evident what physical significance the singular values of such a 
Jacobian matrix might have (Kim & Ryu, 2003). Therefore, using the ratio of maximum and 
minimum singular values (i.e., the condition number) of the Jacobian matrix seems ill-
advised. 
In (Pond & Carretero, 2006), the authors present a methodology for obtaining a constrained 

and dimensionally homogeneous Jacobian based on an extension of the work in (Kim & 

Ryu, 2003). The singular values of such Jacobians may be used in dexterity analyses as their 

physical interpretation is typically clear. In the following section, the development of this 

type of Jacobian matrix is presented for the 3-RRR planar parallel manipulator. 

2. The 3-RRR planar parallel manipulator 

The symmetrical 3-RRR manipulator depicted in Figure 2 has been the subject of many 

studies. For example, inverse kinematics including velocity and acceleration, as well as 

singularity analysis, are provided by (Gosselin, 1988). It is a relatively simple, planar parallel 

manipulator, as described in the following section. 

2.1 Mechanism architecture 

As seen in Figure 2, the symmetrical 3-RRR manipulator consists of three identical limbs. 

Each limb is connected to the base at point Gi by an actuated revolute joint. This is followed 

by a proximal link of length |bi| which connects to the distal link of length |ci| through a 

passive revolute joint at Bi. Finally, a second passive revolute joint connects each limb to the 

end effector platform at point Ai. For the symmetric case, points Gi and Ai may each be used 

to form the corners of equilateral triangles. 

For the planar 3-RRR manipulator, all joint axes are parallel and normal to the xy-plane. It 

can be easily demonstrated using the Grübler-Kutzbach mobility criterion that the mobility 

of the 3-RRR equals 3. 
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Figure 2: Basic architecture of the 3-RRR parallel manipulator. 

The degrees of freedom at the end effector are translations in the x and y directions and a 

rotation φ , around an axis normal to the xy-plane. Note that the base frame’s origin is 

placed coincident with the centre of a circle intersecting each of the three points Gi located at 

the base of each branch. The x-axis of the base frame is oriented such that point G1 lies on 

that axis. 

As the inverse displacement solution of this manipulator are previously published, no 

further discussion on the subject will be provided here. The Jacobian formulation provided 

for this manipulator in (Gosselin, 1988) and (Arsenault & Boudreau, 2004) is developed by 

differentiating the various inverse displacement equations, with respect to time. In (Tsai, 

1999), the Jacobian matrix was obtained through the method of cross-products. In what 

follows, the conventional inverse and direct Jacobian matrices will instead, be obtained 

through screw theory. 

2.2 Jacobian analysis using screw theory 

The Jacobian developed here will relate the Cartesian velocities of the end effector in x$ , 

y$ and φ$  (or ωz in conventional screw coordinate notation) to the actuator velocities. 

Three screws $1,i, $2,i and $3,i,with directions normal to the xy-plane, represent the three joints 

of each limb i for i = 1, 2, 3 (depicted in Figure 2 for i = 1): 

 
(3) 

 
(4) 
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(5) 

Each screw is represented with respect to a frame whose origin is coincident with that of the 
moving frame, i.e., at point P, but whose axes are parallel to those of the fixed frame. The 
direction of all screws (sj,i ) is the same for all of them as all are aligned with the z-axis. 
Therefore, the screw corresponding to the platform’s motion is: 

 
(6) 

where angle θj,i corresponds to the rotation around the j-th revolute joint (j = 1, 2, 3) of the  
i-th limb (i = 1, 2, 3). 
A screw must now be identified that is reciprocal to all screws representing the passive 
joints of limb i, i.e., the revolute joints at points Ai and Bi. Such a screw may be zero pitch and 
oriented anywhere on the plane containing vectors ci and s2,i (or s3,i corresponding to screws 
$2,i and $3,i in Figure 2). Such a reciprocal screw is: 

 
(7) 

 
(8) 

where iĉ is a unit vector in the direction of ci. Taking the orthogonal product (here denoted 

by ⊗) of $r,i with both sides of equation (6), yields: 

 (9) 

where $p = [ωx ωy ωz x$  y$  z$  ]T . Since an orthogonal product involving screw $r,i is on both 

sides of equation (9), the coefficient 1/|ci| shown in equation (8) may be dropped. To 
simplify notation, recognising that ωx = ωy = z$  = 0 (since motion only occurs on xy-plane), 
$r,i and $p may be reduced to three dimensional vectors, i.e., $r,i = [ cix ciy (aixciy − aiy cix ) ]T and $p 

= [ωz x$  y$  ]T. 

Examining the right side of equation (9), and reducing $1,i in equation (3), the orthogonal 
product $r,i ⊗ $1,i may be expressed as: 

 

(10) 

Therefore, writing equation (9) three times corresponding to each of the mechanism’s limbs 
yields the following direct (Jx) and inverse (Jq) Jacobians expressed as: 
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(11) 

 

 

(12) 

The results of Jx and Jq correspond exactly with those obtained by (Tsai, 1999) through the 
cross product method and by (Arsenault & Boudreau, 2004) through calculus. The resulting 
overall Jacobian matrix J = Jq−1Jx is a square 3 × 3 matrix. The relation between end effector 

and actuator velocities is  xJq $$ = where q$ = [θ$ 1,1  θ$ 1,2  θ$ 1,2 ]T and  x$  = [ωz x$ y$ ]T. 

In the following section, the Jacobian matrix J will be used as a verification tool to evaluate 
whether the Jacobian matrices formulated the more novel introduced in (Pond & Carretero, 
2006) methods are correct. 

2.3 Constrained dimensionally-homogeneous Jacobian matrix formulation 

As mentioned, the Jacobian matrix J developed in the previous section is dimensionally 
inconsistent. In (Tsai, 1999) and (Angeles, 2003), the authors have outlined the importance in 
having a dimensionally-homogeneous Jacobian matrix in dexterity analyses.  
In (Kim & Ryu, 2003), the following velocity relation was developed: 

 
(13) 

Where, letting  k
j

= [0  0  1]T, q$ = [θ$ 1,1  θ$ 1,2  θ$ 1,2]T and x′$ = [ A$ 1x A$ 1y A$ 2x A$ 2y A$ 3x A$ 3y]T: 

 

(14) 

 

(15) 

Parameters ki,j (for i = 1, 2, 3 and j = 1, 2, 3) are dimensionless parameters defining the 
parametric equation of a plane containing the three points on the end effector platform and 
constrained by ki,1 +ki,2 +ki,3 = 1. It can be shown (Pond, 2006) that when using the Jacobian 
formulation as presented in this section, ki,j = 1 when i = j and ki,j = 0 otherwise. 
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The multiplication of (J'q)−1J'x using the dimensionally homogeneous Jacobian matrices 
above produces the overall Jacobian matrix J' which is equivalent to: 

 

(16) 

It is important to only map a set of independent end effector velocities to the actuator 
velocities. The mapping being done in equation (13) maps six end effector velocities of 
which only three are independent (for the 3-DOF mechanism) to the three actuator 
velocities. Similar to what is presented in (Pond & Carretero, 2006), a constraining matrix 
mapping the independent end effector velocities to the full set of both independent and 
dependent end effector velocities may be obtained. 

If a constraining matrix P that maps the Cartesian velocities 
1 2 3

, ,
x x y
A A A$ $ $ , to all velocities in 

x′$ was obtainable, it could be expressed in terms of partial derivatives, as follows: 

 

(17) 

The resulting multiplication of J' in equation (16) with the constraining matrix P in equation 

(17) yields: 

 

(18) 

This matrix J'P is square and dimensionally homogeneous. The singular values of this 

matrix have a clear physical interpretation and therefore may be used in the dexterity 

analysis of the corresponding mechanism. 

2.3.1 Identification of independent parameters 

To obtain equation (18), the set 
1 2 3

, ,
x x y
A A A$ $ $ was chosen as the set of independent Cartesian 

components. Clearly, six unique sets of independent parameters may be used to define the 

end effector velocity x ′′$ . That is, any subset consisting of three elements from the six 

elements of x′$ which includes at least one x component and at least one y component may be 

used. These subsets are: 
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In the following formulation of the constraint equations and alternative inverse 
displacement solution, the independent end effector parameters will be arbitrarily chosen as 

Case I (i.e., 
1 2 3

, ,
x x y
A A A$ $ $ ). The solutions using any of the potential six cases listed above have 

a similar form. 

2.3.2 Constraint equations 

It can in fact be shown that a relationship between 
1 2 3

[ , , ]
T

x x y
A A A$ $ $   to x′$ , i.e., the matrix P in 

equation (18), can be obtained. Consider Figure 3 representing the end effector platform. The 
point D lies on the bisection of the line segment A1A2 so: 

 
(19) 

 

Figure 3: End effector notation for the planar 3-RRR parallel manipulator. 

The angle ζ made between line segment A1A2 with the negative y-axis is: 

 
(20) 

where k12 is the length of the line segment between points A1 and A2.  

Consider the case where the variables A1x , A2x and A3y are known. Therefore, the vertices of 

the triangle representing the end effector platform lie somewhere on the three dashed lines 

shown in Figure 3. When these three dashed lines are used to constrain the vertices of the 

end effector platform, there are two possible solutions for the unit vector s12: 
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(21) 

The vector sD3 may be obtained by cross multiplying the vector s12 with ± k
j

(recalling that  

k
j

 = [0  0  1]T): 

 
(22) 

As a result, there are four possible solutions for vector sD3 each corresponding to one of the 

four unique solutions in Figure 4. 

 

 

Figure 4: Four possible solutions where a single Cartesian coordinate of each of three points 
on the end effector platform are known. 

Letting e represent the magnitude of the line segment DP : 

 

(23) 

where k12 can be obtained from the platform radius rp and the angle between lines 

1PA and 2PA . Letting vector D represent a vector from the origin of the base frame to point 

D (see Figure 3), a solution for the vector A3 locating point A3 with respect to the origin is: 

 
(24) 

From which the first component is 

 (25) 

The same method may then be reversed to find Dy = A3y ± (e + rp) sζ . 

Similarly, solutions are found for A1y and A2y as: 
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(26) 

 

 
(27) 

To obtain a single solution for the direction of vector sD3 instead of the four possible 
solutions in equation (22), the true position and orientation of the platform in conventional 

variables, i.e., x, y and φ, are required. Since in workspace volume determination or path 
planning, these are in fact known, the following decision rules may be used to obtain a 
unique solution in the coordinates A1x, A1y, A2x, A2y, A3x and A3y . If x > Dx, then all terms 

associated with ±cζ are in fact +cζ and vice versa. Similarly, if A3y > y, then all terms 
associated with ± sζ are in fact + sζ and vice versa. 

2.3.3 Alternative inverse displacement solution 

In the preceding section, the remaining three Cartesian coordinates of the three points Ai 

were determined based on one of the Cartesian coordinates being given for each point. This 
provides full knowledge as to the position of the end effector platform and points Ai. The 
solution for each limb’s pose may be obtained by completing the inverse displacement 
solution provided in (Tsai, 1999) or (Arsenault & Boudreau, 2004) where points Ai are 
known. The solution leads to two solutions for each limb. In (Arsenault & Boudreau, 2004), 
these are referred to as working modes. The different solutions correspond to either elbow up 
or elbow down configurations of each limb. As there are two solutions for each limb, and 
three limbs, there are therefore a total of 23 = 8 possible solutions to the inverse displacement 
problem. 

2.3.4 Constraining Jacobian 

The first derivative with respect to time of equations (25) through (27) yields the various 
elements of the matrix P in equation (17). As previously mentioned, six unique sets of 
independent end effector variables may be used to obtain the square dimensionally-
homogeneous Jacobian matrix. 

2.4 Singularity analysis 

Singularity analysis of the 3-RRR manipulator has been explored extensively in (Tsai, 1999; 
Bonev & Gosselin, 2001; Arsenault & Boudreau, 2004). Essentially two singularities exist for 
this manipulator. An inverse singular configuration occurs whenever one of the three limbs 
is fully stretched out, or when the distal link overlaps the proximal link of any limb. At such 
configurations, instantaneous rotations of the actuated revolute joint do not alter the end 
effector pose. 
A direct singular configuration exists whenever the lines collinear with the distal links have 
a common intersection for all three limbs. In Figure 2, the direction of these lines is 
represented for limb 2 by vector c2. At these singular configurations, an instantaneous 
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rotation around the point of intersection of the above mentioned lines, may be obtained 
without any displacement of the actuators. 
Singular configurations are also mathematically introduced by the constraining matrix P 

which do not correspond to physical singular configurations of the manipulator. First, recall 

the equilateral triangle A1A2A3 used to model the end effector (Figure 5). The mechanism’s 

degrees of freedom include a translational ability in x and y and a rotational ability in the 

plane, i.e., angle φ. These three points were used in the formulation of the 3×6 dimensionally 

homogeneous Jacobian matrix J'. 

For each of the six sets of potential independent end effector variables for the planar 

mechanisms described in Section 2.3.1, the poses listed in Table 1 are observed to yield a 

rank deficient constrained and dimensionally homogeneous Jacobian matrix J'P. 

It is also observed that these singular configurations occur at all x and y positions tested. For 
the first three cases, where two of the three x-coordinates are considered independent, these 
singular configurations are introduced when the line made between the two points, whose 
x-coordinates are independent, is parallel with the x-axis. Similarly, for the last three cases 
where two of the three y coordinates are considered independent, these singular 
configurations occur when the line made between the two points, whose y-coordinates are 
independent, is parallel with the y-axis. 
 

 

Figure 5: The end effector of a planar mechanism modelled as a triangle. End effector is at a 
mathematically-introduced singularity if independent variables in Case VI are chosen. 
 

 

Table 1: Observed mathematically-introduced singularities for the 3-RRR planar parallel 
manipulator. 

The source of this issue is a function of the constraints being imposed by the manipulator’s 
limbs. 
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The points A1, A2 and A3 are constrained to lie in the xy-plane. Recall that the constraining 

matrix P is formulated based on the implicit constraints imposed on the end effector by the 

manipulator’s limbs, but not explicitly on the architecture itself. 

The following is a purely mathematical examination of the terms within the constraining 

matrix P which create the rank deficiencies not inherent to the mechanism. 

Consider Case VI as listed in Section 2.3.1, where the independent parameters are identified 

as A1x, A2y and A3y . The following is a symbolic representation of the resulting constraint 

matrix: 

 

(28) 

Given the independent parameters associated with Case VI, the equivalent angle ζ of Figure 

3 is defined as: 

 

(29) 

where k23 is the length of the line segment between points A2 and A3. The angle ζ is defined 

differently depending on the identified independent parameters. The partial derivative 

∂ζ taken with respect to the various independent parameters, appears in the formulation of 

many of the entries of equation (28). As a result, when the line between points A2 and A3 is 

parallel with the y-axis (as depicted in Figure 5), the magnitude of the projection of line 

segment (A2A3) onto the y-axis will instantaneously undergo no change for any change in 

angle ζ. Therefore, the partial derivative ∂ζ / ∂|A3y -  A2y| is equal to infinity. For instance, for 

a pose where φ = 0°, the constraining matrix P may be expressed numerically as: 

 

(30) 

As discussed, Jacobian matrices obtained for the other five cases at the same pose, are not 

rank deficient and therefore may still be used to obtain a measurement of dexterity. 
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3. Dexterity measurement 

One of the objectives of performing dexterity analyses on parallel manipulators is to obtain 
an understanding of how sensitive the end effector pose is relative to the actuator 
displacement. As discussed, for some cases, this has historically been achieved through 
observation of the Jacobian matrix condition number. 
The condition number of the screw based Jacobian matrix J and dimensionally 

homogeneous Jacobian matrix J' throughout a chosen path are depicted in Figure 6. Clearly, 

the planned trajectory either passes through or very near a singular configuration as 

evidenced by the rapidly increasing condition number of the screw-based Jacobian matrix at 

approximately t = 0.9 sec. In fact, it can be shown that for the defined path, the manipulator 

passes through a direct singular configuration where the three vectors ci depicted in Figure 2 

intersect at a single point. 
 

 

Figure 6: The condition number of each of the formulated Jacobian matrices throughout the 
planned trajectory. 

However, J', the 3 × 6 dimensionally homogeneous Jacobian matrix developed by (Kim & 

Ryu, 2003), does not suggest the same. Instead, its condition number gives the impression 

that the manipulator is relatively near isotropic condition throughout the defined path. 

Obviously then, the 3 × 6 dimensionally homogenous Jacobian matrix is not suitable as a 

dexterity measure. Because three of the six columns of J' are dependent on the other three 

columns, the eigenvalues of J' could correspond to velocity directions in the task space 

which are not obtainable. Therefore, the eigenvalues and singular values of that matrix are 

essentially meaningless. 

Figure 6 also depicts the results obtained by observing the condition number of each of the 
six constrained dimensionally homogeneous Jacobian matrices. Each of the constrained 
Jacobian matrices clearly agree that the arbitrarily chosen trajectory has the manipulator 
passing near a singular configuration. The six matrices J'P are constrained based on the 
manipulator’s motion capabilities and therefore accurately predict singular configurations, 
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as shown. Furthermore, their terms are dimensionally homogeneous. Therefore, their 
condition numbers allow a suitable means of measuring dexterity. 

3.1 Reachable workspace 

The reachable workspace of the 3-RRR planar parallel manipulator is depicted in Figure 7a). 
For the workspace plots presented in this section, the values of the architectural parameters 
are rb = 1, rp = 0.4, b = 0.5 and c = 0.4. Here, architectural parameter values are arbitrarily 
chosen such that results obtained in workspace analysis are comparable, in this case, with 
the serial RRR planar manipulator to be studied later in this chapter. 

3.2 Dexterous workspace 

In Section 2.3.1, six potential sets of independent end effector velocities were identified to 

lead to the formulation of six unique constrained and dimensionally-homogeneous Jacobian 

matrices. Using only one of these matrices as a dexterity measure could lead to potential 

bias. 

To cope with having six constrained and dimensionally-homogeneous Jacobian matrices 
from which to measure dexterity, and the issues which arise by introducing the artificial 
singularity conditions discussed in Section 2.4, the minimum condition number of all six 
Jacobian matrices is proposed as a dexterity measure. This measure is essentially the 
minimum ratio between the largest actuator effort required to move in a direction in one of 
the six defined task-space variable sets, with the effort required to move in the easiest 
direction using the same task space variables. This avoids the issue of introduced 
singularities by the constraining matrix as the lowest condition number of the six matrices 
will only be high when the manipulator is near a true singular configuration. 
It is also suggested that measures using the singular values also be included. By doing so, 

both the velocity or accuracy characteristics of the manipulator are obtained, in addition to 

an indication of how ‘near-isotropic’ the architecture is at the studied pose. In this section, 

the singular values of all six Jacobian matrices (provided the corresponding constraining 

matrix has not introduced a singularity), must lie within imposed limits. 

3.2.1 Dexterity defined by the Jacobian matrix condition number 

Figure 7b) depicts the dexterous workspace of the 3-RRR manipulator when the condition 

number of J'Pi (where the sub-index i refers to Case i for i = 1 . . . 6), is arbitrarily limited to a 

maximum of 60. 

It can be shown that the region of the workspace removed from that of the manipulator’s 

reachable workspace corresponds to the vicinity of a singular configuration where the three 

vectors ci intersect at a common point, as discussed in Section 2.4. 

Figure 8 depicts the cross section of both the reachable workspace in Figure 7a) and 

dexterous workspace in Figure 7b) at φ = 0. At this value of φ, the reachable workspace 

border at y = 0 and x ≈ 0.42 corresponds to a configuration where both limbs two and three 

are in the fully stretched position. However, this region of the workspace also corresponds 

to an architectural pose near the direct singular configuration where the three vectors ci 

intersect. Therefore, in the vicinity of the reachable workspace border at y = 0, the 

manipulator is near both inverse and direct singular configurations. It should be expected 

that this region of the workspace has poor dexterity which is confirmed by Figure 8. 
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   (a)      (b) 
 

Figure 7: a) Reachable and b) dexterous workspace of the 3-RRR parallel manipulator when 
defined using a maximum allowable Jacobian matrix condition number of 60. Angle φ is 
expressed in radians. 
 

 
 

Figure 8: Cross section of both reachable and dexterous workspaces (when defined by a 
limit on the Jacobian matrix condition number of 60) of the 3-RRR parallel planar 
manipulator at φ = 0. 

3.2.2 Dexterity defined by the Jacobian matrix condition number and minimum 
singular value 

The singular values within the workspace depicted in Figure 7b) vary within the range 
0.0056366 ≤  σ ≤  5.7377. The dexterous workspace for this manipulator when also restricted 
to a minimum limit on the singular value of σ ≥  0.1 for any of the six Jacobian matrices is 
depicted in Figure 9a). An exception is made for the singular values of any of the six 
Jacobian matrices should that matrix falsely represent a singular configuration. 
The workspace in Figure 7b) has only marginally decreased in volume when compared to 
the dexterous workspace obtained when limiting only the Jacobian matrix condition 
number. The necking of the workspace at φ ≈ −0.65 occurs because at this pose, the 
manipulator is near a singular configuration where the three vectors ci intersect at a common 
point. 
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3.2.3 Dexterity defined by the Jacobian matrix condition number and maximum 
singular value 

Similarly, a limit of σ ≤  2.0 is imposed on the six Jacobian matrices, with the exception 

noted earlier, to obtain the dexterous workspace for the 3-RRR manipulator depicted. The 

resulting workspace obtained using this upper limit is shown in Figure 9b).  

Although nearly 10% greater in volume than the dexterous workspace depicted in Figure 

9a), both depictions clearly indicate the same singular configuration as discussed earlier 

when the distal and proximal links of one of the three kinematic branches overlap. 

4. The serial RRR planar manipulator 

The serial RRR planar manipulator is one of the most trivial of all manipulators. For that 

reason, it is frequently used as a demonstration example in many texts in robot kinematics, 

e.g., (Tsai, 1999; Craig, 2003). Through these texts, the majority of necessary work for 

workspace determination has been presented. Therefore only a brief summary of the 

required details will be presented here. 

4.1 Mechanism architecture 

The RRR serial planar architecture is depicted in Figure 10. It consists of three links and 

three actuated revolute joints. The first actuated revolute joint connects the first limb 

represented by vector b to the base and may rotate b around point O by angle θ1. The second 

actuated revolute joint at B connects the first link to the second, represented by vector c. This 

second joint rotates c with respect to b by angle θ2. Finally, the third actuated revolute joint 

at C may rotate the end effector (vector d) by angle θ3 with respect to c. Here, the end 

effector is represented as triangle A1A2A3. Similar to the 3-RRR planar parallel architecture, 

the serial RRR planar architecture is confined to two translational DOF and one rotational 

DOF, all in the xy-plane. 

4.2 Kinematics 

As depicted in Figure 10, there are also two solutions to the inverse displacement problem 

for this manipulator. These correspond to an elbow up and elbow down configuration of the 

manipulator. The inverse displacement solution is provided in (Tsai, 1999; Craig, 2003). 

Instead of using an alternative form of the inverse displacement solution to aid in the 

formulation of a dimensionally-homogeneous Jacobian matrix, it is greatly simplified in the 

case of serial manipulators, if the forward displacement solution is used instead. First, 

consider Figure 11, depicting the notation used to relate the three points on the end effector. 

The lengths of sides a2 and a3 may be found by using the cosine law: 

 

(31) 

 
(32) 
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   (a)      (b) 

Figure 9: Dexterous workspace of the 3-RRR parallel manipulator when defined using a 
maximum allowable Jacobian matrix condition number and a) a minimum singular value of 
0.1 or b) maximum singular value of 2. Angle φ is expressed in radians. 
 

If the joint displacements were known, points B, C, A1, A2 and A3 could be determined as: 

 
(33) 

 
(34) 

 
(35) 

 
(36) 

 
(37) 

where θ1 + θ2 + θ3 = φ. The first derivative of these equations may be used to formulate the 

various elements of a dimensionally-homogeneous Jacobian matrix. 

As discussed in (Tsai, 1999), this manipulator is in a singular configuration whenever the 

manipulator is either fully extended, i.e., whenever θ2 = θ3 = 0°, or when the second link 

overlaps the first, i.e., whenever θ2 = 0° or θ2 = 180°. 
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Figure 10: Architecture of the serial RRR planar manipulator. 

4.3 Reachable workspace 

For the serial manipulator used in the following numerical examples, architectural 
parameters are arbitrarily chosen to be b = c = d = 1. The end effector is represented as an 

equilateral triangle with vertices Ai. The length of each of the three line segments iA P is 

equal to 1. Theoretically, infinite rotation of the end effector is obtainable in the plane; 
however, in order to obtain a result which may be compared to the parallel case (where for 
the architectural variables used, only a finite rotation was achievable), workspace envelopes 
obtained in the following sections will be limited to a minimum and maximum rotation of 
−π ≤  φ ≤  π ). The reachable workspace for this manipulator, when using the 
aforementioned limits, is depicted in Figure 12a). The x and y translations refer to the 
displacement of point P on the end effector platform depicted in Figure 10. 
It is immediately clear the tremendous advantage the serial manipulator has over its parallel 
counterpart in terms of reachable workspace volume. 

4.4 Dexterous workspace 

As previously discussed, special consideration must be given to the six potential constrained 

and dimensionally-homogeneous Jacobian matrices that may be used to measure dexterity 

and the potential singularities introduced by the constraining matrix Pi (for the parallel 

case). For the serial case, the six possible Jacobian matrices are denoted by Ji corresponding 

to case i as noted in Section 2.3.1. 

Similar to the parallel case, never will more than one of the six Jacobian matrices falsely 

represent a singular configuration at the same pose. However, it can be demonstrated that 

the condition number of all six matrices simultaneously and rapidly increase in the vicinity 
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of true singular configurations. Therefore, using the minimum condition number of the six 

Jacobian matrices remains a plausible index for dexterity. 
 

 

Figure 11: End effector notation for the RRR serial manipulator. 

4.4.1 Dexterity measured by the Jacobian matrix condition number 

Figure 12b) depicts the RRR serial manipulator’s dexterous workspace when restricted to a 

maximum limit of 60 on the minimum condition number of any of the six Jacobian matrices 

(with the exception noted earlier for Jacobian matrices which falsely represent singular 

configurations). The portion of the workspace removed from that of the reachable 

workspace in Figure 12a) corresponds to the singular configuration where b and c in Figure 

10 are collinear. Therefore, using a limit on the minimum Jacobian matrix condition number 

remains a potential index for dexterity as it is expected that the manipulator should have 

poor dexterity in this region. Figure 13 is a cross sectional view of the dexterous workspace 

depicted in Figure 12b) at φ = 0. For the architectural variables used, at φ = 0, the serial RRR 

manipulator is in an interior singular configuration (Tsai, 1999) at x = 1 and y = 0. At this 

pose, vectors b and c overlap. This is depicted in Figure 14. 

4.4.2 Dexterity measured by the Jacobian matrix condition number and maximum 
singular value 

It is important to note that the Jacobian matrix developed for the serial RRR manipulator 

maps q$ to x$ instead of x$  to q$  as for the 3-RRR parallel manipulator. Therefore, if a 

meaningful comparison is to be made, limits on the singular values of J−1 should be 

imposed, rather than J for the serial manipulator. This is of no consequence in the 

comparison of the two manipulators when the condition number limit is imposed as the 

condition number of J−1 is equal to the condition number of J. 

The singular values of J−1 within the workspace depicted in Figure 12b) vary within the 

range 0.4309 ≤  σ ≤  ∞. It can be shown that when the singular values J−1 are limited to σ ≤  
2.0, to provide comparison to the corresponding result for the 3-RRR planar parallel 
manipulator, no workspace volume is obtained. Instead, for illustration purposes, Figure 

15a) depicts the workspace volume where singular values are limited to σ ≤  50. Even at the 
relatively large allowed value for the singular values, the workspace is significantly reduced 
from that of Figure 12b) and is highly segmented. 
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   (a)      (b) 
 

Figure 12: a) Reachable and b) dexterous workspace of the planar RRR serial manipulator 
when defined using a maximum allowable Jacobian matrix condition number. Angle φ is 
expressed in radians. 

4.4.3 Dexterity measured by the Jacobian matrix condition number and minimum 
singular value 

Similarly, a limit may be imposed on the minimum allowable singular value of any of the 

six Jacobian matrices with the exception noted earlier. When the singular values are limited 

to σ ≥  0.1, the dexterous workspace depicted in Figure 15b) is obtained. 
 

 

Figure 13: Cross section of the dexterous workspace when defined by a limit on the Jacobian 
matrix condition number of the serial RRR planar manipulator at φ = 0. 

Recall that the workspace corresponding to the parallel manipulator in Figure 9b) had only 

slightly decreased in volume when compared to that of Figure 7b). However, the workspace 

of the serial manipulator has not decreased at all. 

Again, it should be emphasised that if architectural parameters were optimised to obtain the 

largest workspace volume possible, different results would be obtained. 
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Figure 14: Singular configuration of the serial RRR manipulator. 

Recall that the workspace corresponding to the parallel manipulator in Figure 9b) had only 
slightly decreased in volume when compared to that of Figure 7b). However, the workspace 
of the serial manipulator has not decreased at all. 
Again, it should be emphasised that if architectural parameters were optimised to obtain the 
largest workspace volume possible, different results would be obtained. 

5. Dexterous workspace comparison of parallel and serial planar 
manipulators 

In (Pond, 2006; Pond & Carretero, 2007), different parallel manipulators were quantitatively 
compared in terms of dexterity using the formulation describer earlier for the dimensionally 
homogeneous constrained Jacobian matrix. This section will study the effect of the 
arbitrarily chosen limits on the condition number and singular values on the results 
obtained for comparison between the serial and parallel manipulators discussed in this 
chapter. This is the first time such quantitative study has been made for such dissimilar 
architectures. 
For each of the following three subsections, a set of curves will be provided depicting the 
difference in workspace volume between the serial and parallel manipulators as the limits 
used to obtain them are varied. In order to better illustrate the changes, the plots are 
presented on suitable scales. 
 

 
   (a)      (b) 

Figure 15: Dexterous workspace of the planar RRR serial manipulator when defined using a 
maximum allowable Jacobian matrix condition number and a) maximum singular value of 
50 or b) minimum allowable singular value of 0.1. Angle φ is expressed in radians. 
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5.1 Dexterity measured by Jacobian matrix condition number 

Figure 16a) depicts the dexterous workspace size as a function of the limiting value as the 

maximum allowable Jacobian matrix condition number. This set of curves emphasises the 

difference in size between the workspace of the two manipulators at limits of high condition 

numbers. Note that the y-axis of the graph is on a log scale. 

5.2 Dexterity measured by Jacobian matrix condition number and minimum singular 
value 

As noted earlier, the range of singular values within the serial manipulator’s workspace is 

fairly large (0.4309 ≤  σ ≤  ∞). However, as Figure 16b) suggests, singular values are far 

denser in the lower end of this range. 

In the previous section, when the singular values were limited to a minimum of σ ≥  0.1, the 

serial manipulator had not decreased in volume yet that of the parallel manipulator had. It 

is important to recall that when the limit is imposed on the lowest allowable singular value, 

an emphasis is being placed on obtaining high degrees of accuracy and stiffness. Figure 16b) 

clearly shows, however, that the volume of the serial manipulator’s workspace rapidly 

decreases through the approximate range 0.25 ≤  σmin ≤  0.4. Above this range, the parallel 

manipulator provides the largest workspace volume. 

Therefore, these results suggest that, of the two manipulators, for the architectural variables 

used, the parallel manipulator outperforms the serial manipulator within the range of 

approximately σmin ≥  0.4. Naturally, this conclusion can only be made for the specific 

architectural variables used in this study. 

 

 
           (a)         (b)     (c) 
 

Figure 16: Dexterous workspace comparison based on a) a limit on the condition number, b) 
a limitation on the minimum allowable singular value, and c) a limitation on the maximum 
allowable singular value. 

5.3 Dexterity measured by Jacobian matrix condition number and maximum singular 
value 

Figure 16c) compares the dexterous workspace volumes of both the serial and parallel 

planar manipulators when limited by the condition number and a maximum singular value. 

Recall that the range of singular values within the serial manipulator’s workspace is much 

larger than the corresponding range for the parallel manipulator. The workspace volume of 

the serial manipulator only begins to significantly increase in volume at a relatively higher 
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limit of approximately σmax ≥  2. Conversely, at this limit, the workspace corresponding to 

the parallel manipulator has obtained its full volume as depicted in Figure 16c). 

This is an interesting result as lower singular values correspond to higher end effector 

velocities. This suggests that the parallel architecture studied also provides the largest 

workspace volume when high end effector velocities are required, to a limit of 

approximately σmax ≥  4 where the serial manipulator then provides the largest workspace 

volume. 

6. Conclusions 

Through either method of obtaining a constrained dimensionally homogeneous Jacobian 

matrix (proposed by (Gosselin, 1992) or by (Pond & Carretero, 2006)) for planar 

mechanisms, a choice exists on which of the potential six Cartesian velocity components on 

the end effector be used to define the task space velocity variables. The choice has an 

influence on the resulting Jacobian matrix and therefore its condition number and singular 

values. Without constraining the Jacobian matrix, the condition number was demonstrated 

to be essentially meaningless, as in (Kim & Ryu, 2003). 

In terms of measuring dexterity, the constrained dimensionally homogeneous Jacobian 

matrices (J'P) are superior to the screw based Jacobian matrix (J) in that they are 

dimensionally consistent. Furthermore, the six matrices (J'P) are superior to the 3 × 6 

dimensionally homogeneous matrix (J') in that they are constrained, and therefore provide 

true dexterous information. 

The condition number and singular values of each of the six matrices (J'P) are different for 

any given pose. Therefore, dexterity measures involving only one of the six (J'P) matrices 

are potentially bias. Four potential strategies for dexterity measurement have been proposed 

based on the condition number and/or singular values of the Jacobian matrices obtained in 

all six cases. Each measure has a distinct physical meaning, as discussed. 

In sum, the Jacobian matrix formulation presented in this chapter allows, for the first time, 

to quantitatively compare different mechanism architectures with complex degrees of 

freedom in terms of dexterity. Moreover, as illustrated in this chapter, the formulation is not 

limited to parallel manipulators as it can also be used to quantitatively compare the 

dexterity of different architectures as long as the end effector is represented by an equivalent 

set of points. Quantitative dexterity comparisons will allow robot designers to better select 

proper mechanisms for specific tasks. 
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