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Chapter

Renin Angiotensin Aldosterone 
System Functions in Renovascular 
Hypertension
Jose A. Gomez

Abstract

The renin angiotensin aldosterone system (RAAS) plays a key function in 
renovascular hypertension induced by renal artery stenosis (RAS). RAS causes a 
decrease in renal perfusion in the stenosed kidney which in turn stimulates renin 
the rate limiting enzyme in RAAS. This stimulation triggers a series of events 
starting with renin release leading to Ang II production, decrease in sodium 
excretion, increase sympathetic tone; all contributing to the development of 
renovascular hypertension. In RAS increase of superoxide reduce nitric oxide 
in the afferent arteriole increasing vasoconstriction and a marked decrease in 
glomerular filtration rate. In renovascular hypertension prostaglandins mediate 
renin release in the stenosed kidney. Targeting different RAAS components is part 
of the therapy for renovascular hypertension, with other options including renal 
nerves denervation and revascularization. Different clinical studies had explored 
revascularization, RAAS blocking and renal nerves denervation as a therapy. We 
will discuss organ, cellular and molecular components of this disease.

Keywords: Renin angiotensin aldosterone system, renovascular hypertension, renin, 
renal nerves, oxidative stress

1. Introduction

Renal artery stenosis (RAS) is a common condition in patients suffering from 
atherosclerosis and fibromuscular dysplasia [1–6], with an overall prevalence dis-
ease rate of 15.4% [4]. Progression to severe stenosis is well documented and leads 
to hypertension and kidney damage [7–9]. Clinically, renovascular hypertension 
is one the most important causes of secondary hypertension and kidney  damage. 
In patients with RAS, 65% are hypertensive and 26.5% suffer kidney failure [4, 6]. 
Advancement to end stage renal disease is known to increase cardiovascular 
events [10]. The clinical trials Angioplasty and Stenting for Renal Artery Lesions 
(ASTRAL) [11], and Cardiovascular Outcomes in Renal Atherosclerotic Lesions 
(CORAL) [12] targeted renal vascularization to improve disease outcomes but 
failed to show any improvement in renal function, cardiovascular events or mortal-
ity [11, 12]. Furthermore, prospective studies in ASTRAL and CORAL concluded 
that 15-22% of patients suffering from renovascular disease will progress to renal 
“end point” within 3 to 4 years [13]. The NHLBI Cardiovascular Health Study used 
a non-invasive screen and found that 6.8% elderly patients (both African American 
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and white) had more than 60% RASten or renal artery occlusion [14, 15]. The renin 
angiotensin aldosterone system (RAAS) plays a key role in hypertension, with 
renin recognized as the driver of renovascular hypertension (Figure 1). In humans, 
plasma renin activity (PRA) is used as biomarker for the activation of RAAS in 
hypertension and in patients with atherosclerotic RAS, high PRA is associated with 
increased risk for cardiovascular events and high mortality [16]. These suggest an 
important function for RAAS in renovascular hypertension onset and the need to 
target different components of RAAS for therapy.

2. Renin angiotensin aldosterone system function in renal artery stenosis

Renal artery stenosis causes a decrease in renal perfusion in the stenosed kidney 
which in turn stimulates RAAS. This stimulation triggers a series of events starting 
with renin release leading to angiotensin II (Ang II) production, decrease in sodium 
excretion, increase sympathetic tone; all contributing to the development of hyper-
tension (Figure 1) [17, 18]. When there is a need for renin expression and release, 
the number of renin expressing cells increase a process known as Juxtaglomerular 
(JG) cell recruitment [19–24] involving the trans differentiation of vascular smooth 
muscle cells into renin expressing cells along the afferent arteriole [20, 21, 23]. JG 
cell recruitment is well documented in this model [25–27]. Activation of the renal 
baroreceptor in RAS causes renovascular hypertension through RAAS activation 
[28]. In uni- and bi-lateral RAS aldosterone levels are upregulated [29–32]. Moreover, 
in renovascular hypertension prostaglandins mediate renin release in the stenosed 
kidney [33–36], and catecholamines mediated by an increase in cAMP and activation 
of protein kinase A (PKA) [37–39]. Decrease renal perfusion cause a decline in renal 
function and increase kidney injury [40, 41]. This decrease in renal function starts 
with endothelial damage, decrease in nitric oxide and increase in vasoconstrictors 
and oxidative species [42]. Reactive oxidative stress (ROS) increase renal vascular 
tone, tubuloglomerular feedback, and endothelial disfunction decreasing glomerular 
filtration rate [43].

Successful treatments for hypertension such as angiotensin converting enzyme 
(ACE) inhibitors and angiotensin receptor blockers (ARBs) alleviate hypertension, 

Figure 1. 
Renin Angiotensin Aldosterone System (RAAS) key role in renal artery stenosis (RAS) induction of 
renovascular hypertension and kidney damage. Deterioration of renal perfusion in the stenosed kidney cause a 
decrease in renal pressure which in turn stimulates RAAS. This stimulation triggers a series of events starting 
with renin release leading to angiotensin II production; decrease in sodium excretion, increase sympathetic tone; 
ending in hypertension.
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but need close examining for kidney failure and hyperkalemia [4]. Aliskiren, a 
direct renin inhibitor, may still be a potential option for the treatment of high blood 
pressure in some forms of hypertension such as chronic kidney disease (CKD) and 
renovascular hypertension [44]. In a clinical study, aliskiren combined with olmes-
artan reduced proteinuria by about 40% from baseline in patients with CKD with 
persistent proteinuria [45]. In non-diabetic CKD patients, aliskiren combined with 
ARBs, safely reduced proteinuria and attenuated the decline in glomerular filtration 
rate (GFR) [46]. These results indicate that a complete treatment of renal artery 
stenosis induced renovascular hypertension and kidney damage may need targeting 
both the angiotensin II-dependent and the Ang II-independent arms of RAAS.

Renal artery stenosis is common in diabetic patients placing them at higher risk 
of end organ damage causing end stage renal disease [9, 47–49]. In older patients, 
RAS is the most common problem of end stage renal failure [50]. In RAS renin is 
recognized as the disease driver [6, 16, 51–54]. RAS is common in atherosclerotic 
patients and caused hypertension, oxidative stress, and kidney damage [7, 9]. 
Increased oxidative stress has been reported in humans as well as in two kidney 
one clip (2K1C) animal model and other hypertensive animal models [24, 55–60]. 
Changes in renal perfusion activate RAAS and increase the sympathetic activ-
ity of the afferent renal nerves contributing to renovascular hypertension and 
end-stage renal disease during RAS [61]. In the 2K1C model renal denervation 
decreases hypertension [62, 63]. Clinical trials (Renal Denervation in Patients 
With Refractory Hypertension (HTN-1) (Symplicity HTN-1), Renal Denervation 
in Patients With Uncontrolled Hypertension (Symplicity HTN-2), The Renal 
Denervation for Hypertension (DENERHTN), and Catheter-based renal denerva-
tion in patients with uncontrolled hypertension in the absence of antihypertensive 
medications (SPYRAL)) report that using renal denervation as therapy for hyper-
tension has good outcomes [64–67]. The therapeutic effects of renal denervation 
have been attributed to removal of sympathetic efferent and/or afferent fibers [68]. 
Renin secretion is stimulated by renal efferent nerves, which also stimulate tubular 
sodium reabsorption [62] without perturbations to glomerular filtration rate or 
albumin urinary secretion [69]. These indicates that initially, renal artery stenosis 
induces RAAS and in later stages other organs involved in blood pressure homeosta-
sis are involved in the induction of renovascular hypertension such as renal nerves 
and adrenal gland.

3. Central nervous system input in renal artery stenosis

Different experimental models of hypertension showed the crucial role play by 
the central nervous system (CNS) in this disease. Specifically, sympathetic effer-
ent outflow augments during hypertension. It has been shown that both Ang II 
and aldosterone actions are mediated by the CNS [70, 71]. In experimental models 
of hypertension, ablation of the forebrain surrounding the anteroventral third 
cerebral ventricle (AV3V) inhibited hypertension [72, 73]. In the CNS the AV3V 
contains the median preoptic eminence, the organum vasculosum of the lateral 
terminalis, and the preoptic periventricular nucleus [74]. This forebrain region is 
responsible for cardiovascular regulation, and includes the subfornical organ, the 
organum vasculosum of the lamina terminalis, which are circumventricular organs 
lacking a blood-brain barrier [75]. Production of ROS in these brain regions strongly 
influences blood pressure [76]. Several reports showed that actions on these brain 
regions are responsible for Ang II hypertension and increase oxidative stress with 
NADPH oxidase playing a key role [77–80]. Renal vasculature and tubular segments 
are controlled by the efferent sympathetic renal nerves and promote arteriolar 
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vasoconstriction and renin release and increases sodium reabsorption [81]. In the 
afferent arterioles Ang II activates the alpha1 adrenergic receptor, which increases 
oxidative stress and constriction of the afferent arterioles, reducing renal blood 
flow [82]. Contrary, activation of the b1-adrenergic receptor activation inhibits ROS 
generation promoting vasodilation [83]. In different hypertension animal models 
renal denervation inhibit the induction of hypertension, showing that ablation of 
renal efferent induction of ROS is important in hypertension development [84, 85]. 
These data indicate that oxidative stress control efferent and afferent renal nerve 
actions in the development of hypertension.

Renal artery stenosis activates RAAS and increases the activity of the afferent 
renal nerves resulting in hypertension and end-stage renal disease [61]. It is known 
that in the 2K1C model renal denervation decreases hypertension [62, 63]. Removal 
of sympathetic efferent and/or afferent fibers controls hypertension [68], and the 
renal efferent nerves stimulate renin secretion and tubular sodium reabsorption 
[62]. During renal artery stenosis, there is an increase in Neutrophil Oxidase Factor 
p47 (p47phox) and p67phox [86–88]. Furthermore, in renal artery stenosis genera-
tion of ROS induced renal damage [88, 89], with the main source of ROS being 
NADPH oxidase [90, 91].

In the induction of renovascular hypertension, the renal nerves as well as the 
renin angiotensin aldosterone system activation cause the increase in blood pressure 
and dysregulation of sodium secretion, with renal denervation alleviating the 
central nerve system input decreasing blood pressure.

4. Oxidative stress in renal artery stenosis

Oxidative stress in the kidney and vasculature contribute to hypertension devel-
opment. NADPH oxidase is a major source of oxidative stress in mammalian cells 
[75]. Most of the renal cells express NADPH oxidase and there are several stimuli 
that cause its activation leading to organ injury and hypertension development 
[75, 92, 93]. Reactive oxygen species (ROS) produced by NADPH oxidase in the kidney 
cause vasoconstriction and organ injury. Specifically, increase of superoxide reduces 
nitric oxide (NO) in the afferent arteriole increasing vasoconstriction and a marked 
decrease in GFR. In rabbits, Ang II-induced hypertension increase the p22phox 
subunit of NADPH oxidase causing endothelial dysfunction in the afferent arteriole 
[94]. Moreover, in spontaneous hypertensive rats, superoxide is generated in the 
afferent arteriole in response to endothelin-1 (ET-1) [95, 96]. Podocytes are impor-
tant components of the renal filtration system. Dahl salt-sensitive rats had increase 
glomerular expression of p22phos and NOX2 that increases oxidative stress causing 
podocyte injury, glomerular sclerosis and proteinuria, with the antioxidant tempol 
(4-Hydroxy-TEMPO) correcting this glomerular injury [97, 98]. Plasminogen causes 
podocyte injury through stimulation of NOX2 and NOX4 expression [99], Ang II 
stimulates ROS generation in the mitochondria stimulating autophagy [100], Ang 
II-induced ROS production caused glomerulosclerosis [101], and oxidative stress 
disrupts nephrin – caveolin-1 crosstalk in podocytes disrupting of glomerular filtra-
tion barrier [102]. In the vasculature, increased oxidative stress causes hypertension 
in different animal models [103–108]. During renal artery stenosis, generation of 
ROS is recognized as the main mechanism of renal damage [88, 89, 109, 110] with 
the activation of NADPH oxidase as the source of ROS [90, 91], and associated with 
an increase in p47phox and p67phox [19, 86–88].

It is important to recognize that renal artery stenosis increase the production 
of reactive oxygen species leading to renal damage. ROS production influences 
not only organ damage but also contributes to the increase in blood pressure. 
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In the therapy of this disease multiple molecules are involved leading to increases in 
oxidative stress, blood pressure and renal injury and all start with the activation of 
the renin angiotensin aldosterone system.

5.  Angiotensin II dependent and independent action in renal artery 
stenosis

In renal artery stenosis induction of renovascular hypertension, renin is rec-
ognized a key molecule, and as such in the therapy of renovascular hypertension 
Angiotensin Converting Enzyme (ACE) inhibitors and Angiotensin Receptor 
blockers (ARBs) are used [4]. Moreover, sympathetic nervous systems action in the 
kidney promotes renin secretion through renal efferent nerves, which also stimulate 
tubular sodium reabsorption [62], and in the 2K1C model denervation inhibit the 
onset of hypertension [62, 63]. Renal artery stenosis causes renovascular hyperten-
sion, which is associated with deterioration of kidney function [20]. Reduction in 
renal flow is recognize as a source of hypoxia during renovascular hypertension [21]. 
Arterial stenosis causes thrombosis, and ischemia in renovascular hypertension [22]. 
During renal artery stenosis generation of ROS is recognized as the main mechanism 
of renal damage [88, 89], causing increased in vasoconstrictors, cell death and 
decrease in the activity of nitric oxide [109, 110]. A swine model of renal artery ste-
nosis presented an increase in ROS, renal and cardiac damage [23, 86–89, 111–113]. 
In renal artery stenosis activation of RAAS increase ROS generating by the activation 
of NADPH oxidase [90, 91], associated with is an increase in p47phox and p67phox 
[86–88]. Phosphorylation of p47phox by PKC is a key step in NADPH oxidase activa-
tion [114–118]. Hypertension is associated with PKC activation and increase oxida-
tive stress [119], which caused endothelial nitric oxide synthase (eNOS) disfunction 
and uncoupling producing ROS instead of NO. This uncoupling is a key mechanism 
for endothelial dysfunction in angiotensin II-induced hypertension [120–122]. 
Increase in NOX2 activity requires increase NOX2 expression and p47phox associa-
tion and activation of NOX2 [19]. Furthermore, increase in oxidative stress is well 
documented in 2K1C model [55–59, 123, 124]. All the actions mentioned above are 
Ang II mediated.

New evidence places (pro)renin receptor (PRR) as an effector molecule in the 
Ang II-independent RAAS [125]. PRR binds both renin and prorenin [125–129]. 
There is an association of PRR with different pathophysiology of diseases [130–135]. 
PRR binds renin causing an increase in Ang I [125] and it can activate prorenin by 
promoting a conformational change [125–129]. PRR mRNA is expressed in different 
organs such as kidney, heart, brain, eye, adipose tissue and vascular SMCs [125, 134], 
It has been proposed that PRR activates the Ang II-independent RAAS with tissue 
specificity [136]. My laboratory and others are uncovering new functions of the 
Ang II independent pathway in blood pressure, oxidative stress and organ damage. 
New studies will define the relevance of this arm of RAAS and possible define new 
molecular targets for therapy.

6. Concluding remarks and future perspectives

In the definition of the molecular pathways involved in the development of 
renovascular hypertension, the Goldblatt two kidney one clip animal model has 
been critical. This animal mode has been extensively used with different animals 
all showing that renal artery stenosis strongly stimulates renin overexpression and 
release promoting renovascular hypertensions and kidney injury. In renovascular 
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hypertension renin is key and promotes the increase in Ang II leading to hyperten-
sion. Renin being the rate limiting step in the production of Ang II in RAAS, has 
been investigated as a possible target for the therapy. However, the main therapies 
used are angiotensin converting enzyme inhibitors and angiotensin receptor 
blockers. Direct renin inhibition by aliskiren, is potential therapy for hypertension 
in chronic kidney disease (CKD) and renovascular hypertension. Combination of 
aliskiren with olmesartan in the clinic, reduced proteinuria in patients with CKD 
with persistent proteinuria. In non-diabetic CKD patients, aliskiren combined with 
ARBs, reduced proteinuria and protected from the decline in glomerular filtration 
rate. We have shown here clinical and research data that indicates the during renal 
artery stenosis induced renovascular hypertension RAAS is activated and play a 
critical role in this pathology. It is important that a complete treatment of renovas-
cular hypertension may need targeting both the angiotensin II-dependent and the 
Ang II-independent arms of RAAS.
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