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Chapter

The Role of Neurohormonal 
Systems, Inflammatory Mediators 
and Oxydative Stress in 
Cardiomyopathy
Ronald Zolty

Abstract

Cardiomyopathy and more specifically the dilated cardiomyopathy, regardless 
of severity, is associated with activation of neuro-hormonal, cytokine and oxidative 
stress signaling pathways that alter the structure and function of cardiac myocytes 
and non-myocyte cells. These cellular alterations culminate in the morphological 
changes in cardiac structure termed as cardiac remodeling, a maladaptive process 
that contributes to further left ventricular dysfunction and heart failure develop-
ment. This pathological progression is mainly driven by circulating mediators, in 
particular angiotensin II and norepinephrine. Natriuretic peptides, endothelin-1, 
vasopressin play also an important role in the progression of the cardiomyopathy. 
Cardiac inflammation, mediated by cytokines such as tumor necrosis factor-α 
(TNF-α), interleukins 1 (IL-1) and 6 (IL-6), as well as the oxidative stress were 
also shown to worsen the cardiac function. Although these pathways have been 
described separately, they are critically inter-dependent in the response to the 
development and progression of the dilated cardiomyopathy. This chapter reviews 
the cellular basis for cardiac remodeling and the mechanisms that contribute to 
these cellular abnormalities and, more broadly, to the pathophysiology of dilated 
cardiomyopathy, its progression and its potential treatments.

Keywords: Angiotensin II, Adrenergic signaling, Natriuretic peptides, Vasopressin, 
Prostaglandin, Endothelin, Nitric Oxide, Cytokines, ROS, Oxidative stress

1. Introduction

Cardiomyopathy is a group of diseases that affect the heart muscle [1]. As the 
disease worsens, symptoms of heart failure will occur including shortness of breath, 
fatigue, and fluid retention with pulmonary congestion and peripheral edema.

The majority of patients with heart failure have an underlying cardiomyopathy 
as the causative etiology. In the US, the most common cause of heart failure (HF) is 
a primary or secondary dilated cardiomyopathy [1, 2] encompassing approximately 
60% of the HF cases.

Whether the etiology of the cardiomyopathy is idiopathic, inflammatory, viral, 
or ischemic, the pathological processes leading to the clinical syndrome of heart 
failure begin with myocardial injury. The hemodynamic consequences of the initial 
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injury will lead to a decline in myocardial contractility. The reduction of cardiac 
output will elicit a complex humoral and inflammatory response. The humoral 
response comprises two major components, the renin-angiotensin-aldosterone 
(RAA) pathway [3] and the sympathetic nervous (SN) system and is referred as 
neuro-hormonal activation [4]. Additional circulating mediators, such as natri-
uretic peptides, nitric oxide, endothelin and vasopressin also play a role in the 
circulatory adaptation to the heart failure state. Furthermore, the initial myocardial 
injury leading to the development of cardiomyopathy stimulates the production of 
cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) [5]. 
Finally, oxidative stress, defined as an excess production of reactive oxygen species 
(ROS) relative to antioxidant defense, is enhanced in HF [6–9].

For neuro-hormonal and cytokine activation, these pathways are initially com-
pensatory in response to acute injury but have ultimately maladaptive consequences 
on the long term, leading to cardiac remodeling and worsening heart failure.

Cardiac remodeling refers to changes in the size, shape, structure and function 
of the heart. Ventricular remodeling involves hypertrophy and apoptosis of myo-
cytes, regression to a fetal phenotype, as well as modification of the extracellular 
matrix (Figure 1).

2. Neuro-hormonal activation in cardiomyopathy and heart failure

Heart failure associated with cardiomyopathy is a highly complex syndrome in 
which the insufficient cardiac output leads to neuro-hormonal activation and sub-
sequent ventricular remodeling [10]. The characteristic hemodynamic abnormali-
ties in patients with HF are a reduction in stroke volume with concomitant increase 
in systemic vascular resistance. In the early phase of heart failure, neuro-hormonal 
activation, with the stimulation of the SN and RAA systems, helps maintaining ade-
quate cardiac output and peripheral perfusion. Sustained neuro-hormonal activa-
tion, however, will result in increased cardiac wall stress, ventricular dilatation and 
adverse remodeling effects [11, 12]. A variety of endogenously produced mediators, 
including norepinephrine, angiotensin II, aldosterone, endothelin and vasopressin 

Figure 1. 
Schematic representation of cardiac remodeling in dilated cardiomyopathy and HF.
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have been implicated as biologically active molecules which will contribute to 
disease progression of the failing heart.

Stimulation of these neuro-hormones and their receptors influences myocardial 
contractility, heart rate and conduction, cardiac metabolism, and cellular growth. 
Therefore, these cardiac neuro-mediator and neuro-receptors play a key role in car-
diac physiology and myocyte function in healthy and diseased heart. For example, 
cardiac hypertrophy is produced by a combination of increased myocyte stretch, 
neurotransmitter release, and several types of autocrine, paracrine, and hormonal 
stimulation that mediate myocyte growth. In this context, the α-1 receptor pathway, 
the angiotensin II AT1 receptor pathway, the endothelin 1 receptor pathway, and 
the β-adrenergic receptor pathway have all been implicated in the pathogenesis of 
myocyte hypertrophy.

Activation of the adrenergic nervous system and the renin-angiotensin systems 
appears to be of primary importance in producing major adaptive cardiac receptor-
signal transduction changes in the failing heart.

The most important modulated function mechanisms responsible for the 
stimulation of cardiac function appears to be the adrenergic signaling pathway. 
In addition to the adrenergic stimulation, an increase in plasma volume will take 
place, resulting in an increased ventricular preload as well as an increase in cardiac 
myocyte hypertrophy, which results in more contractile elements, increased wall 
thickness with a subsequent decrease in wall tension. The plasma volume increase 
is associated with stimulation of the RAA system and production of angiotensin 
II and aldosterone which will enhance sodium and water reabsorption in both the 
proximal and distal renal tubules [13].

2.1 Activation of the renin-angiotensin system with LV dysfunction

When the heart fails, the RAA system is activated as demonstrated with 
increased of the renin activity with production of angiotensin II and  
aldosterone [14–18].

The RAA system consists of a cascade of enzymatic reactions involving three 
components, angiotensinogen, renin and angiotensin-converting enzyme (ACE), 
which generate angiotensin (Ang) II as the biologically active product. Ang II binds 
to two types of specific receptors, angiotensin type-1 (AT1R) and type-2 (AT2R). 
Both receptor belong to the family of seven transmembrane domain heterotrimeric 
G protein-coupled receptors (GPCR). The majority of the deleterious mitogenic 
and hypertrophic actions of Ang II have been attributed to interaction with the AT1 
receptor, which is the predominant receptor, while AT2 generally produces benefi-
cial effects.

The deleterious effects of the activation of the RAA system are mediated 
primarily through increased circulating and tissue levels of the neuro-hormonal 
angiotensin II (Figure 2). Ang II is an extremely potent vasoconstrictor, acting 
directly on vascular smooth muscles and indirectly by increasing sympathetic tone 
[19, 20]. In addition, it produces sodium retention (through aldosterone and renal 
vasoconstriction), as well as fluid retention through anti-diuretic hormone [21, 22]. 
At the cellular level, Ang II promotes migration, proliferation, and hypertrophy, 
thus producing numerous adverse effects, including remodeling of the left ven-
tricle, and development of endothelial dysfunction [23, 24].

Ang II promotes cardiac remodeling in several ways. By increasing arterial 
smooth muscle tone and causing salt and water retention, it increases cardiac 
preload and afterload. Also, increased wall stress is a potent stimulus for remodel-
ing. In addition, Ang II has direct effects on the myocardium; it causes hypertrophy 
of cardiac myocytes and hyperplasia of cardiac fibroblasts as well as an increase 
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in extracellular matrix deposition, [25] and stimulates the release of other growth 
factors, including norepinephrine and endothelin, which in turn stimulate car-
diac remodeling [26]. These actions of Ang II are largely mediated through the 
angiotensin type 1 (AT1) receptor. Thus RAA system inhibition by ACE inhibitors 
or by angiotensin receptor blockers, attenuates many of the key hemodynamic, 
mechanical and functional disturbances crucial to the pathophysiology of cardiac 
dysfunction. ACE inhibitors are therefore a mainstay of therapy in patients with 
symptomatic and asymptomatic LV systolic dysfunction.

2.2 Sympathetic nervous system activation with LV dysfunction

Similarly to the RAA system, when the cardiac function fails, the adrenergic 
nervous system is activated. Numerous studies have documented elevated circulat-
ing norepinephrine levels with LV myocardial dysfunction [14–17, 27]. Even in 
asymptomatic patients with left ventricular dysfunction, an 35% increase in plasma 
norepinephrine was demonstrated [18]. In the failing heart, the increase of adrener-
gic activity seems to occur as a consequence of increased central sympathetic release 
at the pre-synaptic level [28].

Pre-synaptic facilitation of norepinephrine release by angiotensin II may also 
play an important role in adrenergic activation, [29] thus demonstrating a positive 
feedback of angiotensin II on cardiac adrenergic activity. Conversely, the adrenergic 
nervous system provides a major stimulus for activation of the RAA system, as 
activation of renal nerves by the SN system results in renal renin release [30, 31]. 
Thus activation of the adrenergic and renin-angiotensin systems appears to be co-
regulated with cardiac dysfunction. Activation of one system stimulates the other 
and maneuvers that decrease the activity of one system may inhibit the other [32]. 
For example, administration of an ACE inhibitor to patients with heart failure with 
reduced ejection fraction (HFrEF) results not only in a decrease in plasma angioten-
sin II levels but also in a fall in circulating norepinephrine [33, 34].

Activation of cardiac β-adrenergic receptor (AR) represents the body’s most 
powerful principle to increase cardiac contractility and heart rate [35] (Figure 3). 

Figure 2. 
Deleterious pathophysiologic effects of angiotensin II in dilated cardiomyopathy and heart failure. MMP: 
Matrix metalloproteinases, ROS: Reactive oxygen species.
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Adrenergic receptors are a family of G-protein-coupled receptors with nine mem-
bers, three α1, three α2, and three β: β1, β2 and β3. When the first subdivision of 
adrenergic receptors was defined on the basis of pharmacological experiments, [36] 
the α-subtype was defined as the one that causes smooth muscle contraction, whereas 
the β-subtype mediates smooth muscle relaxation. Twenty years later, the β-receptors 
were subdivided again, into the β1-subtype, which stimulates cardiac muscle, and the 
β2-subtype, which relaxes smooth muscle [37].

The mammalian heart expresses all three β-adrenergic receptor subtypes 
[38–40]. In the healthy heart, the majority (i.e. 60–80%) of receptors are the 
β1-subtype in most species, while the β2-subtype accounts for a minor fraction of 
total βARs. A third β-adrenergic receptor subtype, the β3-subtype, was initially 
thought to be limited to adipose tissue, [40] but was later also detected in the 
heart [39]. This subtype is generally perceived as less important due to its very low 
expression level and relatively minor functional effects. There is evidence that the 
β1-subtype is preferentially located on cardiac myocytes, whereas the β2-subtype 
is expressed to a significant extent on non-cardiomyocyte cells, including vascular 
smooth muscle cells and synaptic nerve endings.

β1- and β2-adrenergic receptors are potent stimulators of cardiac contraction 
and relaxation in the human heart [35, 41]. As direct effectors of the sympathetic 
nervous system, they serve to rapidly adapt cardiac performance to an increased 
hemodynamic demand. Both β1 and β2 receptors couple to the stimulatory G 
protein Gs, thereby activating adenylyl cyclase. The formation of the second 
messenger cAMP then leads to activation of PKA (cAMP protein kinase A), 
which phosphorylates several key regulators of the cardiac excitation-contraction 
machinery. This includes phospholamban, [42] the L-type Ca-channel, [42, 43] the 

Figure 3. 
Shematic representation of the cascade of reactions to increase cardiomyocyte contractility by the sympathetic 
nervous activation.
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ryanodine receptor, [44] troponin T and I, [45] myosin binding protein C [46] and 
the small protein phosphatase inhibitor-1 [47]. These events lead to rapid changes 
of the cardiomyocyte calcium transient and enhanced myofilament sensitivity for 
calcium, resulting in a potent inotropic effect.

Data indicate that sustained stimulation of the β1-receptor system, which is 
ideally suited to provide short-term increases in cardiac function, causes marked 
structural and functional damage to the heart on the long term. Thus the chronic 
activation by the adrenergic system in heart failure represents a maladaptive 
response.

Also, the β-adrenergic signaling in dilated cardiomyopathy is characterized 
by the fact that it is desensitized in failing human hearts. In HF, there is a reduc-
tion of the density of β1ARs in in failing human myocardium, [48] a decrease of 
norepinephrine-re-uptake [49] and ultimately an increase in Ginhibitory (Gi) 
protein expression [50] and in GRK2 (βARK)-activity [51], a receptor kinase that 
phosphorylates and thereby inactivates βARs. The observed desensitization of βAR 
receptors represents an adaptation process to the highly increased levels of catechol-
amines in heart failure. This phenomenon is considered a beneficial readjustment of 
the signaling cascade to minimize the detrimental effects of chronic stimulation of 
the myocardium by catecholamines.

β-adrenergic receptor blockade is now regarded as one of the most effective 
therapeutic principle in dilated cardiomyopathy and heart failure [52].

Several large clinical trials with carvedilol, metoprolol succinate and bisoprolol 
have demonstrated a significant benefit in large placebo-controlled trial [53–55]. 
On the contrary, two β-blockers (xamoterol and bucindolol) have failed to sig-
nificantly reduce mortality or even increased mortality [56, 57]. The most likely 
explanation for the failure of xamoterol is the pronounced partial agonism exerted 
by this agent [58]. Bucindolol led to a non-significant reduction of mortality in 
the BEST trial. Two main reasons might account for this finding. First, the study 
population differed markedly from the other large heart failure trials. It included 
a high percentage of African-Americans and of women, and both of these groups 
are underrepresented in other trials [56]. In the other trials, the beneficial effects 
of β-blockade were less pronounced compared with the effects in Caucasians [56]. 
Second bucindolol might display some degree of partial agonism.

2.3 Aldosterone

The pivotal role played by aldosterone in the pathogenesis of dilated cardiomy-
opathy and HF is well-recognized. Activation of the RAA system leads to marked 
elevations in plasma aldosterone levels, which have been shown to correlate with 
increased mortality [59]. Elevated aldosterone levels lead to excessive sodium reten-
tion, with expansion of the extracellular volume, worsening hemodynamic condi-
tions, and a fall in cardiac output. Decreased renal blood flow further stimulates the 
RAA system, causing secondary hyperaldosteronism and further sodium retention. 
In addition, by contributing to hypokalemia and hypomagnesemia, aldosterone 
increases the sensitivity of cardiac tissue to arrhythmias, with a resultant increase in 
sudden death [60, 61].

A growing body of evidence suggests that aldosterone may contribute to endo-
thelial dysfunction, possibly through reduced nitric oxide bioavailability [62]. Since 
the endothelium plays a critical role in the regulation of vascular tone, platelet 
aggregation and thrombosis, endothelial dysfunction predicts subsequent cardio-
vascular events [63]. Furthermore, aldosterone contributes to the development 
of HF by promoting myocardial fibrosis. In vitro studies have demonstrated that 
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administration of aldosterone to cardiac fibroblasts significantly enhances col-
lagen synthesis, [64] a finding that has been confirmed in rat models [65]. Another 
potentially harmful effect of aldosterone is its ability to blunt baroreflex response. 
Administration of aldosterone to dogs [66] and to healthy human volunteers [67] 
resulted in an elevation in the threshold for baroreflex activation and a reduction in 
peak discharge rate. Finally aldosterone has been shown to promote the activation 
and aggregation of platelets and to enhance arteriolar constriction [68].

The clinical trial Randomized Aldosterone Evaluation Study (RALES) dem-
onstrated the benefits of aldosterone receptor blockade in HF. 1633 patients with 
NYHA Class III-IV chronic HF, already receiving ACEIs, were randomized to 
spironolactone versus placebo [69]. The relative risk of death was reduced by 30% 
over two years (RR 0.7, 95% CI 0.60–0.82; p < 0.001) with a 35% reduction in HF 
hospitalizations and an improvement in functional class.

2.4 Endothelin

Endothelin is a potent vasoconstrictor peptide and its synthesis is stimulated 
by hypoxia, ischemia, neurohormones (norepinephrine, angiotensin II, arginine 
vasopressin), and inflammatory cytokines [70–72].

Tissue and plasma levels of endothelin-1 and its precursor (big endothelin-1) are 
elevated in patients with cardiomyopathy and HF [73–78]. These increases are due 
to increased endothelin synthesis primarily in the pulmonary vascular bed [79] and 
the myocardium [80]. The vascular distension seen in HF (especially in the pul-
monary vascular bed) appears to a stimulus for increased endothelin-1 production 
[81]. Another potential contributor to the increased endothelin-1 concentration in 
HF, is the downregulation of endothelin-B receptors, which has been observed in 
the lung tissue of experimental animals with HF [82, 83]. Endothelin B receptors 
appear to play a role in the clearance of endothelin-1. Pulmonary vascular tone 
in HF are largely mediated by endothelin-A receptor [84, 85]. Increased levels of 
endothelin-1 are associated with increased angiotensin II levels, more advanced HF 
symptoms, worse hemodynamics, and decreased survival [70, 75, 78, 81, 85–94].

Endothelin-A receptor antagonists prevent remodeling, improve LV function, 
and prolong survival in rats [95–97].

The Value of Endothelin Receptor Inhibition with Tezosentan in Acute Heart 
Failure Study (VERITAS), the largest clinical trial of an endothelin receptor antago-
nist for ADHF, enrolled 1435 patients. Patients treated with tezosentan experienced 
significant reduction in pulmonary arterial pressures and pulmonary capillary 
wedge pressures as well as an increase in cardiac index. Despite these significant 
improvements in hemodynamics, use of tozosentan did not improve the composite 
primary end point of dyspnea at 24 hours, worsening HF or death at 7 days [98].

The Resource utilization Among Congestive Heart Failure Study (REACH) 
was another clinical trial investigating the effects of bosentan in 370 patients 
with advanced HF and an LVEF <35%. The trial was stopped prematurely due 
to elevations in liver transaminases. At the time of the study termination, there 
was no significant differences in outcomes between the bosentan compared to 
the placebo group. Nevertheless, a post-hoc analysis of 174 patients who com-
pleted the 6-month follow up demonstrated significant clinical improvement 
(p = 0.045) [99].

Finally, the Enrasentan Cooperative Randomized Evaluation (ENCOR) trial 
studied enrasentan, a dual A/B endothelin receptor antagonist in 419 patients with 
stable NYHA Class II and II with LVEF ≤35%. There was no significant improve-
ment in the primary endpoint of clinical HF score with the active drug [100].
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2.5 Vasopressin

Arginine vasopressin (AVP) is a peptide hormone that is elevated in heart failure, 
and associated with a poor prognosis [18, 101]. AVP contributes to fluid retention 
and hyponatremia [102, 103]. AVP exerts its cardiao-vascular effects trough two 
receptors subtypes V1a and V2. V1a is found on vascular smooth muscle cells and 
cardiac myocytes. Whereas, vasopressin V1A receptors mediate vasoconstriction, 
positive inotropic and mitogenic effects, the V2 receptors inhibit free water clear-
ance [104–106]. Stimulation of the V1a-receptor, initially leads to increased myocar-
dial protein synthesis resulting in myocardial hypertrophy [107, 108]. V2-receptors 
are found in the distal tubule of the kidney, and their activation results in water 
retention via upregulation of aquaporin channels [104, 109].

The control of Vasopressin secretion is complex and involves both osmotic and 
nonosmotic stimuli [110]. Factors causing vasopressin release include plasma osmo-
lality, intra-cardiac and arterial pressures, as well as Angiotensin II levels [111]. 
Under most circumstances, Vasopressin is coupled to osmolality levels, making 
osmo-receptor the major determinant of Vasopressin release.

When the pressure within the heart or arterial vessels decreases, tonic inhibitory 
restraint of vasopressin is diminished and plasma vasopressin levels rise. Inversely, 
elevated blood pressure leads to decrease plasma vasopressin level [112–114].

Despite their hypo-osmolar hyponatremia state, patients with HF have inappro-
priately elevated plasma vasopressin levels [101, 115, 116].

Agents that antagonize V1A receptor reduce vascular tone and the mito-
genic myocardial effects of AVP. Because V2 antagonists increase aquaresis, the 
addition of an AVP V2 antagonist improves free water clearance, and reduces 
hyponatremia.

Conivaptan is a dual V1a/V2 receptor antagonist that has been investigated in 
the treatment of HF. One hundred and forty-two patients with NYHA class III or IV 
HF were randomized to either a single IV dose of conivaptan or placebo and evalu-
ated over 12 hours for changes in hemodynamics. Both capillary wedge pressure and 
right atrial pressure were significantly reduced in the treatment group compared to 
placebo. However, cardiac index did not improve [117].

The EVEREST study investigated whether short term and long term blockade 
of the V2 receptor with Tolvaptan is beneficial in patients with HF. The results 
confirmed that Tolvapatan when added to standard therapy improved symptoms 
and signs of HF, however no benefit was observed on all-cause mortality or the 
combined endpoint of cardiovascular mortality or hospitalization for worsening HF 
The drug had no significant effect on long term LV remodeling in patient with LVEF 
<30% [118].

2.6 Natriuretic peptides

While the activation of the RAA and SN system is detrimental in HF, other 
counter-regulatory pathways are activated in HF, including the natriuretic peptide 
(NP) system. The NP system consists of atrial (ANP) [119]. B-type (BNP) [120] 
and C-type (CNP) NPs. These hormones regulate blood pressure and fluid homeo-
stasis [121–123]. ANP is synthesized and secreted in atria. BNP is secreted from the 
ventricles in response to mechanical stretch and increased intra-cardiac volume 
and pressure, while CNP mostly originates from endothelial and renal cells and is 
secreted in response to endothelium-dependent agonists and pro-inflammatory 
cytokines [121, 122, 124].

NPs activate three transmembrane receptors: natriuretic peptide receptor 
(NPR)-A, NPR-B and NPR-C.27 The binding of NPs to type A (NPR-A) and type B 
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(NPR-B) receptors activates guanylate cyclase, increasing levels of the second mes-
senger cyclic guanosine monophosphate (cGMP) and its effector molecule protein 
kinase G. This induces natriuresis, diuresis, vasodilation and inhibition of the RAA 
and the SN systems, as well as antifibrotic, antiproliferative and antithrombotic 
effects [121, 122, 124].

Blockade of NP breakdown by neprilysin inhibitors has, therefore, been investi-
gated [125]. Oral neprilysin inhibitors, such as candoxatril, produced clinical ben-
efit in patients with chronic HF [126, 127]. However, candoxatril has no effect on, or 
increases, systolic BP (SBP) in normotensives, an effect prevented by enalapril, and 
does not reduce BP in hypertensive subjects, probably because its vasodilatory effect 
may be offset by an increased activity of the RAAS and sympathetic nervous system 
and/or by downregulation of NP receptors [128, 129]. In addition, since neprilysin 
acts on numerous physiological targets, the effect of candoxatril was broader than 
anticipated [128].

Neprilysin inhibition results in activation of the RAAS, therefore, in order to be 
clinically beneficial, neprilysin inhibition requires concomitant inhibition of the 
RAAS [130]. Vasopeptidase inhibitors are dual inhibitors of ACE and neprilysin 
and, therefore, emerged as a new therapeutic option in HF and hypertension, but 
their pharmacological profile is complex [131]. Omapatrilat was more effective 
than either lisinopril or amlodipine in reducing BP, [131] but in patients with 
chronic HF it was not more effective than enalapril in reducing the combined risk 
of death or hospitalization for HF requiring intravenous treatment [132]. However, 
omapatrilat was discontinued due to the risk of angioedema, possibly due to exces-
sive inhibition of bradykinin degradation (presumably via neprilysin, ACE and 
aminopeptidase P) [133, 134].

Sacubutril/Valsartan is an oral combination medication consisting of the 
neprilysin inhibitor sacubitril and the angiotensin receptor blocker valsartan. 
The combination is called angiotensin receptor-neprilysin inhibitor (ARNi). The 
PARADIGM-HF trial compared sacubitril/valsartan to enalapril [37] in heart 
failure patients with reduced LVEF. The trial was stopped early after a prespeci-
fied interim analysis revealed a significant reduction in the primary endpoint of 
cardiovascular death or heart failure in the sacubitril/valsartan group compared 
to enalapril [135].

3. Inflammation

Ample evidence exists that dilated cardiomyopathy and HF are associated 
with the activation of the immune system resulting in elevated levels of pro-
inflammatory cytokines. In patients with cardiomyopathy and HF, elevated levels of 
tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), and interleukin-6 (IL-6) are 
found [136–138]. The best characterized inflammatory molecule in DCM and HF 
is TNF-α.

The importance in understanding the role of inflammation in the pathogenesis 
of dilated cardiomyopathy arises from the observation that many aspects of the 
development of dilated cardiomyopathy can be explained by the biological effects 
of pro-inflammatory cytokines. Cytokines, when expressed at sufficiently high 
concentrations, can mimic the development of the dilated cardiomyopathy phe-
notype features, which include left ventricular remodeling and dysfunction with 
myocyte hypertrophy, changes in fetal gene expression, alteration of the extra-
cellular matrix, and cardiac myocyte apoptosis [139–143]. As it is the case with 
neuro-hormonal activation, overexpression of cytokines results in cardiac direct 
toxicity [144, 145].



Cardiomyopathy - Disease of the Heart Muscle

10

Clinically, the progressive increase in inflammatory cytokine levels is in direct 
relation with NYHA functional class deterioration. Also, data from the VEST trial 
demonstrated a strong correlation between survival and TNF-α levels [146]. Similar 
findings were observed with levels of IL-6 [146].

One of the marks of pro-inflammatory cytokines is their ability to depress LV 
function. Preclinical studies in rodents showed that circulating levels of TNF-α 
that correspond with those observed in patients with HF were sufficient to produce 
negative inotropic effects [139]. Also, transgenic mice with TNF-α overexpression 
studies resulted in depressed LV function [140, 147].

The cytokine hypothesis proposes that cardiomyopathy progression is an inflam-
matory process and that amplification of pro-inflammatory cytokines worsens left 
ventricular dysfunction and facilitates the development of HF [10, 148].

There is significant cross-talk between the neuro-hormonal and the cytokine 
systems [144]. Data have shown that these cytokine signaling pathways aug-
ment local neuro-hormonal activation, which in turn promotes the enhanced 
expression of these same cytokines [144]. For instance adrenergic stimulation as 
seen in HF, induces myocardial TNF-α expression, [149] which in turn attenu-
ates beta-adrenergic responsiveness. Also, Angiotensin II is known to activate 
nuclear factor-kappa B (NF-kB), a redox-sensitive transcription factor that is 
important in stimulating the myocardial inflammatory response, [150] includ-
ing activation of inflammatory cytokines, NO, chemokines and cell adhesion 
 molecules [150, 151].

Clinical studies that have examined the effect of ACE-inhibitors have shown that 
while ACE inhibitors have mixed results in terms of inhibiting pro-inflammatory 
cytokines, Angiotensin Receptor Blockers (ARBs) have consistently led to sig-
nificant decrease in circulating levels of inflammatory mediators such as TNF-α 
in patients with cardiomyopathy and HF [152, 153]. Similar findings have been 
reported with the use of beta-blockers in experimental animal models and clinical 
heart failure studies. Beta-adrenergic blockade with a beta-1-selective adrenergic 
antagonist has demonstrated partial inhibition of the expression of pro-inflamma-
tory mediators in an experimental model of post-infarct LV heart failure remodel-
ing model [55]. In sub-group analysis of the MERIT-HF, treatment with metoprolol 
did not lead to a decrease in the level of pro-inflammatory mediators, whereas in 
a different trial, the use of carvedilol, a non-selective beta-1 and beta-2 adrenergic 
antagonist with anti-oxidant properties resulted in a significant reduction in the 
production of TNF-α [154–156]. These data suggest that here are interactions 
between the renin-angiotensin and adrenergic systems with pro-inflammatory 
cytokines.

3.1 Tumor necrosis factor-α (TNF-α)

TNF-α is recognized as a cytokine with pleiotropic biologic capacities [157, 158].  
TNF affects growth, differentiation and function of every cell type, including 
cardiomyocytes.

TNF-α binds to a lower affinity the type 1 receptor called TNFR1 and a higher 
affinity type 2 receptor called TNFR2. Intracellular signaling occurs as a result of 
TNF-induced cross-linking (oligomerization) of the receptors. Previous studies 
have identified the presence of both types of TNF receptors in the non-failing and 
failing heart [159, 160]. Normal myocardium does not contain TNF-α. In the failing 
heart, with the increased expression of TNF-α, the receptors for TNF-α, TNFR1 and 
TNFR2, are downregulated, [159] similar to the β1 adrenergic receptor downregula-
tion and the SN system in heart failure.
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The majority of the deleterious effects of TNF-α are coupled to activation of 
TNFR1, whereas activation of TNFR2 appears to exert protective effects. Activation 
of TNFR1 is responsible for mediating negative inotropic effects, and cardiac 
myocyte apopotosis [142, 159, 161]. In contrast activation of the type 2 TNF recep-
tor appears to protect the cardiomyocyte against hypoxic stress and ischemic injury 
[159, 162]. Previous studies have shown that both TNFR1 and TNFR2 exist in the 
circulation as circulating soluble receptors and are referred as sTNFR1 and sTNFR2. 
Elevated levels of sTNFR1 and sTNFR2 have been shown to be strong independent 
predictors of adverse outcomes in hospitalized HF patients [146, 163, 164].

Early in the disease process, much of circulating TNF-α is derived from immune 
cell line such as activated macrophages. However, late in disease progression much 
of the TNF-α is produced by the cardiac myocytes themselves [165]. Transgenic 
mice overexpressing TNF will develop an early inflammatory myocarditis that later 
progresses to myocyte hypertrophy, left ventricular dilatation, and progressive 
left ventricular dysfunction [140]. In this model, TNF also activate expression of 
matrix metalloproteinases, [166] which contribute to LV remodeling and dilatation. 
Administration of TNF in experimental animal models at concentrations compa-
rable to those observed in clinical heart failure, produces significant declines in 
myocardial contractility with worsening left ventricular function [139]. In another 
rat model, the infusion of TNF, caused progressive left ventricular enlargement 
with significant degradation of the extra-cellular matrix [167].

The negative inotropic effects of TNF-α on cardiac myocytes are mediated 
through increased expression of iNOS with production of nitric oxide [168, 169] 
and activation of norepinephrine and angiotensinogen II. TNF-α was shown to 
increase the expression of the AT1 receptor in cardiac fibroblasts by a mechanism 
dependent on NF-ϏB, thereby augmenting Ang II effects on cells via an increase 
in AT1 receptor density [170]. Increase of Ang II stimulates the synthesis of 
cardiac fibroblasts and the inhibition of MMP2 activity. Ang II activates NF-ϏB, 
via the AT1 receptor and thus increases the production of pro-inflammatory cyto-
kines [171]. Transgenic mice with TNF-α overexpression demonstrate increased 
levels of both ACE and Ang II [172]. These different studies support the presence 
of cross-talk between the RAA and cytokine signaling pathways. TNF-α also aug-
ments sympathetic activation. Isoproterenol administration in rodents increases 
the expression of TNF-α, IL-1β, and IL-6 [163, 173]. These studies support that 
the sympathetic nervous system regulates positively the cytokine gene expression, 
while cytokines potentiate the effects of catecholamines on the myocardium.

3.2 Interleukin-1 (IL-1)

There are three members of the interleukin-1 (IL-1) family: IL-1α, IL-β, and 
IL-1 receptor antagonist (IL-1Ra) [158]. IL-1α and IL-β are agonist and IL-1 Ra is 
a specific receptor antagonist. Similar to TNF-α, IL-1β appears to be activated in 
response to stressful environmental stimuli [136, 174].

IL-1β expression is elevated in the myocardium of failing hearts and is present 
at high circulating concentrations in patients with dilated cardiomyopathy. The 
primary sources of IL-1β within the myocardium are macrophages and cardiac 
fibroblasts [175, 176]. Similar to TNF-α and IL-6, IL-1β inhibits fibroblast-mediated 
production of collagen and suppresses proliferation of fibroblasts [177, 178]. IL-1β 
also increases the expression and activity of MMP’s which cause destruction of the 
fibrillary collagen network. Moreover, IL-1β induces the expression of nitric oxide 
synthase. Furthermore, IL-1β causes cardiac myocytes hypertrophy and inhibits the 
expression of the fetal genes, β-MHC and skeletal α-actin. In summary, IL-1β alters 
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the phenotype and genotype of cardiac myocytes, [177, 178] while also disrupting 
the composition of the extracellular matrix.

3.3 Interleukin IL-6

Similar to TNF-α and IL-1β, levels of IL-6 are elevated in patients with dilated 
cardiomyopathy and HF. The degree of IL-6 elevation correlates to heart failure 
severity and prognosis [179]. IL-6 signals through its receptor, IL-6R, associates 
with the gp130 cytokine receptor, and forms a membrane complex that activates 
downstream signaling pathways. The source of IL-6 production are cardiac myo-
cytes, fibroblasts and mononuclear inflammatory cells [175]. IL-6 stimulation of 
fibroblasts decreases collagen synthesis and increases MMP activity, contributing to 
disintegration of extracellular matrix [175]. Transgenic mice expressing both IL-6 
and IL-6R develop LV hypertrophy, resulting from activation of the gp130 recep-
tor. Other cytokines within the IL-6 family, including cardiotropin 1 and leukemia 
inhibitor factor, induce cardiomyocyte hypertrophy [180–182]. Thus IL-6 partici-
pates to the alterations of the extracellular matrix and cardiomyocyte hypertrophy.

3.4 Nitric oxide synthases

While the contributions of neuro-hormonal and cytokine signaling pathways to 
ventricular remodeling are well-established, cytokine-mediated increase in inducible 
nitric oxide synthase may be an important downstream pathway that contributes sig-
nificantly to the cardiac remodeling [183, 184]. There are three known members of the 
nitric oxide synthase (NOS) family, [183] neuronal NOS (nNOS or NOS 1), inducible 
NOS (iNOS or NOS II) and endothelial NOS (eNOS or NOS III). Cardiac myocytes in 
the normal heart express mainly eNOS [185]. However, studies have shown that iNOS 
is expressed at high levels in the myocardium of failing hearts [186–188].

Evidence from in vivo studies supports a detrimental effect of iNOS in the failing 
heart. Cardiac specific over-expression of iNOS in transgenic mice leads to cardiac 
fibrosis, dilatation and premature death, [189] although Heger et all reported no 
demonstrable phenotype accompanying iNOS overexpression in the mouse heart 
[190]. Sam et al. demonstrated that 6 months after an MI, the extent of LV dysfunc-
tion and myo-cardiac apoptosis was significantly diminished in iNOS knockout mice, 
supporting a detrimental role of iNOS in this ischemic cardiomyopathy model [191]. 
These data suggest that iNOS may play an important role in ventricular remodeling 
and cardiac myocyte apoptosis. Supporting this concept, iNOS expression in end-
stage failing heart normalized after placement of ventricular assist device [188].

3.5 Anti-inflammation treatment in cardiomyopathy and heart failure

Despite an abundance of evidence implicating the inflammatory pathway in 
HF and cardiomyopathy, and numerous examples of anti-inflammatory therapies 
improving HF in experimental animal models, these agents have been largely 
unsuccessful in treating human cardiomyopathy and HF.

3.5.1 Prednisone

Prednisone was shown to suppress TN-Fα biosynthesis at the translational 
and transcriptional levels. Parrillo et al. randomized 102 patients to prednisone 
versus placebo to 102 patient with dilated cardiomyopathy. Following three months 
of therapy, an increase in LVEF of >5% was observed in 53% of patients receiv-
ing prednisone. All patients were categorized prospectively in two separately 
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randomized subgroups. “Reactive” patients (n = 60) were those who had fibro-
blastic (n = 36) or lymphocytic (n = 2) infiltration or immunoglobulin deposition 
(n = 16) on endomyocardial biopsy, a positive gallium scan (n = 7), or an elevated 
erythrocyte sedimentation rate (n = 18). Nonreactive patients (n = 42) had none 
of these features. At three months, 67 percent of the reactive patients who received 
prednisone had LVEF improvement, as compared with 28 percent of the reactive 
controls (P = 0.004) [192]. The data of this study suggested that patients with idio-
pathic dilated cardiomyopathy may have some improvement when given a high dose 
of prednisone. However, the increase in the ejection fraction was overall small with 
limited duration, and the side effects were important. In conclusion, prednisone 
was judged to have only a marginal clinical benefit, and should not be administered 
as standard therapy for dilated cardiomyopathy.

3.5.2 Etarnecept

TNF-α inhibitors are immunomodulators that are used in a wide variety of 
rheumatological/autoimmune diseases including RA, [193, 194], inflammatory 
bowel disease, [195] and psoriasis/psoriatic arthritis [196].

Etanercept is a human recombinant TNF-α receptor that binds and inactivates 
circulating TNF-α molecules.

Preclinical experimental studies have demonstrated that etanercept reversed the 
deleterious negative inotropic effect of TNF-α [139, 197].

A series of phase I clinical studies in patients with moderate to advanced HF 
showed improvements in 6 –minute walk distance, quality of life and LV cardiac 
function following treatment with etanercept for up to 3 months [198, 199]. 
Subsequently, two large multicenter quality of life clinical trials RENAISSANCE 
(Randomized Etanercept North American Strategy to Study Antogonism of 
Cytokines) and RECOVER (Research into Etanercept Cytokine Antagonism in 
Ventricular Dysfunction) were conducted in HF patients with NYHA class II-IV and 
demonstrated no clinical benefit [200]. The RENEWAL (Randomized Etanercept 
World-wide EvALuation) clinical trial with all cause mortality and hospitalization 
for HF as primary end-point, did not reveal any benefit either with etarnecept [201].

3.5.3 Infliximab

Infliximab is a chimeric monoclonal antibody that binds and inactivates circu-
lating TNF-α that has been shown to be effective in the treatment of Crohn disease 
and rheumatoid arthritis. The ATTACH clinical trial (Anti-TNF-α Therapy Against 
CHF), a phase II study enrolled 150 patients with NYHA class III-IV HF. The results 
of this trial revealed no beneficial effects on clinical status with infliximab. There 
was even a dose related increase in mortality and HF hospitalizations with inflix-
imab when compared to placebo at 14 and 28 weeks, resulting in early termination 
of the trial [202].

3.5.4 Intravenous immunoglobulin

Although the exact mechanism of intravenous immunoglobulin (IVIg) therapy 
is not known, IVig therapy is being used in a wide range of immune-mediated 
disorders, such as dermatomyosis, Kawasaki and multiple sclerosis [203, 204]. 
Based on an initial report that IVIg was beneficial in acute cardiomyopathy, [205] 
Gullestad et al. conducted a double-blind clinical trial with IVIg for 26 weeks in 47 
patients with Class II-III HF, who were receiving standard HF therapy including 
ACE inhibitors and β-blockers. In this study, IVIg induced a marked rise in plasma 
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levels of the anti-inflammatory mediators (IL-10, IL-1 receptor antagonist and 
soluble TNF receptors) and was associated with a significant increase in LVEF 
[206]. Thus in this small study, therapy with IVIg was potentially effective in 
patients with cardiomyopathy and HF, but these results should be confirmed in 
a larger subset of patients and also needs to examine the effect on morbidity and 
mortality of this therapy.

4. Oxydative Stress

Oxidative stress, defined as an excess production of reactive oxygen species 
(ROS) relative to antioxidant defense (Figure 4), has been shown to play an 
important role in the pathophysiology of cardiac remodeling in HF, [6–9, 207]. 
Specifically, ROS activate a broad variety of hypertrophy signaling kinases and 
transcription factors and mediate apoptosis. They also stimulate cardiac fibroblast 
proliferation and activate the matrix metalloproteinases (MMPs), leading to the 
extracellular matrix remodeling. Moreover, ROS can directly impair the cardiac 
contractile function by modifying proteins involved in excitation-contraction 
coupling. These cellular events are involved in the development and progression of 
maladaptive myocardial remodeling and failure.

Oxidation products of several organic molecules including lipids, proteins, and 
nucleic acids have been implicated in the pathogenesis of dilated cardiomyopathy 
and their levels are found to be increased in heart failure. The severity of heart fail-
ure and levels of oxidative stress increase concurrently, which suggests that oxida-
tive stress could be utilized as a biomarker for dilated cardiomyopathy progression.

Oxidative stress is associated with increased production of ROS and reactive 
nitrogen species (RNS), diminished nitric oxide (NO) bioavaibility and reduced 
superoxide dismutase (SOD), glutathione peroxidase and catalase activity. ROS 
are formed as products of oxidation–reduction reactions and include free radical 
molecules such as superoxide (O2−), hydroxyl radical (OH−), lipid peroxyl and 
non-free radical species like hydrogen peroxide (H2O2). RNS like (ONOO−) are 

Figure 4. 
Source of reactive oxygen species (ROS) and their pathophysiological role in heart failure. NOS: Nitric oxide 
synthase.
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formed by the reaction between nitric oxide (NO) and O2− [208]. Cellular ROS are 
generated predominantly as by-products of mitochondrial respiration, NADPH 
oxidase, endothelial nitric oxide synthase (eNOS) [209] and xanthine oxidase 
activity [210].

Clinically, oxydative stress markers have prognostic values as they correlate with 
worsening NYHA functional class and cardiac dysfunction [211, 212]. Several stud-
ies have demonstrated that the lipid peroxidation products such as malondialdehyde 
[MDA] [211] and 4-hydroxynonenal [213] are increased in patients with dilated 
cardiomyopathies compared to normal controls. Myeloperoxidase, a peroxidase 
enzyme present in granulocytes is increased in the serum of patients with dilated 
cardiomyopathy. Increased myeloperidase levels correlate with HF severity. Finally, 
plasma myeloperidase appears also to be an independent predictor of mortality and 
HF hospitalization [212]. Uric acid, produced by the ubiquitous ROS-generating 
xanthine oxidase, is considered as a marker for oxidative stress in the cardiovascular 
system. It is released from the failing human heart, with an inverse correlation 
between the level of uric acid and left ventricular ejection fraction [214]. Increased 
serum uric acid levels are associated with increased filling pressures, reduced 
cardiac index and plasma NT-proBNP [215]. Uric acid is also a strong independent 
predictor of mortality in patients with dilated cardiomyopathy [216].

One consequence of myocardial oxidative stress is myocardial remodeling, 
including myocyte hypertrophy, myocyte apoptosis and alteration of the extracel-
lular matrix.

Oxidative stress has direct effects on cellular structure and function and acti-
vates integral signaling molecules leading to myocardial remodeling and failure 
(Figure 5). Oxidative stress stimulates myocardial growth, matrix remodeling, and 
cellular dysfunction, which involve the activation of several downstream signaling 
pathways. First, ROS activate a broad variety of hypertrophy signaling kinases and 

Figure 5. 
Oxidative stress and heart failure. MAPK: Mitogen-activated protein kinases; JNK: Jun-nuclear kinase;  
PARP-1: Poly(ADP-ribose) polymerase-1; MMP: Matrix metalloproteinases; AP-1: Activator protein-1.
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transcription factors [217]. Oxidative stress stimulates the tyrosine kinase Src, GTP-
binding protein Ras, protein kinase C, mitogen-activated protein kinases (MAPK), 
Jun-nuclear kinase (JNK) and p38. Second, Oxidative stress induces apoptosis, 
another important contributor to remodeling and dysfunction, which is induced by 
ROS-mediated DNA and mitochondrial damage and activation of pro-apoptotic sig-
naling kinases [218]. Third, Oxidative stress causes DNA strand breaks, activating 
the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1). PARP-1 regulates 
the expression of a variety of inflammatory mediators, which facilitate the pro-
gression of cardiac remodeling [219]. Fourth, oxidative stress can activate matrix 
metalloproteinases (MMPs), a family of proteolytic enzymes [220]. MMPs play a 
pivotal role in normal tissue remodeling processes, such as cell migration, invasion, 
proliferation, and apoptosis. MMP activity has been shown to be increased in the 
failing hearts [220, 221]. MMPs are generally produced in an inactive form and are 
activated by reactive oxygen species (ROS). Because MMP can be activated by ROS, 
one mechanism of LV remodeling is the activation of MMPs secondary to increased 
ROS [222]. Sustained MMP activation will lead to extracellular matrix remodeling. 
Fifth, ROS mediate growth responses in ventricular myocytes by stimulating the 
activity of several growth factors including transforming growth factor-β1 (TGF-
β1), [223, 224] VEGF, [225] fibroblast growth factor-2 (FGF-2), [226], and PDGF 
[227]. Sixth, oxidative stress promotes vasoconstriction by increasing the produc-
tion of endothelin-1 [228] and angiotensin II by increased production of 02- via 
the NADPH oxidase [229]. Seventh, oxidative stress upregulates the transcription 
of the factors HIF-1α and HIF-2α expression, [230] factors that are also implicated 
in the development of cardiomyopathy and HF. Eighth, increased oxidative stress 
leads to inflammation and cell injuries due to oxidation of proteins, lipids and DNA 
[209]. Finally, ROS directly influence myocyte contractile function by modifying 
proteins involved in excitation-contraction coupling. Zima and Blatter [231] includ-
ing the ryanodine receptor, the L-type calcium channel, and the Ca2 + ATPase.

4.1 Oxidative stress and mitochondrial DNA damage

In addition to the role of mitochondria as a source of reactive oxygene species 
(ROS), the mitochondria themselves can be damaged by ROS. Increased genera-
tion of ROS in the failing hearts was associated with mitochondrial damage and 
dysfunction, characterized by an increased lipid peroxidation in the mitochondria, 
a reduction in the number of the mitochondrial DNA copy, a decrease in the 
number of mitochondrial RNA transcripts and a reduced oxidative capacity due to 
low complex enzyme activities [232]. They thus can lead to a catastrophic cycle of 
mitochondrial functional decline, further ROS generation, and cellular injury.

4.2 Therapies targeting oxidative stress

To date, there are no positive large-scale clinical trials of antioxidant therapy in 
cardiomyopathy and heart failure.

4.2.1 Coenzyme Q

Coenzyme Q (CoQ ) is an antioxidant via the redox cycle. CoQ inhibits both the 
initiation and the propagation of lipid and protein oxidation.

Preclinical data has provided information across a variety of models supporting 
the pathophysiological role of CoQ10 depletion in HF and the concept of improved 
outcomes with CoQ10 supplementation [233].
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There have been a large number of trials examining the effect of CoQ10 in HF. 
Two meta-analyses have examined the potential benefit of CoQ10. Fotino et al. 
[234] analysis from 13 trials and 395 patients demonstrated an improvement in 
LVEF of 3.67% (95% CI, 1.6%–5.74%) in those receiving CoQ10 versus placebo. 
The majority of benefit of LVEF improvement was in trials published before 1993. 
The other meta-analysis by Madmani et al. [235] looked at 7 studies data with 914 
patients and did not show any significant improvement in LVEF or exercise capac-
ity. Given the significant heterogeneity of the data, it was not possible to make any 
significant conclusion.

The most recent clinical trial with CoQ10l, Q-SYMBIO (Coenzyme Q10 as 
Adjunctive Treatment of Chronic Heart Failure: A Randomized, Double-blind, 
Multicenter Trial With Focus on Symptoms, Biomarker Status) enrolled 420 
patients and demonstrated that compared with placebo, CoQ10 reduced the pri-
mary 2-year end point of cardiovascular death, hospital stays for HF, or mechanical 
support or cardiac transplant (P = 0.005; hazard ratio, 0.5; 95% CI, 0.32–0.80) 
[236]. Although having limitations, this study has renewed interest in evaluating 
CoQ10 supplementation in patients with HF. The results of the trial warrants future 
adequately powered randomized controlled trials of CoQ10 supplementation in 
patients with HF.

4.2.2 Allopurinol

Under normal conditions, the enzyme xanthine oxidase (XO) exists primarily 
in its dehydrogenase form, serving as the rate-limiting step in purine degradation 
to uric acid. Xanthine oxidase catalyzes the transformation of hypoxanthine to 
xanthine and then to uric acid with the associated production of four superoxide 
anions [237]. Xanthine oxidase is therefore a potential major regulator of cellular 
oxidative stress [238].

A large body of experimental and clinical data suggests that oxidative stress con-
tributes to ventricular and vascular remodeling and disease progression in HF. XO is 
a potent source of oxidative stress, and therefore an obvious target for therapy.

Significant hyperuricemia is present in ≈25% of patients with HF with reduced 
ejection fraction, [215, 216] and it is associated with worsening symptoms, exercise 
intolerance, and reduced survival [239–241].

Under conditions of tissue hypoxia similar to HF in an experimental model, 
[242] the breakdown of ATP to AMP to hypoxanthine provides substrate to 
XO. Subsequently, XO uses oxygen rather than NAD as an oxidant. As a result, 
XO produces superoxide and hydrogen peroxide (H2O2) rather than NADH 
[243, 244]. Increased vascular O2• − production has been attributed in major 
part to XO, which has been found to adversely impact endothelial function 
by impairing nitric oxide (NO) signaling [245] and to directly contribute to 
experimental cardiac remodeling.

The Xanthine Oxidase Inhibition for Hyperuricemic Heart Failure Patients 
(EXACT-HF) Study, a randomized trial with 243 HF patients with reduced 
ejection fraction and elevated uric acid levels, xanthine oxidase inhibition with 
allopurinol compared to placebo failed to improve clinical status, exercise  
capacity, quality of life, or left ventricular ejection fraction after 24 weeks.of  
treatment [246].

In summary, oxidative stress appears to play an important role in the patho-
physiology of cardiac remodeling and cardiomyopathy. Thus therapeutic strategies 
to modulate this maladaptive oxidative stress response as seen in cardiomyopathy 
and HF should become a target for future extensive investigation.
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5. Conclusions

Cardiac remodeling represents the culmination of complex interactions between 
neuro-hormonal, stress activated cytokine and oxidative stress signaling pathways. 
These different signaling pathways feedback positively on one another and act in 
concert to initiate and propagate the cellular changes taking place within the remod-
eling ventricle. These pathways stimulate myocyte hypertrophy, increase the rate at 
which myocytes undergo hypertrophy, apoptotic cell death as well as proliferation 
of fibroblasts, some of which may differentiate into contractile myofibroblasts.

This constellation of cellular changes ultimately leads to gross morphological 
features of cardiac dilatation, progressive cardiac dysfunction and worsening heart 
failure. In this manner, these complex series of signaling events that lead to cardiac 
remodeling may very well represent the central pathophysiological mechanisms 
underlying cardiomyopathy progression.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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