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Chapter

Clinical Use of Mesenchymal Stem 
Cells in Treatment of Systemic 
Lupus Erythematosus
Hulya Bukulmez and Gurinder Kumar

Abstract

Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune 
inflammatory disorder with considerable clinical heterogeneity and a prevalence of 
26 to 52 out of 100,000. In autoimmune diseases, such as SLE, the immune system 
loses its ability to distinguish between self and other. Treatment of SLE is challeng-
ing because of clinical heterogeneity and unpredictable disease flares. Currently 
available treatments, such as corticosteroids, cyclophosphamide (CYC), and other 
immunosuppressive or immunomodulating agents, can control most lupus flares 
but a definitive cure is rarely achieved. Moreover, standard therapies are associated 
with severe side effects, including susceptibility to infections, ovarian failure, and 
secondary malignancy. Alternative therapeutic options that are more efficacious 
with fewer side effects are needed to improve long-term outcome. Mesenchymal 
stem cells/multipotent stromal cells (MSCs), which secrete immunomodulatory 
factors that help restore immune balance, could hold promise for treating these dis-
eases. Because MSCs do not express major histocompatibility complex II (MHC-II) 
or costimulatory molecules, they are also “immunologically privileged” and less 
likely to be rejected after transplant. Stem cells are defined as a class of undiffer-
entiated cells in multicellular organisms that are pluripotent and self-replicating. 
MSCs are promising in regenerative medicine and cell-based therapies due to their 
abilities of their self-renewal and multilineage differentiation potential. Most 
importantly, MSCs have immunoregulatory effects on multiple immune system 
cells. While some studies report safety and efficacy of allogeneic bone marrow 
and/or umbilical cord MSC transplantation (MSCT) in patients with severe and 
drug-refractory systemic lupus erythematosus (SLE), others found no apparent 
additional effect over and above standard immunosuppression. The purpose of this 
chapter is to discuss immune modulation effects of MSCs and the efficacy of MSCs 
treatments in SLE.

Keywords: Mesenchymal stem cell, Cell therapy, Systemic Lupus Erythematosus, 
Clinical trials, Lupus nephritis

1. Introduction

Systemic Lupus Erythematosus (SLE) is a chronic multi system autoimmune 
inflammatory disease in which vascular inflammation cause devastating organ 
damage such as end-stage renal disease (ESRD). Sizeable patient populations; 
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12,600 end-stage kidney disease (ESKD) caused by SLE, are refractory for all  
current standard of care [1].

Clinical presentations of SLE, prototype autoimmune disease for interferon 
activation, are highly heterogeneous, ranging from mild systemic inflamma-
tion that affects skin or joints to severe organ damage (brain, kidney, lung etc.). 
Heterogeneity of clinical presentations requires diverse treatment protocols, 
addressing multiple immune abnormalities affecting variety of organs. The exact 
etiology of SLE is not completely understood. Pathogenesis of SLE comprises 
genetic, environmental, and hormonal factors which induces multiple immune 
cell lines and systems act abnormally which are mostly explained by autoimmune 
activation. All etiopathogenic immune pathways targeted with chemotherapy or 
biologics to date have failed to improve some portion of SLE patients. Heterogeneity 
of clinical presentations require diverse treatment protocols, addressing immune 
abnormalities.

There is an urgent clinical need for an effective treatment of chronic autoim-
mune diseases induced by abnormal activation of immune system that result in 
multiple organ damage in SLE and in others [1–3]. The current standard of care 
includes high dose corticosteroids, chemotheraphy with azathioprine, cyclo-
phosphamide, mycophenolate mofetil, cyclosporin, and combination of all with 
biologics such as rituximab (Anti-CD20) or belimumab (anti-Blsy) [4, 5]. Current 
modalities that are available to treat SLE and SLE like diseases are immune suppres-
sive and have toxic side effects. After treatments with corticosteroids and chemo-
therapy, patients become even more vulnerable to pathogens and develop sepsis and 
septic shock. In many patients, even combinations of all available medications are 
not effective in controlling the disease progression and development of end stage 
organ failure. Innovation of nontoxic cellular therapies that target both, the vascu-
lar wall and the immune responses within the local microenvironment, are needed.

In many patients, even combinations of all available medications are not effec-
tive in controlling the disease progression and development of end stage organ 
failure. Collectively, at least 10–15% of patients fail to respond to all existing 
treatments. Specifically, three groups of SLE patients with the greatest unmet need 
include:

1. 7–8% of patients who have severe nervous system involvement refractory to 
cytotoxic and immune suppressing medications [6];

2. 10–30% patients with severe nephritis who do not respond to cytotoxic and 
immune suppressing therapy or available biologic treatment (such as beli-
mumab and rituximab) and become dependent on dialysis leading to death 
within 15 years [1]; and

3. 2–5% of patients develop thrombotic thrombocytopenic purpura who do not 
respond to combination of cytotoxic medications, immune suppressants, 
plasma exchange, and biologics, with mortality rate of 34–62% [7].

Disease burden of SLE and lupus nephritis in the US is estimated at 313,436 
(100/100,000) and 63,256 (20/100,000), respectively [8–10]. Approximately 10 
to 20 percent of patients with lupus nephritis progress to end-stage renal disease as 
they do not respond to commercially available treatments.

Unfortunately, there is still no uniformly effective treatment targeting both cel-
lular and humoral autoimmunity for SLE. Therapies targeting components of cellu-
lar or humoral immune system fails to induce sustained remission in disease activity 
in multicenter clinical trials. To design a new treatment that can control the cellular 
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and innate immune activation and regenerate the damaged organs in active SLE, the 
understanding of the degree and exact kind of the immune dysregulation is neces-
sary. Multiple immune cells and immune signaling pathways have been studied in 
etiopathogenesis of SLE and have been found to act abnormally. While a set of cells 
clonally expand and act abnormally, we see some of the cells that have homeostatic 
roles in controlling self-tolerance are diminished or dysfunctional in SLE.

2. Immune dysregulation that leads to SLE

Pathogenesis of SLE comprises genetic, environmental, and hormonal factors 
resulting in multi-system autoimmune inflammatory disease. Systemic Lupus 
Erythematosus [11] is suggested to be the prototype of several systemic inflam-
matory diseases that are induced by abnormal activation of the type I (−α, −β) [12] 
and II (−ɣ) interferon (IFN) [13] pathways. Interferon activation results in multiple 
immune cellular abnormalities, including; dendritic cells (DC), natural killer (NK) 
cells, cytotoxic T cells, T regulatory cells (Tregs), and autoreactive B cells [14].

SLE is characterized by irregularities in innate cellular and humoral immunity 
functions [15]. Abnormal T-cells and B-cells recognize self-antigens resulting in 
immune hyperactivity and autoantibody production that ends up in a multisystem 
inflammatory disease.

Immune dysregulation in SLE has been described by not one but multiple 
cell lineages such as CD4+ and CD8+ T-cells, dendritic cells (DC), Natural Killer 
(NK) cells, B-cell overproduction of autoantibodies, and T regulatory (Treg) cell 
dysfunction. CD8+ T cells and NK cells have decreased cytotoxic activity. There is 
a general inability of TGF- β production, which in return accounts for sustained T 
and B cell hyperactivity and reduced Tregs activity and numbers. There is a dispro-
portional balance between the activated and tolerogenic DCs during SLE activity 
that limits the expansion of Tregs [16]. The remaining small amount of Tregs that 
are still existing during the inflammatory activity of lupus are not sufficient to over-
come the strong T-cell activation [17, 18].

In both human patients with SLE and in lupus prone mice models, 
CD4 + CD25 + Foxp3+ Tregs are reported to be decreased during disease activity. 
CD4+ T helper cell subset (Th17 cells) are increased in SLE in response to IL-17 
activation [19, 20]. Blockage of IL-17 has also been suggested as a new treatment 
option [21, 22].

Restoration of T-cell functions are important for disease control. On the other hand, 
lupus-like autoimmunity can result simply due to B-cell hyperactivity, with either 
minimal or no contribution from T-lymphocytes. B cell hyperactivity results with pro-
duction variety of IgG and IgM autoantibodies directed against nuclear components 
such as double stranded (ds) DNA and/or single stranded (ss) DNA. Both anti-ssDNA 
and anti-dsDNA are involved in disease pathogenesis and clinical progress [23, 24].

The type I interferon system appears to play a critical role in SLE etiopathology 
[11, 25–27]. All the cellular and humoral immune abnormalities seem to activate 
type I interferons, which in return charge the immune cells further and result in 
loss of tolerance. Type I interferons control dendritic cell maturation into antigen 
presenting cells which contribute to B-cell hyperactivity and induce a Th1 response 
and sustain T-cell activation [28, 29]. Type I interferons are not controlled well and 
are in excess amount partially due to deficiency of Treg activities in SLE [30–33].

Another major etiopathogenic immune pathway is explained by multiple 
complement pathway abnormalities. Complement deficiency can be seen up to 
5% of all lupus patients [34]. In addition, 50% of SLE patients with deficiencies or 
dysfunction of the early classical complement pathway develop a lupus-like disease.
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3. MSC treatment in SLE

While there is systemic inflammation and autoimmunity ongoing, patients 
with SLE have less active immune cells that defend against pathogens and tumors 
[35, 36]. Cytotoxic CD8+ T cells and T regulatory (Treg) cells that play fundamen-
tal role in immune defense are depleted during SLE activity [37].

Currently available treatments of SLE (Systemic Lupus Erythematosus) target 
one cell (CD20+ B cells) or one pathway at a time leaving the others to continue 
to function abnormally and their immunosuppressant side effects to diminish 
patients’ ability to fight infections. After these treatments, patients become immune 
compromised and vulnerable to pathogens and develop sepsis and septic shock. 
In many patients, even combinations of all are not effective in controlling disease 
progression sometimes developing end stage organ failure.

MSCs are multipotent stromal cells than have the potential to differentiate 
into multiple mesenchymal lineages [38–43]. Core standardized definition of the 
‘multipotent mesenchymal stromal cell’ as a plastic-adherent cell type bearing 
various stromal surface makers, but lacking hematopoietic markers, capable of at 
least osteogenic, chondrogenic and adipogenic differentiation was proposed by 
a consensus group [44]. The name was later modified and was changed to ‘mes-
enchymal stromal cell’. No unique marker exists to define MSCs still and clinical 
studies will certainly involve different heterogeneous MSCs that can be isolated 
from different adult and fetal tissues such bone marrow (BM), umbilical cord (UC) 
and adipose tissue (AT). MSCs are so far defined with the presence of their charac-
teristic cell surface markers such as CD105, CD90, CD73, CD106, CD146, CD166, 
CD271 and the absence of hematopoietic progenitor cells markers such as CD45, 
CD34 and CD14. They are uniquely immune privileged and can escape rejection 
reactions from hosts since they do not express class II MHC, such as HLA-DR and 
co-stimulatory molecules such as CD80, CD86 and CD40 [43, 45, 46]. Therefore, 
they are easily used as adoptive transfer cell treatment without any prior immune 
ablation therapies.

Besides their differentiation potentials, MSCs have potent immune regula-
tory effects. MSCs mediate immune system either by secreting soluble factors or 
directly interacting with a variety of immune effector cells. MSCs uniquely gain 
different properties and immunoregulatory effects depending on the inflamma-
tory milieu and disease setting. MSCs secrete numerous cytokines, chemokines, 
and hormones to exert paracrine effects on adjacent immune cells to modulate 
their proliferation, differentiation, migration, and adhesion functions under 
injury conditions.

It has been suggested that with their potent immune regulatory effects MSCs are 
future of cell therapy in refractory lupus. However, the studies thus far published do 
not agree on the kind, amount and frequency of MSC treatments or showed consis-
tent efficacy. MSCs have not been FDA approved for any disease indication, mostly 
due to challenges in potency. MSCs have been used as therapeutics in hundreds of 
clinical trials, including SLE, with no adverse reactions reported.

4.  Immune modulating effects of MSCs that may help suppressing auto 
inflammatory activity during SLE

MSCs produce a collection of immune modulating molecules, which can locally 
(paracrine) or systemically (endocrine) effect inflammation. The actions of MSCs 
are dependent on the environmental signals they receive and are directed to control 
the excess inflammatory response. It is well studies that MSCs can switch the T cell 
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balance from a pro-inflammatory Th1 phenotype (secreting INF-γ and TNF-α) 
or Th17 phenotype (secreting IL-17) [47] to an anti-inflammatory to Th2 profile 
(secreting IL-4) (Figure 1) [48, 49].

More relevant MSC activities that may help in SLE treatment are 1) MSCs 
decrease IFN-γ production in vitro by T-cells [50] 2) MSCs are able to modulate the 
cytokine-production profile of (in vivo) differentiated Th17 cells, as well as the pro-
duction of the IL-17 [51–53], 3) MSCs also influence the development and function 
of DCs [54, 55], 4) MSCs promote the generation of antigen-specific Tregs either 
directly or indirectly by modulating dendritic cells (DCs) [56], 5) MSCs modulate 
macrophages [57–60] 6) down-regulate the production of pro-inflammatory 
cytokines TNF-α, IL-1, IL-6 and IL-12p70 and increase the production of anti-
inflammatory cytokine IL-10, 7) enhance the phagocytic activity which in return 
induce resolution of inflammation [61–63] (Figure 1).

MSCs can suppress proliferation of both CD4+ and CD8+ T lymphocytes in vitro 
in a dose-dependent, non-apoptotic-induced manner, and the immunosuppres-
sive properties against T cells varies among different MSC sources. Transforming 
growth factor-β (TGF-β), prostaglandin E2 (PGE2), nitric oxide (NO), and 
indoleamine 2,3-dioxygenase (IDO) have been reported to be involved in the MSC-
mediated T cell suppression. CD8+ T cells and their activation axis with Indolamine 
2, 3-Dioxygenase (IDO) an important anti-inflammatory factor, is suggested to be 
required for successful suppression of SLE [64], and there is significant data show-
ing the need to increase the Treg activity in SLE treatment (Figure 1) [51].

One key element of the possible effect of MSCs in SLE is that once MSCs enter 
the inflammatory environment particularly those SLE affected or injured organs; 

Figure 1. 
Suggested pathways of how anti-inflammatory effects of MSCs that control the loss of tolerance, cellular 
dysfunction and inflammation. During SLE active disease multiple immune cells that works in both innate 
and adaptive immune system are dysfunctional leading to loss of tolerance and sever inflammation. MSCs, can 
sense the inflammatory microenvironment and act on attenuating inflammatory activity by secreting soluble  
factors, such as IDO, TGF-β, PGE-2. VEGF, BMP-7, TNF-α, IL-6, IL-7and IL-10, i.e. endocrine effect. MSC 
exert the immunomodulatory function by promoting a switch from pro-inflammatory to anti-inflammatory 
phenotype and cytokine secretion by T- cells, dendritic cells and NK cells. MSCs can inhibit the proliferation 
and activation of B effector cells and CD4 + T lymphocytes, while changing and strengthening the cytotoxic 
effects of CD8 + T cells and NK cells. MSCs anti-inflammatory effects is also explained by its effect on increase 
of the Tregs, while its potent effect in decreasing the IL-17 secreting Th17 cells. Red arrows are showing the 
SLE inflammation activation signaling for pathogenic cellular expansion or decrease, while green arrows 
and blunted lines are showing the opposing effects of MSCs on the abnormal cellular activation and anti-
inflammatory effects. MSCs endocrine secreted factors by which they are suggested to act specific cellular 
expansion and activity are defined on the arrows.
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their immune-modulatory phenotype could become activated by IFN-γ, TNF-α 
and IL-1β in the microenvironment [65]. Furthermore, it has been shown that 
MSCs are chemotactically drawn toward a variety of wound healing cytokines in 
vitro, including IL-1 and TNF-α. These data suggest that MSCs or endogenous cells 
resembling MSCs, such as pericytes, are likely to migrate to and participate in the 
response to tissue injury [66–69].

When MSCs are exposed to the microenvironment of diseased tissue, they con-
trol/suppress inflammation inducing regeneration [56]. With their potent immune 
regulatory and regenerative effects in response to their microenvironment, and as 
no adverse reactions in clinical trials have been reported, MSCs are an attractive 
treatment in SLE. By increasing the potency of MSCs in SLE, it is anticipated that 
primed MSCs will lower the overall cost of care for SLE patients that are refractory 
for the current standard of care.

Effects of human MSCs on interferon regulated mediators, and the connections 
of these mediators with clinical outcomes in SLE have been suggested, but MSC 
treatments have not been efficacious across heterogeneous organ involvement of 
SLE to date.

MSCs have been used as therapeutics in hundreds of clinical trials, as of July 
2020, there were a total of 1,138 registered clinical trials to clinicaltrials.gov includ-
ing SLE. In the 18 published clinical trials with outcomes there were no serious 
adverse events reported [70]. However, MSCs have not been FDA approved for any 
disease indication yet, mostly due to challenges in potency. MSC treatment has been 
shown to be successful for a short time and there were relapses in SLE patients in 
6–12 months [71, 72].

MSC sources used in clinical trials have different donor pools and are isolated 
from different tissues with variable immune regulatory function. Furthermore, 
large-scale MSC-based cell therapy remains restricted due to the cells’ ability to 
expand, and then efficiently respond to inflammatory environment after several 
number of passages.

5. Recent SLE clinical trials using stem cells

Stem cell treatment to those SLE patients who have been refractory to all known 
therapies have been the last resort. Although the results of studies reported in early 
2000 suggested that autologous stem cells treatment (ASCT) suggested the efficacy 
for remission induction of refractory SLE, mortality among those patients with 
longer disease duration was particularly high and mostly due to immune suppres-
sive procedure (12%). Almost 30 percent patients relapsed after therapy and longer 
duration of immune suppressive therapies post ASCT was suggested [73, 74]. It was 
clearly shown that severe myeloablative therapies prior to ASCT’s to SLE patients 
who already have immune compromised status the success rate has been poor. 
Therefore, other groups assessed the safety of intense immunosuppression and 
autologous hematopoietic stem cell support in patients with severe and treatment 
refractory SLE [75, 76]. Overall 5-year survival of those SLE patients was 84%, and 
probability of disease-free survival at 5 years following HSCT was 50% (Table 1).

While the initial stem cell clinical trials were being performed for treatment of 
SLE, first report of successful MSC treatment in a child with acute graft-versus-
host disease (GvHD) using allogeneic MSCs was published in 2004 [89]. After 
two infusions of bone-marrow-derived MSCs obtained from his mother this child 
responded very well to the infusion treatment. Following the success of this pedi-
atric case with GVHD, multiple preclinical animal studies and other human clinical 
trials for treatment of other autoimmune diseases started to take place. The initial 
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Reference 

(First 

author, 

date)

Study type/

SLE, organ 

involvement

Number 

of patients 

studied, Age 

range

MSC 

source*

Type and 

amount 

(dose)

Prior treatment Outcome criteria Improvement 

(%) in 6 months

Improvement 

(%) in 12 m 

and above

Jayne  

et al. 

(2004) 

[74]

Retrospective 

registry. SLE or 

nephritis

53, (9–52 yo) Peripheral 

blood 

(n = 44), 

bone 

marrow 

(n = 8), 

from both 

(n = 1)

Autologous 

stem cell 

treatment 

(ASCT)

Cyclophosphamide (84%), 

anti-thymocyte globulin 

(76%) and lymphoid 

irradiation (22%)

SLEDAI, brain MR 

scan, pulmonary 

function tests, 

echocardiogram, 

serum creatinine, 

ANA, anti-

dsDNA, other 

anti-nuclear 

autoantibodies and 

C3, C4

Remission rate 

(based on a 

reduction of the 

SLEDAI to <3) in 

66%, one-third 

of whom later 

relapsed to some 

degree.

Mortality 12% at 

one year

Burt et al. 

(2006) 

[75]

Single arm trial. 

Severe fractory 

SLE

50, Mean age 

(SD) 30(10.9) 

years

Peripheral 

blood

Autologous 

stem cell 

treatment 

(ASCT)

IV Cyc, 50 mg/kg daily, before 

transplantation (total dose 

200 mg/kg) and intravenous 

equine ATG, 30 mg/kg daily, 

before transplantation (total 

dose 90 mg/kg).

Primary, survival, 

disease-free. 

Secondary end 

points included 

(SLEDAI), ANA 

and anti– (ds) 

DNA, C3 and 

C4, and changes 

in renal and 

pulmonary organ 

function assessed 

before treatment 

and at 6 months, 

12 months, and 

then yearly for 

5 years.

2/50 patients died 

after mobilization 

48 patients 

underwent HSCT. 

Treatment-related 

mortality was 

2% (1/50). By 

intention to treat, 

treatment-related 

mortality was 

4% (2/50). Renal 

function stabilized 

and improved 

SLEDAI, ANA, 

anti-ds DNA, 

complement, and 

carbon monoxide 

diffusion lung 

capacity adjusted 

for hemoglobin.

5-year survival 

was 84% and 

probability of 

disease-free 

survival at 

5 years following 

HSCT was 50%.
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Reference 

(First 

author, 

date)

Study type/

SLE, organ 

involvement

Number 

of patients 

studied, Age 

range

MSC 

source*

Type and 

amount 

(dose)

Prior treatment Outcome criteria Improvement 

(%) in 6 months

Improvement 

(%) in 12 m 

and above

Sun et al. 

(2010) 

[77]

Single arm SLE 

nephritis

16 UC MSC Allogeneic Cyclophosphamide iv for 

2–4 days

Percent Tregs 

improved in 

3 months

Decreased 

SLEDAI and 

proteinuria in 

all patients in 

28 months

Liang  

et al. 

(2010) 

[78]

Single arm SLE 

nephritis

15 Percentage of Treg 

cells increased 

at 1 week and 3 

and 6 months 

(P < 0.05)

Decreased 

SLEDAI and 

proteinuria in all 

patients

Carrion 

F et al. 

(2010) 

[79]

SLE 2 (19 yr., 

25 yr)

BM-derived 

MSCs,

Autologous, 

1 × 106/kg

Disease activity 

indexes and 

immunological 

parameters 

were assessed at 

baseline, 1, 2, 7 

and 14 weeks

Shi D  

et al. 

(2012) 

[80]

SLE associated 

diffuse alveolar 

hemorrhage.

4 

(32 ± 15 years)

UC-MSCT Allogenic 1 × 106/kg hemoglobin, 

platelet level, 

oxygen saturation, 

and serological 

factors. High-

resolution CT 

(HRCT) scans 

of the chest 

were performed 

to evaluate 

pulmonary 

manifestation

Clinical changes 

before and after 

transplantation
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Reference 

(First 

author, 

date)

Study type/

SLE, organ 

involvement

Number 

of patients 

studied, Age 

range

MSC 

source*

Type and 

amount 

(dose)

Prior treatment Outcome criteria Improvement 

(%) in 6 months

Improvement 

(%) in 12 m 

and above

Wang et 

al. (2012) 

[81]

Unblinded, 

randomized, 

2-arm/12 months

58 BM/UC 

MSC single 

vs. 2× every 

7 days

CYC 10 mg/kg per day, day 4, 

3, and 2

Complete 

remission 1× 

53% 2× 29%

X Li et al. 

(2013) 

[82]

SLE refractory 

cytopenia

35(16–

62 years)

BM/UC 

MSC.

Allogenic 

1 × 106/kg

1 = Pretreatment group: 

(15/35) Cyc 0.4–1.8 gm IV 

for 2–4 days 2 = No Cyc 

Pretreatment (20/35)

CBC’s Hb and 

Platelet, Th17, 

Treg, SLEDAI

57% patients with 

leukopenia and 

68% patients with 

thrombocytopenia 

showed 

hematological 

improvement.

75% of SLE 

remained stable 

after 12 months

Wang  

et al. 

(2013) 

[83]

Severe and 

refractory SLE

87(12–

56 years)

BM/

UC-MSC

Allogenic 

1 × 106/kg

Pretreatment 59% Cyc 10 mg/

kg/day IV on day −4, −3, −2. 

36% No treatment

Primary: Survival, 

disease remission 

and relapse, 

transplantation-

related adverse 

events. Secondary: 

SLEDAI and 

serology

Complete clinical 

remission 28% 

at 1 year Relapse 

rates 12% at 1 year.

Complete 

clinical 

remission rate 

was 31% at 

2 years (12/39), 

42% at 3 years 

(5/12), and 50% 

at 4 years (3/6). 

4-year follow-up 

overall rate of 

survival was 

94% (82/87).

One-time 

treatment
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Reference 

(First 

author, 

date)

Study type/

SLE, organ 

involvement

Number 

of patients 

studied, Age 

range

MSC 

source*

Type and 

amount 

(dose)

Prior treatment Outcome criteria Improvement 

(%) in 6 months

Improvement 

(%) in 12 m 

and above

Fei Gu  

et al. 

(2014) 

[72]

Open Label and 

single center 

Active and 

refractory Lupus 

Nephritis

81(12–

55 years)

BM or 

UC-derived 

MSC

Allogenic 

1 × 106/kg

No IV Cyc pretreatment. 

vs. Pretransplant 

medication: Pred/

Cyclophosphamide(monthly)/

MMF

Primary outcome: 

Renal remission 

(complete/

partial) as well 

as renal flares. 

The secondary 

outcome included 

renal activity score

The mean 

leukocyte counts 

still stayed normal 

for 5 patients 

completing 

24-month 

follow-up

For 24 SLE 

patients with 

anemia, 

normalized 

remained stable 

at 12- and 

24-month visits

Wang  

et al. 

(2014) 

[71]

Severe and 

refractory SLE

40, 

(17–54 years)

UC-MSC Allogenic No IV Cyc pretreatment. 26/40 

pts. received Cyc as a basal 

treatment.

Safety, Major 

clinical response 

(MCR), Partial 

clinical response 

(PCR) and 

relapse. SLEDAI, 

BILAG and renal 

functional indices

Disease relapse at 

9 months 12.5%, at 

12 months 16.7% 

of follow-up.

Survival rate 

was 92.5% in 

12 months.

1 × 106/kg 

at 0 and 

7 days

32.5% achieved 

MCR and 27.5% 

achieved PCR, 

during 12 months.
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Reference 

(First 

author, 

date)

Study type/

SLE, organ 

involvement

Number 

of patients 

studied, Age 

range

MSC 

source*

Type and 

amount 

(dose)

Prior treatment Outcome criteria Improvement 

(%) in 6 months

Improvement 

(%) in 12 m 

and above

Deng et 

al. (2017) 

[84]

Randomized, 

double blind, 

placebo 

controlled SLE 

nephritis

18 patients 

Randomized. 

12 patients 

h UC-MSC 

group and 

6 patients 

placebo group. 

Mean age in 

both groups 

29 years.

UC-MSC Allogenic 11/18 pts. received 

methylprednisolone and 

CYP induction therapy, and 

the 12th to 18th patients 

enrolled received IV. 

methylprednisolone only and 

intravenous CYP

24 h urine protein, 

serum albumin, 

serum creatinine, 

SLEDAI and 

BILAG scores, C3, 

C4, anti-dsDNA 

and ANA

Remission 

occurred in 75% 

in the hUC-MSC 

group and 83% in 

the placebo group.

Stopped in less 

than 12 months 

due to lack of 

efficacy

20 × 106/

patient one 

time

Chen C et 

al. (2017) 

[85]

Active SLE 

refractory to 

conventional 

treatment

10 UC-MSCT 1 × 106/kg Soluble human 

leukocyte antigen 

G was measured 

24 h and 1 mo after 

infusion

Negative 

correlation 

between s HLA-G 

levels and SLEDAI 

score.

Wang et 

al. (2018) 

[86]

Open-label phase 

II Severe and 

drug refractory 

SLE

81(12–

62 years)

BM or 

UC-MSC

Allogeneic 

1 × 106/kg 

(Multiple 

infusions of 

MSCs were 

permitted)

39/81 received IV Cyc (10 mg/

kg/day) in days −4, −3, −2; 

42/81- no IV Cyc.

5-year overall 

survival. Complete 

and partial clinical 

remission.

5-year overall 

survival rate was 

84%.

Patients receiving repeat 

MSCT, no IV Cyc used.
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Reference 

(First 

author, 

date)

Study type/

SLE, organ 

involvement

Number 

of patients 

studied, Age 

range

MSC 

source*

Type and 

amount 

(dose)

Prior treatment Outcome criteria Improvement 

(%) in 6 months

Improvement 

(%) in 12 m 

and above

J Barbado 

et al. 

(2018) 

[87]

Active SLE with 

proteinuria 

(1,000 mg in 

24 h) and class 

IV proliferative 

nephritis

3(40–45 years) BM-MSC Allogenic 

1.5 × 106/kg

Patients were pretreated with 

variety of chemotherapy 

before enrollment to the study

The 24-h 

proteinuria 

level, glomerular 

hematuria, 

leukocyturia, 

serum creatinine, 

and the glomerular 

filtration rate was 

measured just 

before treatment 

(0), and at 1, 3, 6, 

and 9 months after 

treatment.

100% of patients 

showed decreased 

level of proteinuria 

SLEDAI scores 

revealed early, 

durable, and 

substantial 

remissions

Follow up 

stopped after 

9 months

Yuan X et 

al. (2019) 

[88]

SLE refractory 

to conventional 

therapies

21 UC-MSCT Allogenic 

1 × 106/kg

To study the 

mechanisms of 

immunoregulatory 

mechanism in SLE 

patients.

Number of 

peripheral 

tolerogenic 

CD1c+ dendritic 

cells and levels 

of serum FLT3L 

are significantly 

decreased in SLE 

patients esp. with 

lupus nephritis 

compared with 

healthy controls. 

Following 

transplant, 

significant 

upregulation of 

peripheral blood 

CD1c+ dendritic 

cells and serum 

FLT3L was seen.



13 C
lin

ica
l U

se of M
esen

chym
a

l Stem
 C

ells in
 T

rea
tm

en
t of System

ic L
u

p
u

s E
ryth

em
a

tosu
s

D
O

I: h
ttp

://d
x.d

oi.org/10.5772/in
tech

op
en

.97261

Reference 

(First 

author, 

date)

Study type/

SLE, organ 

involvement

Number 

of patients 

studied, Age 

range

MSC 

source*

Type and 

amount 

(dose)

Prior treatment Outcome criteria Improvement 

(%) in 6 months

Improvement 

(%) in 12 m 

and above

Wen L et 

al. (2019) 

[88]

Retrospective 

cohort study SLE 

pts. with active 

disease (SLEDAI 

score > =8

69 BM-/

UC-MSCs

Allogenic 

1 × 106/kg

SLE symptoms 

and SLEDAI scores 

were assessed 

at baseline and 

during follow up 

to determine low 

disease activity 

and clinical 

remission at 1, 3, 6 

and 12 months. To 

identify predictors 

of clinical response 

to allogenic BM or 

UC MSC treatment

Severe SLE 

pts. undergo 

sustained clinical 

remission with 

reduced disease 

maintained over 

a 1 year follow 

up. Older age, 

no arthralgia/

arthritis at 

baseline, and 

no prior CYC or 

HCQ treatment 

had better first 

year outcomes 

after allogenic 

BM-UC-MSC 

transplantation.

*UC, umbilical cord; bone marrow (BM) or adipogenic (AD) tissue derived MSCs; CYC, cyclophosphamide; HCQ , Hydroxychloroquine.

Table 1. 
Human clinical trials that used mesenchymal stem cells (MSCs) for treatment of systemic lupus erythematosus.
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approach to MSC treatment took hematopoietic stem cell replacement therapies 
(HSCT) as examples, and protocols that mimicked HSCT were investigated. One 
similarity was to use autologous cells rather than allogeneic stem cells and the other 
similarity was to use myeloablation therapies with chemotherapy agents before the 
MSC treatment.

While autologous MSC treatment trials showed efficacy in increasing the 
amount of immune regulatory cells that play an important role in SLE, the clinical 
disease activity scores were not changed [79]. Same center that published the failure 
in 2 patients treated with autologous MSCs also performed a study using allogeneic 
MSCs in 15 patients and showed efficacy [78]. Because sources of allogeneic MSCs 
are more available and carry less concern of being defective due to disease state or 
genetic background [90], the following SLE clinical trials used mostly allogeneic 
MSC sources from variable tissues.

Initial reports of allogeneic MSC trials came from a group of investigators from 
China. Sun et al. reported a study performed between April 2007 to July 2009 on 
16 patients with active SLE nephritis who were enrolled and underwent allogeneic 
umbilical cord (UC) driven MSC treatment. Study showed efficacy of allogeneic UC 
MSCs in SLE and suggested that clinical remission was correlating to the increase 
in peripheral Treg cells and an improved balance between Th1- and Th2- cytokines 
[77]. Cellular significance was correlating with the decreased amount of proteinuria 
and decreased SLEDAI (Systemic Lupus Erythematosus Disease Activity Index)
scores. Patients in this trial received IV cyclophosphamide treatment for 2–4 days 
prior to UC MSC treatment.

Same group continued to treat resistant SLE patients and enrolled eighty-seven 
patients with persistently active SLE who were refractory to standard treatment 
or had severe organ involvement. While some patients received allogeneic bone 
marrow some received umbilical cord derived MSCs intravenously (1 × 106 cells/
kg of body weight). Three of them were given a second UC-MSC treatment (8, 3, 
4 months after the first BM MSC treatment and one was given UC-MSCT additional 
three times (11, 19, 20 months after the first BM MSC treatment). During the 
4-year follow-up the overall rate of survival was 94% (82/87). Complete clini-
cal remission rate was 28% at 1 year (23/83). The overall rate of relapse was 23% 
(20/87). Only five patients (6%) died after MSC treatment from non-treatment-
related events in the 4-year follow-up. Allogeneic MSC were suggested to result in 
the induction of clinical remission and improvement in organ dysfunction in drug 
resistant severe SLE patients [83].

Debate of allogeneic versus autologous stem cell treatment continued while 
initial phase I and II trials were ongoing with MSCs. Sui et al. [91] compared the 
research of autologous or allogeneic HSC/MSC in SLE. They analyzed the data of 
Wang et al. [83] i.e. allogeneic group and that of Jayne et al. [74] and Burt et al. [75], 
i.e. autologous group. In conclusion, they found that the rate of complete clinical 
remission was similar in these clinical trials (approximately 50%). However, there 
was higher overall survival rate, lower overall rate of relapse and no transplanta-
tion-related mortality in the allogeneic group. Because these 3 studies were not 
randomized, and it was not possible to compare them with each other exactly due to 
the heterogeneous disease manifestation at baseline. Authors suggested the impor-
tance of randomized clinical trials consisting of a large sample and long term follow 
up of these patients to further investigate the efficacy and safety of autologous/
allogeneic stem cell transplantation [91].

X Li et al. [82, 92] further assessed the roles of allogeneic (BM and UC) MSC 
treatment with in SLE patients with refractory cytopenia. Thirty-five SLE patients 
with refractory cytopenia were enrolled and hematological changes of pre- and 
post-transplantation were evaluated. Significant improvements in blood cell count 
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were found after MSC treatment for most patients, in parallel with the decline of 
disease activity. Clinical remission was again correlating with increased Treg cells 
and decreased Th17 cells. Results suggested that MSCs are successful in correcting 
refractory cytopenia in SLE patients which might be associated with reconstitution 
of Treg and Th17.

Use of chemotherapy together or before MSC treatment for induction was also 
assessed by variety of small clinical trials. Wang et al. [71] found no differences 
between the patient groups that received pretreatment with cyclophosphamide and 
untreated with cyclophosphamide. There was no difference in the rate of clinical 
remission after MSC treatments [71]. In addition there were significant number of 
patients that developed relapse in 6 months and additional MSC treatments were 
given to those patients with relapse.

Fei Gu et al. [72] assessed the role of allogeneic MSC treatment to induce 
renal remission in patients with active and refractory lupus nephritis (LN). They 
conducted an open-label and single-center clinical trial conducted from 2007 to 
2010 in which 81 Chinese patients with active and refractory LN were enrolled. 
Allogeneic bone marrow- or umbilical cord-derived mesenchymal stem cells 
(MSCs) were administered intravenously at the dose of 1 million cells per kilogram 
of bodyweight. During the 12-month follow-up, the overall rate of survival was 
95% (77/81). Totally, 60.5% (49/81) patients achieved renal remission during 
12-month visit by MSCT. Eleven of 49 (22.4%) patients experienced renal flare by 
the end of 12 months after a previous remission. Renal activity evaluated by BILAG 
(British Isles Lupus Assessment Group) scores significantly declined after MSC 
treatment, in parallel with the obvious amelioration of renal function. Glomerular 
filtration rate (GFR) improved significantly 12 months after. Total disease activ-
ity evaluated by SLEDAI scores also decreased after treatment. Additionally, the 
doses of concomitant prednisone and immunosuppressive drugs were tapered. No 
transplantation-related adverse event was observed. They concluded that allogeneic 
MSC treatment resulted in renal remission for active LN patients within 12-month 
visit, confirming its use as a potential therapy for refractory LN.

Woodworth et al. [93] examined whether collective data from Wang et al. [71] 
provided sufficient evidence for the feasibility, safety, dose rationale, and potential 
efficacy of UC-MSCs to conduct a randomized controlled trial in treatment-refrac-
tory SLE nephritis. They observed that results, though confounded by variable 
baseline prednisone and immuno-suppressive treatment, appear to indicate near 
term response rates of approximately 50%, which are comparable to those seen with 
hematopoietic stem cell transplantation but with less morbidity and mortality. They 
also noticed that apparently, conditioning pre-MSC dosing is not required, although 
this aspect of the treatment had not been studied in a controlled manner [93].

Another group performed an interesting combination therapy with HSCs and 
MSCs for life threatening organ involvement involving SLE patient refractory to 
cyclophosphamide. After being pretreated with CYC, Fudarabine and antithy-
mocyte globulin, the patient was transplanted with autologous CD34+ HSCs and 
MSCs by intravenous infusion. Hematopoietic regeneration was observed on day 
12 thereafter. After HSC and MSC transplantation, the patient’s clinical symptoms 
caused by SLE were remitted, and the SLEDAI score decreased. One more time 
CD4 + CD25 + FoxP3+ Treg cells were found to be increased in peripheral blood 
mononuclear cells (PBMCs) after transplantation. This study was important to 
show that combined transplantation of HSCs and MSCs may reset the adaptive 
immune system to re-establish self-tolerance in SLE. A 36-month follow-up showed 
that the clinical symptoms remained in remission for the index patient [94].

A randomized double blind placebo control trial was reported by Deng et al. 
[84] that assessed the efficacy of human umbilical cord-derived mesenchymal 
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stem cell (hUC-MSC) for the treatment of lupus nephritis (LN) among 18 patients 
with WHO class III or IV LN. Patients were randomly assigned to hUC-MSC (dose 
2 × 108 cells) or placebo. All patients received standard immunosuppressive treat-
ment, which consisted of intravenous methylprednisolone and cyclophosphamide, 
followed by maintenance oral prednisolone and mycophenolate mofetil. Initial 11 
patients enrolled to the study received hUC-MSC concurrently with the intravenous 
methylprednisolone and CYP induction therapy, and for the 12th to 18th patients 
enrolled, the hUC-MSC were administered together with the intravenous meth-
ylprednisolone only and intravenous CYP was delayed to 4 weeks later. In result, 
similar proportion of patients on hUC-MSC and placebo achieved complete remis-
sion. Improvements in serum albumin, complement, renal function, SLEDAI and 
BILAG scores were similar in both groups. The trial was abandoned after 18 patients 
were enrolled when it had become obvious it would not demonstrate a positive 
treatment effect. They concluded that hUC-MSC has no apparent additional effect 
over and above standard immunosuppression [84].

A pilot study investigated the effect of MSCs on soluble human leukocyte 
antigen G (s HLA-G) levels 24 hours and 30 days after MSC injection (UC) and 
reported a negative correlation between the HLA-G levels and clinical SLE activity 
scores [85]. The levels of s HLA-G were lower in patients with renal involvement 
than without it.

An open label phase II trial the following year reported safety and long-term 
efficacy of UC MSCs in severe SLE. Wang et al. [86] reported a long-term follow-
up study of allogeneic bone marrow and/or umbilical cord MSC transplantation 
(MSCT) in severe and drug-refractory systemic lupus erythematosus (SLE) 
patients. Eighty-one patients were enrolled, and the 5-year overall survival rate 
was 84% (68/81) after MSCT. At 5-year follow-up, 27% of patients (22/81) were in 
complete clinical remission and another 7% (6/81) were in partial clinical remis-
sion, with a 5-year disease remission rate of 34% (28/81). In total, 37 patients had 
achieved clinical remission and then 9 patients subsequently relapsed, with 5-year 
overall rate of relapse of 24% (9/37). SLEDAI scores, serum albumin, complement 
C3, peripheral white blood cell, and platelet numbers, as well as proteinuria levels, 
continued to improve during the follow-up. Their results demonstrated that allo-
geneic MSC treatment is safe and resulted in long-term clinical remission in SLE 
patients.

Barbado et al. [87] infused three SLE patients with MSCs who were diagnosed 
with class IV nephritis by kidney biopsies. MSCs were allogeneic MSCs from healthy 
donors. Total of ninety million cells were infused intravenously into each patient 
during high and very high activity disease. Patient 1 was treated with cyclophos-
phamide, azathioprine, methotrexate, mycophenolate and cyclosporine, patient 2 
was treated with cyclophosphamide, mycophenolate, rituximab and patient 3 was 
treated with cyclophosphamide and mycophenolate before MSC treatment. Then, 
follow-up was performed after 9 months. Proteinuria levels improved significantly 
during the 1st month and then continued to be sustained in normal levels. Clinical 
outcome scores such as SLEDAI was perfect for 2 patients while the third SLE 
patient only had a partial response and the patient could reduce the dose of her 
current therapies down to 50–60%. Follow up stopped after 9 months SLEDAI 
scores revealed early, durable, and substantial remissions that were complete for 
two patients and partial for the third patient and that permitted medication doses to 
be reduced 50–90%.

In 2019 using slightly older patient population with severe SLE (SLEDAI 
score > =8), Wen et al. [88] also reported efficacy of allogeneic bone marrow and 
umbilical cord MSC treatment over one year of follow up in those patients that did 
not have any baseline arthritis or use of cyclophosphamide of hydroxychloroquine 
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in 2019. Same year Yuan et al. [95] attempted to explore the immunoregulatory 
mechanism of MSC treatments in SLE patients. They showed that number of 
peripheral tolerogenic CD1c+ dendritic cells and levels of serum FLT3L are signifi-
cantly decreased in severely affected SLE patients especially with lupus nephritis. 
UC-MSC treatment however tapered the FLT3L and inhibited the apoptosis of 
tolerogenic CD1c + DCs. It is suggested that MSCs carry FLT3L that binds the 
FLT3 on CD1c + DCs and enhance their ability to proliferate and stops them from 
being apoptotic [95]. CD1c + DCs in human peripheral blood and in lymphoid and 
non-lymphoid tissues. CD1c + DCs have been previously reported to play important 
immune regulatory work such as secreting cytokines when exposed to (poly I:C), 
LPS or others and regulate the activity of many immune cells such as T regulatory 
cells and interferon secreting cells [96, 97]. Interferon gamma-FLT3L-FLT3 axis is 
one of many mechanisms that MSCs are regulating and its implications in treatment 
of SLE has been recently recognized. Tregs were shown to respond well to allogeneic 
MSC treatment in several studies. Furthermore, Chen et al. previously have shown 
that serum HLA-G levels correlated with the levels of Tregs after treatment with 
allogeneic umbilical cell derived MSCs [85].

Latest report when this chapter was being prepared was by Zhou et al. Zhou  
et al. [81] did a meta-analysis aiming at assessing whether MSCs can become a new 
treatment for SLE with good efficacy and safety. Ten studies fulfilled the inclusion 
criteria and were eligible for this meta-analysis, which comprised 8 prospective 
or retrospective case series and four randomized controlled trails (RCTs) studies. 
In the RCT, the results indicated that the MSC group had lower proteinuria than 
the control group at 3 months and 6 months and the MSC group displayed a lower 
SLEDAI than the control group at 2 months and 6 months. Furthermore, the MSC 
group showed a lower rate of adverse events than the control group (OR = 0:26, 95% 
CI: 0.07, 0.89, P = 0:03). In the case series trials, the results indicated that the MSC 
group had lower proteinuria at 1 month, 2 months, 3 months, 4 months, 6 months, 
and 12 months. They concluded that MSCs might be a promising therapeutic agent 
for patients with SLE. However, they suggested that more studies with longer-term 
end points and larger sample sizes should be designed and conducted to identify 
additional and robust patient-centered outcomes in the future [81].

6. Summary/conclusions

The clinical outcome parameters and the kind and amount of MSCs used in the 
clinical trials we reviewed in this chapter are variable. Most important difference of 
MSCs used in the clinical trials is whether they are autologous, extracted from the 
patient’s own tissue or allogeneic extracted from health donors. When we reviewed the 
clinical trials using autologous MSCs trials treating SLE we observed that autologous 
MSCs did not show much efficacy while allogeneic MSCs regardless of their origins 
seem to be showing consistently better efficacy in most trials (Table 1). The reason 
for lack of efficacy in autologous use of MSCs is most probably due to their intrinsic 
abnormalities, and their inability to function at their best capacity. Autologous MSCs 
may not be functioning due their previous exposure the inflammatory micro environ-
ment in SLE or due to their genetic predisposition [79].

Allogeneic mesenchymal stem cell treatment has been shown to be efficacious in 
the treatment of various systemic lupus erythematosus activity, mainly in refrac-
tory lupus nephritis. Allogeneic MSCs, at 1 x 106/kg seems to be efficacious but the 
results are not as homogeneous as expected from clinical trials and FDA approval 
for MSCs use in rheumatologic diseases have been challenging. Heterogeneous 
results could be due to the heterogenous disease manifestations among patients 



Lupus - Need to Know

18

Author details

Hulya Bukulmez* and Gurinder Kumar
Department of Pediatrics, Division of Pediatric Rheumatology, MetroHealth 
Medical Center, Case Western Reserve University, Cleveland, Ohio, USA

*Address all correspondence to: hxb38@case.edu

enrolled to the clinical trials. In addition, although there are plenty of MSC trial 
reports that shows evidence for MSCs efficacy in SLE, randomized prospective 
controlled trials using MSCs are still missing.

In addition, the tissue source of donor MSCs shows remarkable variability, while 
some investigators believe in the superior anti-inflammatory effects of audiogenic 
MSCs other disagree and suggest umbilical cord MSCs immune modulatory effica-
cies. Since future MSC clinical trials and MSC therapies will be dependent on the 
availability of the donor tissue, technologic advancement to optimize the MSCs 
that can be easily obtained such as adipogenic tissue or peripheral blood must be 
prioritized.

Most MSC products used in clinical trials still lack a clear product definition, 
how they are selected, and application protocols. It is possible that the dose, route 
and frequency of the cell product protocol used in a clinical trial may not be uni-
versally applicable. Furthermore, due to the ever-thriving knowledge about MSCs 
functions we are yet to establish clear outcome criteria for testing MSC efficacy 
and safety.

Most MSC clinical trials have the inclusion criteria to enroll patients with severe 
disease activity and criteria of failure of currently available treatments. Therefore, 
there might be already irreversible and secondary tissue damage and MSCs may not 
be able to reverse this outcome when used in the late phase of the organ damage. If 
MSCs can be given in an earlier stage of disease their efficacy might be a lot better.

In summary, as you would see from the list of clinical trials and their outcomes 
(Table 1) discussed in this chapter the investigators that take roles in MSC clinical 
trials are not only struggling with the source of MSCs and optimization of efficacy 
they are also facing very complex regulatory issues. The variable sources of stem 
cells, cumbersome manufacturing processes are further complicating design of 
clinical trials. Further studies assessing the efficacy of MSC treatments needs to be 
performed.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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