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Abstract

Aflatoxin is a major mycotoxin naturally produced in plants. Various postharvest 
treatments such as drying, storage materials and storage conditions have shown to 
influence the accumulation of this toxin in food crops. Beside indigenous processing 
methods including fermentation, roasting, and cooking have contributed to the 
reduction in aflatoxin expression. Although these methods are not used in exclu-
sion, each stage has an inherent impact on the levels of aflatoxin in the final prod-
ucts. This chapter reviewed studies on the use of indigenous processing methods in 
African against aflatoxin occurrences in traditional foods and beverages.

Keywords: aflatoxin, Aspergillus species, postharvest, indigenous processing 
methods, Africa

1. Introduction

Aspergillus species and its derivative mycotoxins are involved in numerous 
postharvest losses and health threaten conditions in plants and human. Among 
Aspergillus toxins, aflatoxin is known to carry the most potent carcinogenic activity 
as a natural product. The isomers aflatoxin B1 (AFB1), aflatoxin B2 (AFB2), aflatoxin 
G1 (AFG1) and aflatoxin G2 (AFG2) are curial for their varied biological activities 
[1–3], whereas the transcriptional regulators climate, soil properties, genotype of 
crops, and daily net evaporation exert their occurrences in food crops [3, 4]. Globally, 
their negative impact on health, social life and economy are more pronounced in 
developing countries. Consequently, it has been estimated that more than 5 billion 
people in developing countries are exposed to aflatoxin-associated diseases [5, 6].

Because aflatoxins are xenobiotic to animals and humans, they must consume 
diet with contaminated aflatoxins. Cereals, spices, oilseeds, tree nuts, and dried 
fruits exhibits greater susceptibility to aflatoxin contamination with maize and 
groundnuts being the widely consumed staple foods throughout Africa [7, 8]. 
Contaminations are influenced by many factors and can occur at any stage of food 
production (preharvest, harvest, and postharvest storage).

To protect consumers from the harmful effects of aflatoxins, a number of 
nations and International recognized organizations have established regulations for 
aflatoxins in food and animal feed. In United States and European Union, the Food 
and Drug Administration has established maximum limits of 20 μg/kg and 4 μg/kg 
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respectively. At the moment few regulations on aflatoxin exit in Africa, as a result 
majority of these countries live on the Joint FAO/WHO Expert Committee on Food 
Additive (JECFA) recommendation of 2 μg/kg body-weight per day [9, 10].

Processing methods and conditions, which are heavily influenced by multi-
tudinous intrinsic and extrinsic factors are supposed to be involved in degrading 
and reducing aflatoxins levels in foods and beverage to safe and standards levels. 
Therefore, this review focuses on advances in the elucidation of activities of afla-
toxin by indigenous processing methods. Furthermore, it summarizes the impact of 
variations in indigenous processing conditions in aflatoxins degradation [10, 11].

2.  Postharvest factors affecting Aspergillus and aflatoxin production in 
grain

2.1 Water activity and temperature

Fungal growth and their corresponding mycotoxin production are controlled 
by several factors including temperature, water availability, pH, light and nature of 
substrate, which vary among species to species and isolated strains. Although it has 
become difficult to describe a set of optimum conditions for growth and produc-
tion of mycotoxins, it has generally been agreed that adequate amount of moisture 
and temperature are crucial for aflatoxin biosynthesis in cereal and legumes during 
storage [12].

Reports on minimum and optimum water activity levels required for aflatoxin 
production differs among authors, but are within the range of 0.78 to 0.84 for 
Aspergillus flavus; and 0.81 to 0.82 for Aspergillus parasiticus, with 0.95 to 0.99 
optimum for both strains [10–15]. Regarding to temperature, data suggest aflatoxin 
production occur at a range of 28 °C to 35 °C [15].

2.2 Storage methods on aflatoxin occurrence

It is well documented that storage systems and the length of storage increase fungal 
infestation of grains and their subsequent production of mycotoxins [14, 15]. Despite 
the suggestion that there is a limited increase in aflatoxin contamination of grain from 
field to storage [16], it has been argued that more than 6 months storage length assures 
efficient growth of Aspergillus species and significant production of Aflatoxin in maize 
under Africa’s storage methods through increase moisture level [17, 18].

Although it is arguable that the increased aflatoxin occurrence in stored grains 
is simply due to the increased favorable environmental conditions for Aspergillus 
activities, it has clearly been shown that storage structure and material types affects 
Aspergillus species activities and aflatoxin occurrence (Figure 1). Conventional to 
most traders and rural households in Africa, grains are stored in jute sack or plastic 
sack. Aspergillus flavus prevalence was 51% and 56% higher in maize stored in plas-
tic sack (18%) or hanging shed (13%) compared to those stored in jute sacks [19]. 
Consequently in Ghana, aflatoxin occurrence in maize grains stored in jute sack 
was higher (about 55%) compared to grains stored in polyethylene sack [20]. This 
was also indicated for groundnut stored in jute sacks for 2 months that demonstrate 
a higher aflatoxin occurrences (148.21 ppb) than their counterpart stored in inter-
laced polyethylene jute sack [21]. Another study conducted in Tanzania to deter-
mine the occurrence of Aspergillus species and aflatoxin in maize stored in room 
(n = 32) and sacks (n = 8) showed that aflatoxin concentration was high in maize 
stored in room (334.33 μg/kg) than their counterpart stored in sacks (305.76 μg/kg) 
though the difference was not significant [22].
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Another study conducted by Ng’ang’a et al. [17] to determine the impact of 
three storage materials on aflatoxin levels under three moisture levels (moisture 
level < 13%, n = 7; moisture level between 13% and 14%, n = 13; and moisture 
level > 14%, n = 7) showed that jute sacks and polyethene promoted aflatoxin 
production in grains stored for 35 weeks under all the moisture levels (Figure 1). 
Similarly, total mold counts in the maize grain was higher in maize grain stored in 
jute sack and polypropylene sacks [17].

In contrast, a study conducted by Worku et al. [23] did not find significant 
increased aflatoxin in maize (n = 149) stored in mud mix with teff straw, (13.1 ± 2.3–
14.7 ± 2.8 ng/g; n = 33), polypropylene bag (13.7 ± 3.4 ng/g; n = 116). Similar to this 
distribution of aflatoxin in storage structure, it was shown that highest aflatoxin 
levels were found in maize stored in polypropylene and nylon sacks compared to 
those stored in granaries [24].

3. Effect of processing methods on aflatoxin reduction in food

A variety of indigenous processing methods have shown to influence afla-
toxin content in food and feed. These methods could be physical (cleaning and 

Figure 1. 
Total aflatoxin concentration (μg/kg) of maize grain stored in triple layer hermetic bags (PICS), 
polypropylene (PP) and jute sack for 35 weeks. A = moisture level < 13%, n = 7; B = moisture level between 13% 
and 14%, n = 13; C = moisture level > 14%, n = 7. Source: Ng’ang’a et al. [17].
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segregation; roasting; boiling; and milling), chemical or biological (fermentation). 
Although these methods are not used in exclusion, each stage have an inherent 
impact on the levels of aflatoxin in the final products [25–28].

3.1 Postharvest drying methods on aflatoxin occurrences

Drying methods affects aflatoxin status in grain and is possibly the most 
important factor that determine subsequent fungal contamination and production 
of aflatoxin in grain under storage [21, 29]. Regardless of the moisture levels of 
harvested grains and source of drying energy, the level and rate of production of 
mycotoxin would partly be influence by drying methods. Indigenous dry methods 
used in Africa are broadly categories into three main groups; in-field drying, 
on-platform drying and on-ground drying. In sub-Saharan Africa especial in West 
Africa, the tradition on-field drying methods where maize cobs and other cereal 
grains are allowed to dry on the maize plants before harvest has resulted in signifi-
cant increased fungal infestation, insect damage and aflatoxin concentration [30].

Despite the suggestion that groundnuts dried on clean tarpaulin could reduce 
aflatoxin concentration compared to the traditional on-ground drying [21], it was 
recently shown that tarpaulin increased aflatoxin levels of three different varieties 
of groundnut during dried at two different locations in Ghana [31].

3.2 Physical separation

Physical separation (cleaning, and sorting) affects aflatoxin status in processed 
or raw kernels. Hand picking coupled with floating and density techniques are 
the most widely home-based indigenous separation methods employed in Africa 
to remove unwanted and mycotoxin contaminated kernels, while willowing is 
involved in removing dust and fine particles. The efficacy of these methods varies, 
depending on the level of contamination of raw materials, maturity of grains and 
on the percentage of removed grains [26–30, 32, 33]. Physical cleaning and separa-
tion procedures, where mycotoxin contaminated kernels are removed from good 
kernel, can result in 40–80% reduction in aflatoxin levels [26]. Immature shrivelled 
kernels and dehulled shrivelled immature kernels if not removed can increase total 
aflatoxin, AFG1, AFB2 and AFB1 levels in processed peanuts kernels by up to 67%, 
92%, 94% and 57% respectively [33]. Similarly, Phillips et al. [31] after separating 
denser peanuts from less dense ones using tap water mentioned that less dense 
peanuts contain higher aflatoxin contents (21 out of 29 samples) and may increase 
total aflatoxin levels of processed kernels by 95% (mean aflatoxin concentration 
decreased from 301 to 20 μg/kg).

Though time consuming, the study of Matumba et al. [34] indicated that hand 
sorting of maize kernel had greater positive impact on the removal of aflatoxin 
(97.9%) than separation using the floatation technique (63.4%). Galvea et al. [35] 
also revealed that blanching of peanuts at 140 °C for 25 minutes facilitated the 
manual sorting process of aflatoxin-contaminated kernels (86%; discolored and 
broken kernels) after dehulling. Also it was reported that manual sorting of raw 
peanuts with baseline aflatoxin content of 300 μg/kg resulting in peanut kernels 
with no detectable concentration (< 15 μg/kg) [35].

3.3 Roasting

Roasting, mainly as dry or oil, are the main types employ in Africa by rural 
households and communities. Studies have established that initial aflatoxin con-
centration has a correlational link to aflatoxin reduction during roasting [36]. The 
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results of Martins et al. [37] showed that aflatoxin degradation of roasted ground-
nut was 81%, 64% and 55% when the baseline aflatoxin concentration was 695 μg/
kg, 332 μg/kg and 35 μg/kg respectively. Arzandeh and Jinap [38] observed similar 
trend in groundnuts with initial aflatoxin concentration of 237 ng/g (% reduc-
tion = 78.4), 215 ng/g (% reduction = 73.9%), 68 ng/g (% reduction = 57.3%). This 
was also indicated for soybeans that malted and roasted aflatoxin contaminated 
soybeans with initial AFG1 concentrations of 56 μg/g, 45 μg/g and 38 μg/g reduced 
by 73%, 62% and 61% respectively [39].

Information on the effect of indigenous roasting methods on mycotoxin occurrence 
is limited in Africa. However, there are some studies on final food products mainly 
from cereal and legumes processed using indigenous roasting methods. In Sudan, tra-
ditionally prepared peanuts better was reported to have AFB1 concentrations ranging 
from 54.5–101 μg/kg, followed by peanut better from retail stores (14.5 μg/g) and then 
laboratory prepared peanut butter of 3.3 μg/g [40]. Aflatoxins in Nigerian dry-roasted 
peanuts sampled from markets, retail shops and street hawkers at different locations 
exhibited high AFB1 (5–165 μg/g), AFG2 (6–26 μg/g) and AFG1 (2–20 μg/g) [41].

More importantly, Lee et al. [36] pointed out that there is no significant effects 
in degrading aflatoxins in contaminated grains either by dry roasting or oil roasting 
as the two method produced uniform effect. Therefore, irrespective of the domi-
nance of a roasting method in a particular locality, consumption of these contami-
nated food may be minimal.

3.4 Boiling, parboiling and bran removal

Kpodo et al. [42] examined aflatoxin reduction among cooked kenkey made 
from aflatoxin fermented corn dough. Ga kenkey (a sourdough dumpling from Ga 
and Fante-inhabited regions of West Africa) degrade about 80% and AFB2 and 35% 
of AFG2 after 30 minutes of cooking. Mtega et al. [43] reported 68.12%, 51.48% and 
85.21% reduction in cooked porridge from un-dehulled maize flour, dehulled maize 
flour and maize meal (kande) respectively.

Aflatoxin expression in parboiled samples, mostly rice, have been studied under 
different experimental condition with resulting conflicting data. Aflatoxin level 
were reported to be higher in parboiled rice than in raw milled rice, with AFB1 
(185 μg/kg) and AFG1 (963 μg/kg) recording higher occurrence rate. With regard 
to the migration of aflatoxins from the outer layer to the inner layer of rice during 
parboiling, it was demonstrated that AFB1, AFB2, AFG1 and AFG2 may be trans-
ferred from the outer layer into the starchy endosperm of rice [44, 45]. Therefore, 
there is some indication that soaking time and temperature of soaking promote 
movement of mycotoxins from one define region to another. More importantly slow 
heat during parboiling process might enhance the availability of aflatoxins in foods. 
Table 1 present data on the influence of boiling, parboiling and bran removal on 
aflatoxin (μg/kg) occurrence in indigenous African foods.

3.5 Effect of fermentation on aflatoxin occurrence

Majority of Africa fermented foods and beverages are obtained through 
spontaneous fermentation, with varied degree of aflatoxin levels. Assohoun et al. 
[27] screened for AFB1 (initial level; 2.52 μg/kg); AFG1 (initial level; 2.52 μg/kg); 
and AFG2 (initial level; 0.33 μg/kg) in raw maize and after fermenting maize for 
72 hours. The authors reported aflatoxin levels below detectable limited in all the 
three aflatoxin variants after 24, 48 and 72 hours of fermentation. Another study 
conducted by Adelekan and Nnamah [49] to assess the effect of fermentation on 
aflatoxin content of moldy maize showed 65% reduction in total aflatoxin content 
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Aflatoxin Detoxifying 

microorganism

Strain origin Place of 

fermentation

Reduction 

(%)

Ref

AFB1 Indigenous 

microbial 

communities

Ogi Ogi 40–60.8 [52]

Maize meal Maize meal 27.5

Lactobacillus brevis Kutukutu kutukutu 63

Lactobacillus 

bucheneri

Kutukutu Kutukutu 64.2

Lactobacillus 

rhamnosus, 

Saccharomyces 

thermophilus

Commercial 

strain

Kwete 92–100 [52]

Sacharromyces lactis 

and Lactobacillus 

delbrueckii

Commercial 

strain

Maize meal 75 [50]

AFB2 Indigenous microbial 

communities

Ogi Ogi 68–82.8 [50]

Lactobacillus 

rhamnosus, 

Saccharomyces 

thermophilus

Commercial 

strain

Kwete 91.8–100 [52]

AFG1 Lactobacillus brevis Milk — 33–53 [53]

Lactobacillus 

acidophilus

Food Research 

Institute, 

Canada

Milk 33–53

AFG2 Lactobacillus 

acidophilus

Food Research 

Institute, 

Canada

— 46–68 [53]

Lactobacillus casei Lab strain — 46–68

Cooking condition

Treatment Product Time (temp oC) Before After Ref

Un-dehulled maize 

flour

Stiff porridge - (90) 4.36 1.39 [43]

Dehulled maize flour 1.01 0.49

Maize meal 4.26 0.63

Rice cooker Plain rice -(−) 1.49 1.12 [46]

Local method 1 h:10 min 1.49 1.23

Ordinary cooked rice Plain rice 20 min (160 °C) 2.37 1.63 [47]

Pressure cooked rice 2.37 0.31

Parboiled with bran — — 70000 [48]

Polished without bran — — 39000

Raw milled with bran — — 21000

Polished without bran — — Trace

—; not reported.

Table 1. 
Influence of boiling, parboiling and bran removal on aflatoxin (μg/kg) occurrence in indigenous African foods.
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Treatment Product Aflatoxin type and levels (μg/kg) Ref

AFB1 AFB2 AFG1 AFG2 Total

No 

fermentation

Raw maize 

kernel
2.25 ND 2.25 0.33 0.77–4.59

[27]

24 hours 

fermentation
Dough ND ND ND ND 0.5

48 hours 

fermentation
Dough ND ND ND ND ND

72 hours 

fermentation
Dough ND ND ND ND ND

No 

fermentation

Raw maize 

kernels
69.80 4.5 — — — [42]

24 hours 

fermentation

Steeped 

kernel, wet 

milled

117 11.50 — — —

24 hours 

fermentation

Fermented 

Dough (Lab 

fermentation)

206 18.90 — — —

48 hours 

fermentation

Fermented 

Dough (Lab 

fermentation)

270 22.20 — — —

72 hours 

fermentation

Fermented 

Dough (Lab 

fermentation)

290 25.50 — — —

24 hours 

fermentation

Fermented 

dough 

(sample from 

processing 

site)

106.1 6.7 21.7 2.4 135.4

No treatment Raw sorghum — — — — 1.70–3.0 [25]

Malted 

sorghum for 

thobwa

— — — — 6.10–54.6

Thobwa — — — — 2.1–7.1

Aflatoxin Detoxifying 

microorganism

Strain origin Place of 

fermentation

Reduction 

(%)

Ref

Total 

aflatoxin

Indigenous microbial 

communities

Mawe Mawe >92 [54, 55]

Ogi Ogi 80 [51]

Lactobacillus 

acidophilus

Ogi Maize 37.5 [51]

Lactobacillus brevis Ogi Maize 75 [51]

Lactobacillus casei Ogi Maize 62.5 [51]

Lactobacillus 

delbrueckii

Ogi Maize 56.3 [51]

Lactobacillus 

plantarum

Ogi Maize 95 [51]

Ref; Reference.

Table 2. 
Binding capacity of Lactobacillus spp. and yeast to aflatoxins during fermentation.
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after 24 hours of fermentation, subsequent fermentation (48 and 72 hours) yield 
levels below detectable limits. On the other hand, Kpodo et al. [42] reported 40.3% 
and 60.9% increase in AFB1 and AFB2 contents respectively, in maize dough after 
24 hours of fermentation. Subsequent fermentation of this 24-hour fermented 
dough also led to increase AFB1 and AFB2.

In recent times, the use of starter cultures aimed at reducing aflatoxin con-
centrations in indigenous fermented foods and beverage have been investigated. 
Since these cultures could exclusively bind to specific toxins [39, 40], Lactobacillus 
rhamnosus have shown to have as high as 83% binding affinity for AFB1, resulting 
significant reduction of AFB1, AFB2, AFG1 and AFG2 in kwete [50]. Chaves-López 
et al. [51] reviewed several studies that have isolated various microbial popula-
tions from indigenous fermented foods and beverages, majority of which belong 
to Saccharomyces and Lactobacillus species. Table 2 present summary of binding 
capacities of Lactobacillus spp. and yeast commonly isolated from indigenous foods 
to aflatoxins during fermentation.

Aflatoxin detoxification during fermentation is achieved through microbial 
binding and/or biotransformation of aflatoxin into less toxic substances. This bind-
ing capacity of microbial consortium to aflatoxins are influenced by acidic medium 
(optimum pH of 6) and temperature (30 °C) associated with noncovalent binding 
of aflatoxins to cell wall of bacteria and yeast [56]. Aflatoxin degradation and/or 
biotransformation of aflatoxin during fermentation of indigenous food and bever-
ages have been reported and summarized in Table 3.

4. Conclusions

There are many indigenous approaches to reduce aflatoxins occurrence in food, 
feed and beverage. If prevention techniques during postharvest treatments do 

Treatment Product Aflatoxin type and levels (μg/kg) Ref

AFB1 AFB2 AFG1 AFG2 Total

Malted 

sorghum for 

beer

— — — — 4.3–1138.8

Beer — — — — 8.8–34.5

No spike, no 

starter

Kwete 0 0 0 0 0 [50]

No spike, 

starter

Kwete 0 0 0 0 0

Spike, no 

starter

Kwete 2.40 1.10 2.4 1.1 7

Spike, 

starter, no 

fermentation

Kwete 2.40 1.20 2.40 0.90 6.90

Spike, starter, 

12 hours 

fermentation

Kwete 0.20 0.10 0.20 0.10 0.60

Spike, starter, 

24 hours 

fermentation

Kwete 0 0 0 0 0

ND; not detected, --; not analyzed, Ref.; reference.

Table 3. 
Summary of studies on aflatoxin levels as influenced by fermentation.
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