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Chapter

Oxytocin as a Metabolic Modulator
Neeru Bhatt

Abstract

Oxytocin (9-amino acid peptide) hormone is a member of the G-protein 
coupled receptor family. It regulates a range of physiologic actions in mammals 
other than assisting parturition and lactation functions. Evidence indicates that 
oxytocin alters lipids, protein, and sugar metabolism through various ways includ-
ing modulation of appetite and satiety, enzyme activity, cellular signals, secretion 
of metabolic hormones, and energy consumption. Alterations in these processes 
have the potential to shift developmental trajectories and influence disease pro-
cesses. Oxytocin can be a potential avenue for the treatment of endocrine disorders 
such as obesity, diabetes mellitus, and associated disorders. The chapter will 
include a comprehensive study about oxytocin and its physiological and pathologi-
cal functions, which makes it a potential target for drug therapy.
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1. Introduction

Oxytocin, which was long thought to be a hormone exclusively involved in 
social bonding, parturition, and lactation; now is extensively researched for its 
other possible implications. Evidence indicates that oxytocin alters lipid, protein, 
and sugar metabolism through various ways including modulation of appetite and 
satiety, enzyme activity, cellular signals, secretion of metabolic hormones, and 
energy consumption [1, 2].

1.1 Oxytocin synthesis and secretion

Oxytocin (Oxt) a nonapeptide hormone is a member of the G-protein coupled 
receptor family. It regulates a range of physiologic actions in mammals other than 
reproductive deeds [3]. The word oxytocin was taken from the Greek words (ω k ν ξ, 
τ o k ox ξ) meaning “quick birth”. The uterine-contracting property of oxytocin was 
discovered by Dale [4], whereas the milk ejection property of oxytocin was revealed 
in the following years [5, 6].

Oxytocin is composed of nine amino acids (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-
Leu-GlyNH2) with a disulphide bridge between cysteine residues 1 and 6 [7, 8]. 
It is predominantly synthesized in magnocellular neurons of the hypothalamic 
paraventricular (PVN) and supraoptic (SON) nuclei of the brain. It is released into 
the blood circulation through the posterior pituitary gland where it is released to 
regulate parturition and lactation. In addition, oxytocin is produced and released 
outside the nervous system, such as the gastrointestinal tract [9] and bone marrow 
osteoblasts [10, 11] liver, placenta, amnion, heart [12], and subcutaneous adipose 
tissue. In adipose tissue, oxytocin has autocrine and paracrine effects via oxytocin 
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receptors [9, 10, 13]. A variety of stimuli such as parturition, suckling, and certain 
stresses are responsible for the release of oxytocin in the circulation.

Endogenous oxytocin does not readily cross the blood–brain barrier, but circu-
lating oxytocin may directly enter the hindbrain or act on the vagus nerve [14–17]. 
Oxytocin can enter into the cerebrospinal fluid (CSF), as proved in an animal study 
[18]. A significant amount of oxytocin was found in cerebrospinal fluid when 
copious amounts of oxytocin were injected intravenously or intranasally in nonhu-
man primates [18]. Additionally, exogenous oxytocin administration may accelerate 
endogenous oxytocin secretion either directly through PVN oxytocin autoreceptors 
or indirectly through peripheral oxytocin receptors [19, 20]. Generally, oxytocin 
receptors are found throughout the central nervous system including the hypo-
thalamus, basal ganglia, VTA, nucleus accumbens, frontal cortex, insula, NTS, and 
spinal cord. Oxytocin receptors are also present in peripheral regions (vagus nerve, 
anterior pituitary gland, adipocytes, gastrointestinal tract, and pancreas) that 
regulate food intake and metabolism [12, 21–25]. Infect, mRNA for oxytocin and 
its receptors throughout the entire human gastrointestinal (GI) tract was recently 
found. Such receptors are known as allosteric modulators [12] (Figure 1).

1.2 The therapeutic potential of oxytocin

The therapeutic potential of oxytocin has been studied extensively for the last 
few years. Use of oxytocin in the treatment of autism spectrum disorder (ASD) 
[26, 27], schizophrenia [26, 28], and obesity [20, 28–31] have been investigated 
and documented in leading journals. It has opened a new door for many more 
untouched aspects of oxytocin to be disclosed. Recently it was found that oxytocin 
could reverse the effects of beta-amyloid on mice hippocampal LTP in an in vitro 
study. ERK phosphorylation and Ca2+-permeable AMPA receptors are involved in 
this effect of oxytocin [32]. Beta-amyloid is the main culprit of Alzheimer’s disease, 
which gets deposited around the neurons of the brain and impaired cognitive 
functions.

1.3 Physiological role of oxytocin in feeding regulation

Oxytocin exerts a direct as well as an indirect effect on metabolism and energy 
balance. The direct effect is through anorexigenic activity with increased oxytocin 
secretion and/or signaling leading to decreased food intake via net effects on multiple 
different homeostatic and neurobehavioral pathways. Peripheral oxytocin induces 
anorexia was first demonstrated by Arletti et al. [33]. The indirect effect of oxytocin 
is explicitly on muscles potentiating the majority of the slow-twitch muscles.

Figure 1. 
Chemical structure of oxytocin [26].
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Oxytocin not only affects food intake but also the choice of food that is con-
sumed. Studies conducted with a variety of animal models, including rats, mice, 
and rhesus monkeys fed with standard chow with a substantial proportion of 
calories from carbohydrates. Such studies have shown that oxytocin reduced intake 
of sucrose [34–36], glucose, fructose-sweetened beverages), and HFDs sweetened 
with sucrose [19, 20, 30, 37–39], sucrose appears to activate a greater proportion 
of PVN oxytocin neurons relative to intake of fat (intralipid) [40]. Oxytocin has 
also been shown to suppress energy intake in animals fed HFDs without sucrose. 
Moreover, systemic administration of oxytocin antagonists (readily crosses 
the blood–brain barrier) [41] stimulates the intake of sucrose, but not chow or 
intralipid [42]. Conversely, impairments of oxytocin signaling is associated with 
increased consumption of carbohydrates, including sucrose [34, 43, 44], and 
glucose [44], as well as fat [38, 45], implicating a potential physiological role for 
oxytocin to limit consumption of both simple sugars and fat.

Oxytocin has a profound effect in termination of the food intake. The food 
intake is physiologically regulated by oxytocin neurons, responding to fasting and 
satiety conditions. It has been observed that food consumption activates oxytocin 
neurons [40, 46], whereas fasting is known to depress oxytocin neurons and 
recovery is possible with refeeding [29] or the leptin administration [47], conversely 
suppression of exocytosis of oxytocin, or genetic reduction of oxytocin expression 
increases food intake [29], and ablation of oxytocin neurons increase body weight 
gain by decreasing energy expenditure in male mice fed a high-fat diet (HFD) [48]. 
The ablation of the neurons that express oxytocin receptors, in the nucleus of the 
solitary tract (NTS) and arcuate nucleus induces hyperphagia [49, 50] and satiety 
[51]. Additionally, oxytocin also displays a circadian rhythmic pattern with a rise of 
circulating oxytocin level during the day and vice versa [52, 53].

1.4 The metabolic functions of oxytocin

Oxytocin is a potent regulator of caloric intake and metabolism. Metabolism is 
an exclusive attribute of living cells. Disturbance in metabolism can have a toll on 
both body and mind. Although, the epidemics of metabolic diseases have largely 
been attributed to genetic makeup, changes in diet, exercise and aging. However, 
other environmental factors may contribute to the rapid increase in the incidences.

Oxytocin has a direct effect on adipose tissue. It induces adipose tissue lipolysis 
[16, 20] and fat oxidation [20, 30, 54], subsequently leading to reduced body fat 
and weight gain [20] as well as glucose intolerance and insulin resistance. Moreover, 
oxytocin is believed to reduce visceral and liver fat deposition [30]. Such deposits 
are metabolically important and are known to increase the prognosis of metabolic 
syndrome and cardiovascular disease [55]. Sub chronic treatment of oxytocin 
extended improved adipocyte differentiation and increased gene expression of 
factors involved in adipogenesis in rats. This effect is related to an increased fatty 
acid-binding protein, peroxisome proliferator-activated receptor gamma, insulin-
sensitive glucose transporter 4, leptin, and CD31 mRNA levels [56].

1.5 Energy balance

Energy balance is a complex physiological process that is regulated by multiple 
interactions between the gastrointestinal tract (GIT), adipose tissue, and the central 
nervous system (CNS). It requires both afferent signals from the periphery about 
the state of the energy stores as well as different signals that influence energy intake 
and expenditure [57] and is also influenced by behavioral, sensorial, autonomic, 
nutritional, and endocrine mechanisms [58]. Energy balance is quite essential in 
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daily life to be in shape physically as well as metabolically. Nevertheless, at times 
energy balance (intake and expenditure) may alter partially or completely, leading 
to consequent pathological changes in body weight. Adaptations to body weight 
changes include modifications at the level of circulating appetite-related hormones 
that, in turn, may profoundly interact with the homeostatic and hedonistic neural 
centers. The homeostatic control system makes it possible to maintain energy 
reserves through signals of hunger stimulation that are usually downregulated 
when the body receives an adequate caloric intake. However, this homeostatic 
system is asymmetrical, showing greater effectiveness in defending against energy 
deficit in the light of reduced efficiency in the defense against the energy excess. 
Furthermore, the homeostatic system is strongly influenced by hedonic signals, 
based on reward mechanisms, frequently causing food intake even in the absence 
of biological needs. This review will summarize the role of the main central and 
peripheral hormones involved in controlling energy balance.

2. Mechanisms underlying the effects of oxytocin on energy balance

The proposed mechanisms underlying the effects of oxytocin on calorie balance 
are discussed under the following topics.

2.1 Oxytocin may regulate appetite

Oxytocin may induce satiety by slowing gastric emptying [59–61]. Gastric 
emptying is a principal trait of postprandial glycemia. A lower rate of gastric 
emptying and a high-fat diet rationally enhances the glycemic index of carbohy-
drates. Moreover, slowing of gastric emptying by fat depends on the small intestine 
exposed to lipolytic products. Oxytocin is released in response to a fatty meal [62], 
which regulates gastric emptying [63, 64].

Conversely, systemic administration of oxytocin led to enhanced gastric empty-
ing [63, 64] also oxytocin receptor antagonist atosiban delayed gastric emptying 
significantly [9]. Though the results from human studies are conflicting and only 
one human study on diabetic gastroparesis has reported prolonged gastric emptying 
time (40–80 mIU/min) [65]. The prokinetic effect of oxytocin on the gut has been 
assumed to be similar to the one in uterine myometrium and mammary myoepithe-
lial cells; i.e., the intracellular release of Ca2+ which leads to muscle contraction via 
myosin light kinase activity [12]. In normal subjects, oxytocin has been found in the 
gut where it is secreted after a meal [62] and stimulates colonic activity [66].

Oxytocin can influence other appetite-regulating hormones. Intravenous admin-
istration of oxytocin modulated levels of ghrelin (which is orexigenic) in human 
subjects [67], whereas 24 IU intranasal administration of oxytocin did not show 
any significant changes in fasting or postprandial levels of ghrelin [68, 69]. Ghrelin 
is a gastric hormone, which regulates hunger and food intake. Likewise, oxytocin 
administration can influence cholecystokinin concentration in circulation [60] but 
this change was not related to differences in caloric consumption between oxytocin 
and placebo conditions [35]. Oxytocin facilitates cholecystokinin elicited excitation 
of neurons within the nucleus of the solitary tract and reduces food intake [49].

2.2 Oxytocin and glucose homeostasis

Oxytocin influences glucose and insulin homeostasis, along with bodyweight 
balance. Numerous studies have shown that oxytocin encourages glucose uptake 
[70, 71] and stimulates insulin secretion [72–76] as well as pancreatic glucagon 
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secretion [75], which extends a hint about the involvement of oxytocin in the 
prognosis of diabetes. Intracerebroventricular oxytocin can improve insulin levels 
by activation of vagal cholinergic neurons innervating pancreatic beta-cells [76]. 
Conversely, insulin can modulate oxytocin levels in the hypothalamus by activating 
the insulin-regulated aminopeptidase as well [77, 78].

Studies have suggested that oxytocin has the capacity to reduce obesity-related 
diabetic changes, such as glucose intolerance, insulin resistance, and pancreatic 
islet hypertrophy [19, 20, 30, 38, 79, 80]. Two weeks of treatment with oxytocin 
decreased adiposity and food intake in obese mice lacking leptin, although, it 
worsens glucose metabolism, most likely due to an increase in corticosterone levels 
and enhanced hepatic glucose production. It could be suggested that the effect of 
oxytocin in decreasing fat mass is independent of leptin, while the beneficial impact 
on glucose metabolism requires the presence of leptin [81]. Whereas, oxytocin 
treatment for a longer period, notably reduced body fat accumulation, fasting 
blood glucose levels, and improved insulin sensitivity and glucose tolerance in 
leptin receptor-deficient mice [82]. The hypoglycemic stimulatory effect on insulin 
secretion and sensitivity, and improvement of pancreatic islet cells after oxytocin 
administration strongly suggested that oxytocin might be a therapeutic target for 
treating diabetes.

Oxytocin influences glucose metabolism in various ways. It may have a direct 
effect on glucose metabolism through the promotion of muscle cell differentiation. 
It has been found that a higher oxytocin concentration is linked with the anabolic 
effects of steroids in bovine and ovine skeletal muscle [83, 84]. A rapid increase 
in muscle regeneration was observed in old mice with a cardiotoxin muscle injury, 
when oxytocin was administered subcutaneously [79], though, the regenerative 
capacity of skeletal muscle and the levels of oxytocin receptor in muscle stem cells 
decrease with the age [79].

Further oxytocin-induced augmentation of muscle mass directly affects glu-
cose uptake and insulin sensitivity. Oxytocin receptors are widely distributed in 
adipocytes of both humans and animals, especially in rats [12, 85, 86]. Oxytocin 
augments the transient increase in intracellular Ca2+ and stimulates PKC activity 
[87, 88], which in turn increases glucose uptake in mice adipocytes [88–90]. It has 
been noted that oxytocin stimulates glucose oxidation via enhancement of pyruvate 
dehydrogenase activity in mice adipocytes [90]. Oxytocin treatment induced a 
higher mRNA expression for gluconeogenesis and lowered glycaemia in lean control 
mice, probably because of the decreased liver glycogen content [82]. So, oxytocin 
treatment enhances net hepatic glucose oxidation, reduced glycogen synthase activ-
ity, and increased glycogen phosphorylase activity [91].

Oxytocin modulates pancreatic function centrally via vagal cholinergic neurons 
innervating β-cells [76] and peripherally by stimulating phosphoinositide turnover 
and activating PKC in pancreatic β-cells [92]. Insulin secretion (independent of 
glucose concentration) was found to be stimulated in isolated mouse pancreatic 
islets with oxytocin infusion [91]. Additionally, oxytocin increases insulin and glu-
cagon secretion in both in vivo and in situ conditions and appears to have a greater 
effect on glucagon secretion than on insulin secretion (and to a much greater extent 
in insulin-deficient diabetic rats) [93–95]. Peripherally oxytocin regulates whole-
body glucose metabolism. Studies have shown that oxytocin-deficient (Oxt−/−) and 
high-fat diet-fed OTR-deficient (Oxtr−/−) mice had decreased insulin sensitivity 
and impaired glucose tolerance [96, 97], and both insulin sensitivity, as well as 
glucose tolerance, were restored after oxytocin administration in obese diabetic 
(db/db) mice fed with standard and high-fat diets [20, 30, 82, 98]. Improvements 
in glucose tolerance, lowering of postprandial plasma glucose and insulin concen-
trations have been reported in subjects with normal weight and obesity who were 
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given oxytocin [33, 68, 69, 80, 99]. In contrast, increases in plasma glucose and 
hepatic glycogenolytic activity concurrent with an absence of effects on peripheral 
insulin sensitivity have also been reported [95].

2.3 The lipolytic effect of oxytocin

The lipolytic effect of oxytocin is well studied in animal models [16, 20] and 
human trials [100]. The intravenous administration of oxytocin (10 mIU/kg) 
increased plasma levels of non-esterified free fatty acids and reduced plasma levels 
of triglycerides in women with obese history [100]. Even the intranasal admin-
istration of oxytocin (24 IU before meals and at bedtime) in overweight or obese 
men and women for eight weeks resulted in improved lipid profile (lower levels of 
total cholesterol and LDL cholesterol), reduced waist circumference, and weight 
loss [80]. Oxytocin also acts as a homeostatic inhibitor of consumption, capable 
of mitigating multiple aspects of consumption behavior and energy metabolism 
[34]. Markedly, oxytocin reduces metabolically important fat for instance visceral 
and liver fat [30]. Such fat deposits are mostly responsible for the increased risk of 
metabolic syndrome and cardiovascular disease [55].

2.4 Energy expenditure

Despite the weight loss, it is believed that oxytocin contributed to the preserva-
tion of lean body mass, a key determinant of energy expenditure [54], activation 
of brown fat [97, 101, 102] and conversion of white adipose tissue to beige fat that 
is capable of thermogenesis [68, 82]. In young female athletes and non-athletes 
aged 14–21 years, fasting levels of oxytocin were positively associated with resting 
energy expenditure [68].

3. Conclusions

Metabolic disorders have reached to an explosive level and data projected 
by different government or non-government bodies are scary. Some alternative 
treatments should be adopted other than the conventional mode of treatment to 
coping such situations. Hormones are very powerful chemical substances and 
work precisely in the target organ. They mostly secrete far away from the site of 
action. Oxytocin is one such hormone that was long known for its reproductive 
involvement and is now being investigated for its multifunctional attributes. The 
therapeutic implications of oxytocin are gaining momentum. Studies have revealed 
that oxytocin alters metabolism in various ways including modulation of appetite 
and satiety, enzyme activity, cellular signals, secretion of hormones, and energy 
consumption. Despite the wealth of basic research showing broad anorexigenic 
effects of oxytocin, clinical studies on oxytocin’s therapeutic potential in obesity, 
and associated disorders are still in their infancy and exhaustive research is needed. 
Future replicated and validated studies will help to characterize and better under-
stand the underlying mechanisms for the regulation/dysregulation of metabolism 
and would be a good approach for treating the obese population, which is the need 
of the hour.
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