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Renin-Angiotensin-Aldosterone 
System in Various Disease 
Processes: An Overview
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Abstract

The renin-angiotensin-aldosterone system is a physiological system that plays 
an important role in the regulation of blood pressure and body water-electrolyte 
balance, in which the kidney, liver and lungs play a role in its activation. This system 
comes into play in various diseases such as the cardiovascular, renal, pulmonary and 
nervous system where blood pressure and fluid-electrolyte balance may change. 
The purpose of this study, which is presented in line with this information, is to 
explain the working principle of this system, how this system is activated, how it 
comes into play in the mentioned diseases, and what kind of results occur.

Keywords: Renin, angiotensin, aldosterone, ACE2, hypertension, pulmonary 
diseases, renal diseases, neurodegenerative diseases, AngII, Covid-19

1. Introduction

The renin-angiotensin-aldosterone system (RAAS) is a powerful system that 
regulates fluid-electrolyte balance and systemic blood pressure. First, it has been 
stated that it is a hormonal and peptidergic endocrine system that regulates blood 
pressure and fluid-electrolyte balance [1, 2]. Until recently, RAAS was known only 
as an endocrine system that regulates blood pressure and fluid-electrolyte balance, 
but now it is noted that this system is not only found in circulation but also locally in 
organ systems, and also has autocrine-paracrine functions [3].

There are some components of RAAS responsible for these effects. One of these 
components, renin, is synthesised as prorenin from the juxtaglomerular apparatus, 
which is also found in kidney efferent arterioles. The protein is converted to active 
renin, stored in secretory granules and released into the circulation when necessary 
[4]. The release of renin, a proteolytic enzyme, is triggered by many physiological 
stimuli, including prostacyclins (PGI2), such as stimulation of macula densa in 
the distal tubule with low Na + concentration, reduction of arterial pressure, renal 
sympathetic nerve activation and stimulation of β1-receptors [5]. Circulating renin 
provides the formation of Angiotensin I (AngI) from angiotensinogen, most of which 
is synthesised from the liver [6]. AngI is converted to Angiotensin II (AngII) by 
Angiotensin-converting enzyme (ACE), a membrane-bound metalloproteinase found 
in high amounts on pulmonary vascular endothelial cell surfaces (Figure 1) [5, 7].
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ACE, a member of the zinc metallopeptidase class, had two main roles in 
metabolism. It takes part in the RAAS system and the kinin-kallikrein system 
(KKS). Another task is to inactivate substance P and neurokines [8, 9]. ACE has two 
forms in endothelial and epithelial cells and male spermatid. Its form in endothelial 
and epithelial cells is called “somatic form” (sACE), and the form found in sper-
matids is called “germinal form” (gACE) [10]. The primary structure of these two 
forms is different from each other. While sACE has two active sites with different 
catalytic properties, gACE has only one active [11]. ACE has another mammalian 
homologue named angiotensin-converting enzyme 2 (ACE2) [12]. Although ACE2 
has carboxypeptidase activity like ACE, it cleaves an amino acid unlike ACE and its 
most important substrates are AngI and AngII [13].

In the body, AngII has many roles such as increasing blood pressure by direct 
contraction of vascular smooth muscles, increasing myocardial contractility, water 
and salt retention by stimulating aldosterone release from the adrenals, stimulation 
of catecholamine release from sympathetic nerve endings, cell growth and prolif-
eration [14, 15]. It turns out that AngII can be generated locally in many tissues, 
including the brain, independent of circulating components [16]. AngII acts by 
binding to receptors in the protein structure on the plasma membranes of different 
tissues. These receptors are termed AngII type 1 (AT1R) and AngII type 2 (AT2R) 
receptors [17]. Changes in the balance of RAAS have been reported to have direct or 
indirect effects with cardiovascular system diseases, lung diseases, nervous system 
diseases and kidney diseases. Therefore, this section describes the mechanism of 
action of RAAS and the relationship of RAAS components with these diseases.

2. The role of RAAS in cardiovascular disease

2.1 Heart failure and myocardial infarction

Ang II has a role in a variety of cardiac dysfunctions, including hypertrophy, 
arrhythmia, and ventricular dysfunction [18, 19]. Inability to pump enough blood 

Figure 1. 
Renin-angiotensin-aldosterone system and effects.
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to the body due to insufficient heart functions due to various reasons is known as 
heart failure. When looking at the role of RAAS in the case of heart failure, RAAS 
activation can occur when hypertrophy occurs in the heart muscle cells. This causes 
fluid retention in the body and peripheral vasoconstriction, resulting in cardiac 
overload and heart failure [20]. RAAS activation increases in heart rate and con-
tractility, thus reducing coronary blood flow [21]. Experimental studies have shown 
that plasma renin activity increases in acute heart failure. Also, it was determined 
that plasma renin activity was normal in the compensated phase of chronic heart 
failure, and this shows that RAAS is associated with heart failure [22]. It has also 
been determined that when myocardial cells are exposed to excessive AngII and 
aldosterone, fibrosis is formed. This again shows that RAAS plays an important 
role in myocardial heart disease. It was determined that AT-1 receptor expression 
affected by AngII decreased in decompensated heart failure, while AT-2 receptors 
remained unchanged [23]. It has also been determined that ACE inhibitors play 
an important role in heart failure. It has been reported that ACE inhibitors are 
beneficial, especially in patients with left ventricular failure, and that death rates 
are reduced [24]. These findings are an important indicator that renin-angiotensin 
inhibition is crucial to improving cardiac dysfunction. When the relationship of 
RAAS with myocardial infarction is examined, it has been determined that ACE2 
RNA expression increases in the case of myocardial infarction [25]. In another 
study, it was shown that ACE2 expression increased in the case of myocardial injury 
induced by ischemia–reperfusion in rats and this increase attenuated myocardial 
damage [26].

2.2 Hypertension

It has been determined that the plasma renin level changes in the case of 
hypertension. Plasma renin levels are not proportional to blood pressure, and it has 
been reported that plasma renin levels are low in some patients, normal in others 
and high in others. One of the reasons for the change in the renin level is that it is 
primarily caused by ischemia that develops in the nephrons. In this case, renin levels 
released from ischemic nephrons increase at different levels, resulting in normal 
or high plasma renin levels. The renin released from ischemic nephrons passes into 
the circulation leading to the formation of AngII [17, 27]. As a result, hypertension 
occurs with increased vasoconstriction and sodium retention in nephrons. The 
reason why plasma renin level is normal in some hypertensive patients is that aldo-
sterone is not synthesised in response to sodium restriction. Also, it has been stated 
that resistance to renin and AngII is formed in the vessels and therefore they can 
increase blood pressure even at low levels. Besides, independent of RAAS in circu-
lating blood, it has been determined that Ang II production by serine protein kinase 
activity is independent of ACE activity in the heart, brain, adrenal cortex and blood 
vessels [28]. Also, AngII contributes to hypertension [29]. When looking at the 
relationship between salt intake and RAAS, it is seen that high salt intake suppresses 
RAAS, while low salt intake stimulates AngII release [30]. Studies have determined 
that smooth muscle cells are also critical in the regulation of AngII-mediated blood 
pressure. A study in mice found that 22α protein deficiency in smooth muscle 
reduces hypertension that can occur with AngII [31]. This is an indication that the 
RAAS system plays an important role in hypertension.

2.3 Atherosclerosis

AngII has been determined to induce endothelial dysfunction and increase oxi-
dative stress in the endothelium by stimulating the production of reactive oxygen 
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species (ROS) such as superoxide anions (O2−) derived from nicotinamide adenine 
dinucleotide phosphate oxidase (NADPH oxidase). This is especially the result 
of endothelial AT1R stimulation that interacts with the Nox5/Ca2 + calmodulin 
binding site, which will increase Ca + concentration in the endothelial cell [32, 33]. 
Nox5 is a member of the NADPH oxidase family and plays an important role in the 
development of atherosclerosis, inflammation, and oxidative stress [33, 34]. It also 
plays a role in the adhesion of mononuclear cells to the arterial endothelium and 
recruitment of mononuclear cells by stimulating the increase in CAM expression of 
TNF-α, which is released as a result of stimulation of AT1R with AngII, in combina-
tion with IL-6 [35]. One study reported that AngII induced monocyte chemotactic 
protein-derived protein expression (MCPIP1) via an AMPK/p38 MAPK-dependent 
pathway [36]. Increased MCPIP1 expression contributes to atherosclerotic plaque 
formation by triggering apoptosis in macrophages [37]. Another thing related to 
the formation of atherosclerosis is that AngII induces the expression of a multi-
functional protein found in macrophages, endothelial cells, smooth muscle cells 
(SMCs), and epithelial cells called osteopontin. Osteopontin plays an important 
role in the development and development of atherosclerosis [38]. The cell mem-
brane has a transmembrane glycoprotein called LOX. LOX acts as a receptor for 
oxidised LDL (oxLDL). It increases the expression of AngII LOX-1 gene. Binding 
of oxLDL to LOX-1 in the endothelium causes an increase in leukocyte adhesion 
molecules, activates apoptosis pathways, increases ROS and induces endothelial 
dysfunction. This situation contributes to the development of atherosclerosis. Also, 
oxLDL increases the formation of ACE, which induces the formation of AngII 
(Figure 2). This increases LOX-1 expression, which positively regulates the expres-
sion of AT1R, and contributes to a self-sustaining pro-atherogenic cycle [39]. Thus, 
it has been determined that ACE and ATR1 inhibitors prevent the development of 
atherosclerosis.

2.4 Vascular inflammation

RAAS plays an important role in shaping vascular inflammation. Vascular 
inflammation causes endothelial dysfunction. This dysfunction causes tissue dam-
age. Endothelial dysfunction also results in the accumulation of inflammatory cells 
in the area. This situation triggers atherosclerosis. Also, studies have shown that 

Figure 2. 
Mechanism of AngII-mediated atherosclerosis formation. Involvement of Ang-II, ACE2, and Ang-1–7 in 
atherogenic pathways. The Ang-II binding into AT1R can activate Nox5 through a calcium/calmodulin-
dependent pathway.
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AngII-mediated inflammation and hypertension and atherosclerosis develop [40]. 
In another study, it was determined that AngII administration in human vascular 
smooth muscle cells increased NF-KB activation, thus increasing IL-6, MCP-1 and 
TNF-expression [41]. Again, although it is a vasoconstrictor, AngII was determined 
to induce endothelial damage by inhibiting endothelial cell regeneration. AngII has 
been reported to act as a second messenger to activate intracellular signalling path-
ways such as mitogen-activated protein kinase (MAPK) and protein kinase Akt/
protein kinase B (Akt/PKB), pathways that mediate cell proliferation and apoptosis, 
and thus vascular dysfunction [42]. AngII is also stated to be a potent pro-oxidant. 
Ang II induces the production of superoxide anions and activates NADH/NADPH 
signalling [43]. AngII lowers nitric oxide (NO) levels and activates redox-sensitive 
genes, particularly cytokines and adhesion molecules [44]. Ang II is also a profi-
brotic factor. Chronic AngII administration in mice has been shown to cause an 
increase in blood pressure, infiltration of inflammatory cells into the myocardium 
and cardiac fibrosis [45]. Another factor that provides the proinflammatory and 
profibrinolytic effect of RAAS in vessels is aldosterone [46]. Aldosterone affects 
insulin resistance and the development of atherosclerosis. In vascular smooth 
muscle cells, aldosterone alters insulin signalling, increases insulin-like growth 
factor-1 expression.

2.5 Oxidative stress

Oxidative stress is defined as the disproportion between the presence of anti-
oxidants and free radicals or prooxidants in a biological system. ROS and reactive 
nitrogen species (RNTs) are by-products of a variety of cellular processes, including 
aerobic metabolism [47–51]. These by-products cause damage to various tissues 
[52–73]. RAAS has a direct relationship with oxidative stress that may occur in 
the cardiovascular system. It has been determined that chronic administration of 
aldosterone, one of the components of RAAS, causes oxidative stress in the rat 
aorta [74]. AngII represents one of the major vasoactive peptides involved in the 
regulation and activation of NADPH oxidase. Ang II stimulates the activation of 
NADPH oxidase, increases the expression of NADPH oxidase subunits, and induces 
ROS formation in vascular smooth muscle cells, endothelial cells and fibroblasts. 
ACE2 shows an effect of reducing oxidative stress by inhibition of ROS synthesis by 
reducing AngII to Ang 1–7. Ang 1–7 therapy can have a curative effect on vascular 
disease models. It is reported that solutions that can increase Ang 1–7 levels may 
be beneficial to alleviate endothelial dysfunction [75]. This is supported by studies 
showing that overexpression of ACE2 leads to attenuating the effects of hyperten-
sion in animal models [76, 77]. It supports the argument that hypertension is a side 
effect directly related to oxidative stress, thus overexpression of ACE2 leads to a 
reduction of oxidative stress in a biological system [78].

3. The role of RAAS in renal diseases

3.1 Proteinuria

RAAS plays an important role in the pathogenesis of many kidney diseases 
characterised by proteinuria. In a study, it was stated that AngII induces the forma-
tion of proteinuria. It has also been determined that AngII stimulates the formation 
of TGF-1 in various kidney cells [79]. TGF-1 has been found to impair autoregula-
tion by afferent arterioles [80]. Vasoconstriction occurs after increased arterial 



Renin-Angiotensin Aldosterone System

6

pressure in afferent arterioles. In case of impaired autoregulation in the presence 
of TGF-1, especially systemic hypertension occurs, an increase in transcapillary 
pressure occurs. Thus, AngII increases capillary filtration pressure by causing 
efferent vasoconstriction and TGF-1-mediated impaired afferent arteriole auto-
regulation. Also, AngII has been found to have a direct effect on the integrity of the 
filtration barrier. Again, AngII has been shown to reduce the synthesis of negatively 
charged proteoglycans and additionally suppress nephrin synthesis [81]. It has been 
observed that this situation causes apoptosis in podocytes. Vascular endothelial 
growth factor (VEGF) has been identified to be an important factor in increasing 
the permeability of the filtration barrier in the kidneys [82]. It has been determined 
to stimulate VEGF expression via the AngII, AT1 and AT 2 receptors. It is thought 
that the increase in VEGF expression via AT2 receptors may be mediated by an 
increase in hypoxia-inducible factor 1. Also, VEGF and TGF-1 mediate the AngII-
mediated synthesis of the 3rd chain of collagen type IV, which is a component of the 
glomerular basement membrane [83, 84]. As a result, it is seen that AngII causes 
proteinuria by causing changes in hemodynamic and non-hemodynamic mecha-
nisms. AngII stimulates albumin reabsorption in proximal tubule cells through 
AT2 receptor-mediated protein kinase B activation [85]. Albumin uptake induces a 
selection of proinflammatory and profibrogenic cytokines such as monocyte che-
moattractant protein-1, IL-8, endothelin, and TGF-1 [86]. This situation stimulates 
the migration of cells into the interstitium. Ultimately it causes inflammation in the 
interstitial area.

3.2 Fibrosis

In a study, ECM proteins induce type I procollagen and mRNA encoding fibro-
nectin in cultured mesangial cells of AngII, and also stimulates the synthesis of 
type I collagen types 1 and 3 in cultured proximal tubular cells [79]. It has been 
determined that the stimulatory effect of AngII on collagen expression is dependent 
on TGF-1 expression. As a result of the studies, it has been reported that AngII 
stimulates the proliferation of cultured renal fibroblasts and increases mRNA 
expression of TGF-β1, fibronectin and type I collagen. It has also been observed that 
renin increases TGF-1 expression by stimulating a particular receptor in cultured 
mesangial cells [87]. These findings suggest that increased renin as a result of ACE 
inhibitor therapy may directly contribute to renal fibrosis through increased TGF-1 
despite AngII blockade. It was also determined that AngII increased connective 
tissue growth factor (CTGF) in kidney tissue. CTGF is a fibrinolytic mediator 
and is also stimulated by TGF-β. However, AngII also stimulates CTGF synthesis 
independently of TGF-β [88]. These findings suggest that increased renin as a result 
of ACE inhibitor therapy may directly contribute to renal fibrosis through increased 
TGF-1 despite AngII blockade. It was also determined that AngII increased connec-
tive tissue growth factor (CTGF) in kidney tissue. CTGF is a fibrinolytic mediator 
and is also stimulated by TGF-β. However, AngII also stimulates CTGF synthesis 
independently of TGF-β [89]. Studies have shown that more than one-third of 
local fibroblasts in renal interstitial fibrosis originate from tubular epithelial cells 
through a process called epithelial to mesenchymal transition (EMT). Again, AngII 
can be effective on EMT [90].

3.3 Inflammation

Studies have shown that AngII activates the proinflammatory transcription 
factor NF-KB via AT1 and AT2 [91]. It has also been stated that it can stimulate 
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NF-KB in AngIII and AngIV [86]. It has been determined that Rho-kinase plays a 
role in AngII mediated NF-KB activation. Also, AngII stimulates the transcription 
factor Ets. This factor regulates vascular inflammation by the transport of T cells 
and macrophages to the vascular wall. AngII has been reported to increase the level 
of Toll-like 4 receptors that bind LPS on mesangial cells. It has been observed that 
this receptor has an increasing effect on NF-KB activation [92]. The penetration of 
inflammatory cells into the glomerulus as well as the tubulointerstitium plays an 
important role in the progression of chronic kidney disease. Also, AngII induces 
the adhesion of circulating immune cells to capillaries by stimulating the increase 
of adhesion molecules such as vascular cellular adhesion molecule-1, intracellular 
adhesion molecule-1 and integrins. This situation shows the relationship of AngII 
with renal inflammation. It has also been determined that AngII has a stimulating 
effect on lymphocyte production [86, 93].

3.4 Chronic kidney disease (CKD)

Studies explaining the relation of RAAS with CKD were made in the 1980s and 
important data were obtained in these studies [94]. AngII has emerged as a central 
mediator of kidney damage because it can induce glomerular capillary hypertension 
that damages endothelial, glomerular epithelial cells, and mesangial cells [94, 95]. 
Also, AngII/aldosterone has non-haemodynamic effects that are important in the 
pathogenesis of CKD, such as inflammation, fibrosis, ROS production, and activa-
tion of pathways associated with endothelial dysfunction [94]. One of the most 
common causes of CKD is diabetic nephropathy. RAAS has an important role in 
diabetic nephropathy. Plasma renin activity is lower than normal in patients with 
diabetes [96]. However, intra-renal RAAS activity is high [97, 98]. This is an indica-
tion that diabetic nephropathy has one of the most important roles in the forma-
tion of CKD.

Figure 3. 
Mechanism of AngII-mediated apoptosis formation in the podocyte. AT1R signalling induces ER stress through 
increased GRP 78 and p-elf2α expression and PKC-δ phosphorylation. p38 MAPK and PKC-δ activation lead 
to increased Bax expression and enhanced NHE1 activity, triggering cellular apoptosis.
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3.5 Apoptosis

Studies show that the RAAS system is associated with renal hypertrophy and 
apoptosis. It has been determined that AngII, one of the components of RAAS, 
induces apoptosis in vivo and in vitro conditions [99]. It has been reported that AT1 
and AT2 receptors are involved in these effects. Studies have reported that Ang II 
plays an important role in tubular cells and podocytes in (Endoplasmic reticulum) 
ER stress-induced renal apoptosis, especially in diabetic nephropathy [100]. It has 
been shown that Ang II can induce podocyte ER stress via the PERK-eIf2-α-ATF4 
axis and the PI3-kinase pathway [101]. Another study found an AT1R-mediated 
increase in glomerular GRP 78 in rats chronically treated with AngII. These data 
support the relationship between the AngII/AT1R signal and ER stress on podocyte 
damage. In the same study, Ang II treatment was reported to induce p38 MAPK-
dependent apoptosis in podocytes associated with Bax protein activation. In addi-
tion, Na+/H+ exchanger isoform 1 (NHE1) activity increases. As a result, it triggers 
cellular apoptosis (Figure 3), [102].

4. The role of RAAS in lung diseases

4.1 Acute lung injury and pneumonia

As a result of RAAS activation, inflammation [103] and vascular permeability 
increase [104] due to Ang II stimulation of AT1 receptor and thus severe acute lung 
damage occurs [105, 106]. In mice, administration of losartan prevents acute lung 
injury caused by Ang II and decreases AT1R expression [107, 108]. Pneumonia is 
associated with RAAS, especially in influenza-induced types of pneumonia RAAS 
system plays a very important role. In patients with pneumonia, the use of RAAS 
inhibitors reduces the mortality rate and the likelihood of intubation [109]. As with 
other viral types of pneumonia, children infected with the Respiratory syncytial 
virus (RSV) tend to have higher Ang II levels than healthy children [110]. The 
benefit of recombinant ACE2 treatment on RSV infection has been demonstrated in 
a preclinical mouse model in animal experiments [111]. H7N9 and H5N1 influenza 
reduce the level of ACE2, increase the level of Ang II, and thus cause lung dam-
age via the AT1 receptor [112]. In H5N1 and H7N9 mouse models, treatment with 
losartan results in a decrease in IL-6 level and lung oedema, thus preventing lung 
damage [113]. It was concluded that losartan prevents lung damage by inhibiting 
RAAS activity.

4.2 SARS-CoV viral infection

The Spike protein [S protein] on the SARS-CoV Virus surface attaches to the 
ACE2 receptor and enters the body in this way. Moreover, ACE2 improves the 
efficiency of SARS-CoV replication [114]. Transmembrane protease serine 2 
(TMPRSS2) can degrade ACE2 and S protein for membrane fusion and the entry 
of SARS-CoV into cells. Therefore, the concentration of ACE2 in the membrane 
decreases, but the number of cells infected with SARS-CoV with cessation increases 
[115]. Ang-II level increases in lung tissue of mice infected with SARS-CoV. Also, 
the use of angiotensin receptor blockers in these animals significantly reduces pul-
monary oedema. This indicates that lung failure caused by SARS-CoV is caused by 
an increase in Ang-II level and overactivation of the AT1 receptor [116]. Increased 
ACE level and decreased ACE2 levels in SARS patients cause increased Ang II level 
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and AT1 receptor expression, which accelerates lung damage and can lead to death 
[117]. Also, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-8 
(IL-8), caspase 3 (CASP3), caspase 9 (CASP9) and fibroblast growth factor-7  
(FGF-7) increase in the lung tissue of these patients [118].

4.3 SARS-CoV-2 viral infection

SARS-CoV-2 (Covid-19) Similar to SARS-CoV, the S protein uses the ACE2 
cellular membrane for input and uses TMPRSS2 for S protein preparation to 
facilitate the fusion of viral and cellular membranes [119–121]. Compared to 
other coronaviruses, the affinity of S protein to ACE2 is higher in SARS-CoV and 
SARS-CoV-2. Looking at the distribution of ACE2 receptors in the body, it is found 
on the endothelial cells and smooth muscle cells of organs and tissues, including 
the oral and nasal mucosa, lung, small intestine, kidney, heart and blood vessels. 
The widespread distribution of ACE2 receptors in the body is an indicator of 
multi-organ failure in COVID-19 patients [122–124]. SARS-CoV-2 infection causes 
RAAS disorders and systemic inflammatory response. The plasma Ang II level of 
COVID-19 patients is significantly higher than that of healthy individuals. This 
condition is linearly related to viral load and lung injury [125]. A clinical study has 
shown that cytokine storm syndrome (CSS) occurs in patients with COVID-19 and 
severe pneumonia. Also, it showed that some cases can progress rapidly to Acute 
respiratory distress syndrome (ARDS) and even to multiple organ failure [126]. 
Inflammatory cytokines and chemokines are synthesised in Covid-19 patients, 
including IL-6, IL-2, IL-1β, IL-8, IL-17, IFN-γ, TNF-α and monocyte chemoattrac-
tant protein-1 (MCP-1) (Figure 4). Among them, however, IL-6 in particular plays 
a key role in triggering the inflammatory response, increasing the mortality rate in 
patients [125]. In Covid-19 infection, after the virus binds to ACE2 on the cell sur-
face, Ang II cannot convert to Ang1–7, and thus more and more binding occurs to 
AT1 receptors. This situation causes an imbalance in the ACE/ Ang II/AT1R axis. As 
a result, the pulmonary endothelium and epithelial cells are damaged by stimulat-
ing inflammatory signalling pathways, resulting in an increase in the permeability 
of pulmonary capillaries [127].

Figure 4. 
Effects of the renin-angiotensin system during SARS-CoV-2 infection.
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5. The role of RAAS in some neurological disorders

Brain RAAS irregularity may contribute to neurodegeneration due to neuroin-
flammation, oxidative stress and pathophysiological changes due to ageing. Several 
studies have reported that irregular RAAS plays a key role in numerous degenera-
tive diseases of the brain, including Alzheimer’s, Parkinson’s disease, Huntington’s 
disease, dementia, amyotrophic lateral sclerosis, Multiple sclerosis, Traumatic brain 
injury, and Stroke [128–130].

5.1 Alzheimer’s disease

Alzheimer’s disease (AD) is a progressive neurodegenerative disease charac-
terised by impaired daily functions and behaviour, especially memory [131]. The 
most important change in AD neuropathology is Aβ-centred senile amyloid plaques 
formed in the hippocampus, amygdala and cortex. Neurovascular disorders and 
chronic neurodegeneration occur in the surrounding brain tissues and vessels as a 
result of the toxic effects of these plaques [132]. Besides these plaque formations; 
Neurofibrillary tangles, oxidative stress in cell membranes and organelles, inflamma-
tion, gliosis, excitotoxicity due to excessive intracellular Ca + 2 increase and neuron 
death by many mechanisms that trigger each other such as disruption in membrane 
cation channels are encountered [133, 134]. The amyloid-beta (Aβ) peptide triggers 
O2 radical production in endothelial cells and induces oxidative and peroxidative 
reactions, causing cell death. As an example of these reactions; the oxidative reaction 
catalysed by the combination of amyloid plaques with heavy metal ions and lipid 
membrane peroxidation by various mechanisms can be given. It has been observed 
that the increased ROS activity via Aβ in tissue taken from the hippocampus caused 
synaptic disruption and cell death as a result of increased Ca + 2 increase with 
N-methyl-D-aspartate (NMDA) channel activation. Besides, mitochondria dysfunc-
tion is an important point in AD pathology. In biopsy studies, it was found that 
mitochondria shrank and protein and DNA dispersed into the cytoplasm [135, 136].

One of the brain RAAS products, the Ang- (1–7) peptide is a Mas receptor 
[MASR] agonist [137]. MASRs are abundant in memory-related areas of the brain 
and accelerate hippocampal long-term potentiation (LTP) together with Ang- 
(1–7). Also, it is known that the neuroinflammatory effects of Ang II, another 
RAAS product, contribute to cognitive disorders. Reversing the biological effects of 
Ang II with the anti-inflammatory, anti-fibrotic, vasodilator and anti-proliferative 
biological effects of Ang- (1–7); supports memory and learning [138]. In brain 
tissue studies in AD, it has been shown that the expression and activity of ACE, the 
metabolic enzyme of Ang-II, changes significantly in certain regions of the brain, 
including the frontal cortex and hippocampus. It has been reported that when 
centrally acting ACE inhibitors are used, they have reduced cognitive decline and 
have memory-enhancing effects [139, 140]. ACE2 activity decreases in AD pathol-
ogy [141]. Ang- (1–7) improves memory functions without affecting hippocampal 
or cortical amyloid peptide storage [142].

Ang II causes oxidative stress through the AT1 receptor [143] and increases 
superoxide. Thus, it causes neuroinflammation and vascular diseases [144]. As 
a result, it causes Aβ accumulation due to AD. However, the AT2 receptor signal 
produces beneficial effect including learning and memory. Angiotensin receptor 
blockers (ARBs) inhibit AT1R signalling, which shifts the effect of Ang-II towards 
the beneficial path (AT2R signal) (Figure 5) [144].

ACE inhibitors have a protective effect against AD. It shows this effect by 
suppressing brain-derived neurotrophic factor reduction and TNF-α release. 
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ACE inhibitors also improve oxidative-nitrosative stress and nitrotyrosine produc-
tion, which reduces amyloidogenesis and subsequent Aβ accumulation [145, 146]. 
On the other hand, ACE inhibitor (Captopril) and Angiotensin receptor block-
ers (Telmisartan, Candesartan, Losartan) ameliorate oxidative stress [147–151]. 
Telmisartan normalises the decreased thioredoxin (TRX) system in addition to 
attenuating the expression of the protein (TXNIP) that interacts with thioredoxin. 
Thus, it reduces the formation of endogenous ROS [149]. Similarly, telmisartan 
reduces improved glycation end products and 4-hydroxynonenal, which are 
markers of oxidative stress and are associated with Neurodegeneration [150]. 
Candesartan lowers the level of free radicals in the brain by decreasing malondial-
dehyde and increasing glutathione levels [151].

5.2 Parkinson’s disease

Ang II levels are high in the striatum and substantia nigra of Parkinson’s disease 
(PD) patients. Ang II and AT1R trigger apoptosis by activating autophagy in a dopa-
minergic neuronal cell. These findings suggest that Ang II plays a role in the patho-
genesis of PD [152]. In animal models of PD, it has been found that the signalling of 
AT2Rs is decreased with the loss of function in dopaminergic neurons [153]. Also, 
ACE and ACE2 were detected in the cerebrospinal fluid of PD patients. ACE levels 
are decreased in the cerebrospinal fluid of PD patients [154].

5.3 Multiple sclerosis

Multiple sclerosis (MS) is defined as an autoimmune neurodegenerative disease 
that typically occurs in the third or fourth decade of life [155]. Although the aetiol-
ogy of the disease is not fully known, both environmental and genetic factors are 

Figure 5. 
Effect of AngII on the nervous system. Amyloid plaque (Aβ), angiotensin II (AngII), angiotensin I (AngI), 
angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), angiotensin (AT), 
AT2 receptor (AT2R), AT1 receptor (ATR1R).
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thought to play an important role in the development of MS [156]. Blocking angio-
tensin II production by ACE inhibitors and inhibition of angiotensin II signalling by 
AT1 receptor blockers suppresses T-helper 17 (Th17) cells [157]. Th17 cells play an 
important role in the development and relapse of MS [158]. In a study, ACE activity 
in the blood serum of MS patients was reported to be higher than in healthy con-
trols [159]. In another study, ACE and ACE2 levels were found to be reduced in the 
cerebrospinal fluid of MS patients [160].

6. Conclusion

As understood, the renin-angiotensin-aldosterone system plays a very important 
role in regulating the fluid-electrolyte balance and blood pressure in the body. 
RAAS has receptors in many organs and tissues and can show various effects here. 
RAAS can be affected by various diseases affecting the cardiovascular, renal, 
nervous and respiratory systems and plays a major role in the formation of damage 
that may occur in these systems. Drugs that can affect the components or receptors 
of RAAS can prevent damage that may occur. The presented study shows the impor-
tance of the role of this system in the mentioned diseases. Understanding the role of 
this system in the mentioned diseases is of great importance in the development of 
new treatment protocols and new therapeutic agents.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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