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Chapter

A Monotonic Method of Split
Particles
Yury Yanilkin, Vladimir Shmelev and Vadim Kolobyanin

Abstract

The problem of correct calculation of the motion of a multicomponent
(multimaterial) medium is the most serious problem for Lagrangian–Eulerian and
Eulerian techniques, especially in multicomponent cells in the vicinity of interfaces.
There are two main approaches to solving the advection equation for a
multicomponent medium. The first approach is based on the identification of
interfaces and determining their position at each time step by the concentration
field. In this case, the interface can be explicitly distinguished or reconstructed by
the concentration field. The latter algorithm is the basis of widely used methods
such as VOF. The second approach involves the use of the particle or marker
method. In this case, the material fluxes of substances are determined by the
particles with which certain masses of substances bind. Both approaches have their
own advantages and drawbacks. The advantages of the particle method consist in
the Lagrangian representation of particles and the possibility of” drawbacks. The
main disadvantage of the particle method is the strong non-monotonicity of the
solution caused by the discrete transfer of mass and mass-related quantities from
cell to cell. This paper describes a particle method that is free of this drawback.
Monotonization of the particle method is performed by spliting the particles so that
the volume of matter flowing out of the cell corresponds to the volume calculated
according to standard schemes of Lagrangian–Eulerian and Eulerian methods. In
order not to generate an infinite chain of spliting, further split particles are re-
united when certain conditions are met. The method is developed for modeling 2D
and 3D gas-dynamic flows with accompanying processes, in which it is necessary to
preserve the history of the process at Lagrangian points.

Keywords: Eulerian method, PIC method, numerical simulation, gas-dynamic

1. Introduction

Correct calculations of multi-material flows is the greatest challenge for ALE and
Eulerian CFD codes, especially those using mixed cells at interfaces. There are two
basic approaches to solving the advection equation for the multi-material case. In
the first (grid-based) approach, interfaces are identified, and their position on the
grid is tracked at each time step. The interface can be identified both explicitly, or it
can be recovered based on the field of volume fractions. The latter algorithm serves
as a basis for widely used methods, like the VOF method [1] (concentration method
[2]). The second approach involves material particle methods first proposed by
Harlow (the PIC method [3]). In this case, material fluxes from cells, including
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mixed ones, are controlled by particles, to which certain material masses are
assigned.

Both approaches have their advantages and drawbacks. The advantages of the
particle method consist in the Lagrangian representation of particles and the possi-
bility of assigning material information to them. This minimizes the errors of
solving the advection equation by the grid-based Eulerian methods. A number of
modifications of the PIC method have been developed to improve its accuracy and
extend the range of its applications [4–9]. An overview of these methods is
provided in [10].

The central drawback of the particle method is the highly non-monotonic
character of the solution caused by the discrete transfer of mass and mass-related
quantities from cell to cell. The corresponding error can be reduced in the most
straightforward manner by increasing the number of particles in cells, but such an
increase limits the method’s performance, especially in the 3D case. To minimize
this drawback, a number of method modifications are employed. In [11, 12], for this
purpose, the authors use particles having different masses. This approach, however,
does not eliminate the need of involving a large number of particles. In a different
approach, particles are used only in a limited part of the integration domain, for
example, near interfaces [13]. As a result, only a small number of cells contain large
quantities of particles. The rest part of the domain in this case is treated by the grid-
based methods. Such a selective use of particles, however, does not eliminate the
error of solving the advection equation by the grid-based methods and the need of
remembering the history of a particular process in a large volume of the material.

This paper proposes a particle method that minimizes these drawbacks.
Monotonization of the particle method is performed by particle splitting, so that the
material volume flowing out of the cell corresponds to the volume calculated by
schemes based on the grid approach. In order to prevent endless splitting, such split
particles are further recombined under certain conditions. This approach allows us
to do with a small number of particles in the cell, while delivering a monotonic
solution.

2. Problem statement

The split-particle (SP) method has been implemented in a code called EGAK in
the 2D approximation. In the source code, the major quantities for numerical solu-
tion of the multi-material gas dynamic equations include node-centered velocity
vector components ux and uy and cell-centered thermodynamic quantities: density
ρξ, specific (per unit mass) internal energy eξ, and volume fractions βξ = Vξ/V of the
constituent materials.

Particles can also be specified for some materials (in a particular case, these can
be all materials). Each particle (with index р) has its coordinates in space xр(t),
yр(t) and velocity vector components uxр(t), uyр(t) (these are used in interim
calculations in the Lagrangian step). In addition, all particles represent thermody-
namic states of the corresponding material (density, specific internal energy, vol-
ume): ρξр, eξр, Vξр. Note that densities and volumes of particles can also give us their
masses. Also note that in the method proposed particle velocities are obtained by
interpolation between nodal velocities rather than “remembered” like in the classi-
cal PIC method.

Approximation of the corresponding equations is performed in two steps using a
decomposition procedure. The first (Lagrangian) step involves calculations of the
gas dynamic equations without convective members, i.e. gas dynamic equations in
Lagrangian variables. In the second (Eulerian) step, a new grid is constructed
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(it generally coincides with the grid of the previous timestep), and the quantities are
remapped onto it. As inputs, this step takes the outputs of the Lagrangian step. In
turn, this step is divided into two sub-steps, i.e., approximation of the advection
equation is done with decomposition in directions.

The difference equations below are presented in as much detail as needed to
understand the algorithm of particle introduction; please refer to [14, 15] for a more
detailed description of EGAK’s basic difference scheme. In what follows, if no
confusion is possible, no subscripts or subscript n are used to denote the outputs of
the previous timestep, and subscripts n+1/2 and n + 1 denote the outputs of the
Lagrangian and the Eulerian step, respectively.

3. Lagrangian step

3.1 Approximation of the cell-centered quantities

The Lagrangian gas dynamic equations are approximated using EGAK’s standard
scheme. As outputs, the Lagrange step delivers updated node-centered velocities, as
well as densities, energies and volume fractions of each constituent material. This
also applies to cells containing particles.

3.2 Definition of particle-specific quantities

In addition to the material-specific quantities, some particle-specific quantities
are also defined for particles in the cells containing particles.

3.3 Updating of particle coordinates

Updated particle coordinates are found in two steps:
Step 1. At the Lagrangian step, particles are assumed to move together with the

cell and inside the cell, without crossing its boundaries. The relative change in the
particle position in the cell is associated with the difference in divergences (com-
pression ratios) of different materials as a result of employing one closing model or
another for the mixed-cell gas dynamic equations. In this study, we use only one
assumption that the materials have equal divergences. This means that the sub-cell
motion of particles does not change their position relative to the grid nodes.

Particle coordinates, ~xnþ1=2
p , ~ynþ1=2

p are updated by bilinear interpolation between

coordinates of cell nodes xn+1/2, yn+1/2, just as at time tn.
Step 2. It is easy to show that the calculations of particle velocities by bilinear

interpolation violate the law of conservation of momentum in the particle-
containing cell. To ensure its conservation, the calculated particle velocities are
corrected as follows:

1.Components of cell momentum are calculated:

Pcx ¼
1

4
unþ1=2
x0 þ unþ1=2

x1 þ unþ1=2
x2 þ unþ1=2

x3

� �

�M, (1)

Pcy ¼
1

4
unþ1=2
y0 þ unþ1=2

y1 þ unþ1=2
y2 þ unþ1=2

y3

� �

�M:

Here, М is the cell mass and uxi, uyi (i = 0, 1, 2, 3) are the velocity vector
components at four cell nodes.
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2.Components of the total momentum of particles belonging to the cell are
calculated:

Ppx ¼

X

p

~unþ1=2
xp �mp, Ppy ¼

X

p

~unþ1=2
yp �mp: (2)

Here, the particle velocities are calculated using the particles’ coordinates
determined by bilinear interpolation and previous particle coordinates:

~u
nþ1

2
xp ¼

~xnþ1=2
p � xnp

τ
, ~u

nþ1
2

yp ¼

~ynþ1=2
p � ynp

τ
, (3)

were τ = tn+1- tn.

3.Coefficients λx ¼ Pcx=Ppx, λy ¼ Pcy=Ppy are calculated.

The particles’ velocities and coordinates are updated using the resulting weights:

unþ1=2
xp ¼ λx � ~u

nþ1=2
xp , unþ1=2

yp ¼ λy � ~u
nþ1=2
yp ; (4)

xnþ1=2
p ¼ xnp þ unþ1=2

xp � τ, ynþ1=2
p ¼ ynp þ unþ1=2

yp � τ:

3.4 Determination of particle velocity, density and energy

Changes in the relative density and energy of particles of a given constituent
material are assumed to be equal to the corresponding relative changes in these
quantities calculated for the respective material on average. This gives the following
formulas:

ρ
nþ1=2
ξp ¼ ρnξp þ ρ

nþ1=2
ξ � ρnξ

� �

ρnξp=ρ
n
ξ , (5)

enþ1=2
ξp ¼ enξp þ enþ1=2

ξ � enξ

� �

, (6)

Vnþ1=2
ξp ¼ Vn

ξp Vnþ1=2
ξ =Vn

ξ

� �

: (7)

It is easy to show that, when using (5)–(7), the particles’ total masses will remain
unchanged, and the particles’ total internal energies will be equal to the energy
calculated for the given material as a whole, i.e. the following relationships hold:

ρ
nþ1=2
ξ Vξ ¼

X

p

ρ
nþ1=2
ξp Vξp, e

nþ1=2
ξ mξ ¼

X

p

enþ1=2
ξp mξp: (8)

4. Eulerian step

Major difficulties in implementing the particle method are associated with the
Eulerian step, and namely, with calculations of mass and internal energy fluxes
from cell to cell. In the PIC method, when a particle migrates to a neighbor cell, its
mass and energy “migrate” with it. Because of the discrete (and, accordingly, non-
monotonic) character of the transfer of mass and all the quantities defined per unit
mass, this method delivers highly non-monotonic quantity profiles. Section 4 pro-
vides a detailed description of the monotonization algorithm for the PIC method.
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In calculations, it is not always efficient to represent all constituent materials by
particles because this requires extra calculations and computer memory. Therefore,
it is reasonable to use particles for the constituent materials, for which the errors
due to the solution of the advection equation are most essential, for example, for
thin layers or materials, which require remembering the history of their Lagrangian
particle.

As part of the proposed SP method, the following algorithms have been
developed:

1.Interaction of materials described by particles and materials calculated by the
code’s standard scheme;

2.Support of existence, creation and removal of particles only in the vicinity of
the interface;

3.Particles merging;

4.Remapping of particles density and energy to the cell as a whole.

These algorithms are listed in the order of their execution in the Eulerian step
after the monotonization algorithm.

5. Monotonization algorithm for the particle method

5.1 One-dimensional case

Let us discuss the concept of the algorithm as applied to a one-dimensional flow
for a single particle migrating from cell to cell (Figures 1 and 2). The figures show
two cells containing particles represented by dots and imaginary boundaries of
volumes represented by dashed segments. Note that calculations by this technique
require only numerical values of the volumes, not their layout.

The flow is directed from left to right as indicated by velocity vector (Figure 1).
Volume ΔV flowing out of the left cell (in what follows we call it the volume flux,
darker color) is then equal to the product of the cell’s lateral side length L and
quantity S = u�τ:

ΔV ¼ L � u � τ: (9)

The non-monotonic behavior of the classical PIC method stems from the dis-
crepancy between the real volume flux (and, accordingly, the mass flux) calculated
by (9) and the volume of the particle crossing the cell side. In one case (Figure 1a),
the volume moving from the left cell is smaller than the particle volume, and in the

Figure 1.
Illustration of the reason for the non-monotonic behavior: a) volume flux is smaller than the particle volume; b)
volume flux is larger than the particle volume.
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other (Figure 1b), it is larger than the particle volume. In the 2D case and in the
case of several migrating particles, the situation remains fundamentally the same.

Let us introduce the following notation:

δV ¼ ΔV‐Vp, (10)

where ΔV is the volume flux calculated by (4), VP is the volume of particle p
migrating from one cell into another.

Below we explain the monotonization algorithm for both of these cases.

1.Volume flux ΔV is smaller than the migrating particle volume (δV < 0). This case

is illustrated in Figure 2a. Left is the state at tnþ1=2; right, at tnþ1. In this case,
the particle migrating from the donor to the acceptor cell splits into two parts,
a mother and a daughter particle. The mother particle migrates into the
acceptor cell and now has new coordinates corresponding to its velocity and a
new volume equal to the volume flux leaving the donor cell ΔV. The daughter
particle, whose volume is equal to the difference between the initial particle
volume and volume flux ΔV, is placed in the donor cell and acquires
coordinates on the cell side. The link between the mother and the daughter
particle is indicated by a broken line.

2.Volume flux ΔV is larger than the migrating particle volume (δV > 0). This case is
illustrated in Figure 2b. In this case, the missing volume of the migrating
particle must be made up by forced transfer of some particles or particle
fragments from the donor cell to the acceptor. To be split is the particle lying
next to the side of these cells and not yet transferred to the acceptor cell. It
produces a daughter particle of volume δV, which migrates into the acceptor
cell with donor-acceptor side coordinates.

If more than one cell migrates from cell to cell, formula (10) will take the
form of

δV ¼ ΔV�

X

p

Vp, (11)

where ΔV is the volume flux calculated by (9); VP is the volume of the particle
with index p migrating from cell to cell; summing is performed for all transferred
particles.

Here, let us describe the differences from the algorithm described above.

Figure 2.
Illustration of the monotonization algorithm in the 1D case: a) δV < 0; b) δV > 0.
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1.The volume flux ΔV is smaller than the migrating particles’ total volume (δV < 0).
In this case, to be split are all the migrating particles. The mother particles
migrating into the acceptor cell have volumes

VM
p ¼ Vp ΔV=

X

p

Vp

 !

: (12)

The daughter particles stay in the donor cell and have the following
volume each:

VD
p ¼ Vp � VM

p : (13)

2.Volume flux ΔV is larger than the migrating particles’ total volume (δV > 0). The
particle staying next to the interface on the donor side is split to fill the
remaining volume δV. Note that if Vp < δV, the mother particle’s volume
entirely goes to the daughter particles, and to be split is the next particle from
the donor cell. If the donor cell is mixed, and the acceptor cell is pure and filled
with the material present in the donor cell, the particles of this material will be
split first.

5.2 Two-dimensional extension

Of particular interest in this case is the particle transition to the neighbor cell
located diagonally from the donor cell (Figure 3). This case is special, because
EGAK solves the advection equation using decomposition in directions, whereas no
provision is made for diagonal cell-to-cell fluxes.

Consider the particular case depicted in Figure 3. Suppose only one node A
moves to the new position B in the Eulerian step. The dashed lines in the figure
show the locations of the cell sides, for which the grid node is a common vertex, at
tn+1/2. C and D denote the points of intersection of straight lines AG and BE, and
AF and BH, respectively.

Figure 3.
Illustration of volume flux calculations in 2D case.
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In EGAK, the cell-to-cell volume fluxes are defined as follows. The volume flux
corresponding to triangle ABG (for short, volume in triangle ABG) is transferred
from cell (i, k) to cell (i + 1, k), that is:

Vnþ1
i,k ¼ V

nþ1=2
i,k � VABG,

Vnþ1
iþ1,k ¼ V

nþ1=2
iþ1,k þ VABG:

(14)

Accordingly, the following relationships apply to all the cells under consider-
ation including all the fluxes:

Vnþ1
i,k ¼ V

nþ1=2
i,k � VABG � VABF ¼ VBFKG,

Vnþ1
iþ1,k ¼ V

nþ1=2
iþ1,k þ VABG � VABE ¼ VBGNE,

Vnþ1
i,kþ1 ¼ V

nþ1=2
i,kþ1 � VABH þ VABF ¼ VBFLH,

Vnþ1
iþ1,kþ1 ¼ V

nþ1=2
iþ1,kþ1 þ VABE þ VABH ¼ VBHME:

(15)

Note that in accordance with (15) the volume of triangle ABC is included in the
volume of cell (i + 1,k) twice – as part of triangles ABG and ABE – but in one case it
is positive, and in the other, negative. Thus, in fact it is not included in the updated
volume of this cell; but it will be included in the volume of cell (i + 1,k + 1). The
same applies to the volume of triangle ABD, which will be included in the volume of
cell (i + 1,k + 1) and not included in the volume of cell (i,k + 1).

In accordance with the above, when considering particle contributions, flux
calculations between cell (i,k) and its non-diagonal neighbors assume that the
particle lying in triangle ABC migrates into cell (i + 1,k), and the particle lying in
triangle ABD, into cell (i,k + 1). Then, in calculations of the flux between cells (i + 1,
k), (i + 1,k + 1) and (i,k + 1), (i + 1,k + 1), these particles migrate into cell (i + 1,
k + 1). Therefore, when considering this process in terms of flux monotonicity,
corresponding daughter particles are introduced as shown in Figure 4. Note that
the mother particle’s position during the flux calculations is nevertheless defined in
the true acceptor cell (i + 1,k + 1).

The particle splitting is based on the following principles:

• Both particles produced from the particle being split share its thermodynamic
state (to comply with the conservation laws);

• The index assigned to the daughter particle is the same as the index of its
mother particle, which also indicates that the particle is a daughter;

• The mother particle “knows” nothing about its daughter particles;

Figure 4.
Volume flux from a mixed cell.
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• One mother particle may have several daughter particles;

• One daughter particle may have only one mother particle;

• The daughter particles may also split, but all the subsequent daughter particles
will “remember” the index of their initial mother particle;

• The daughter particles are placed at the common donor/acceptor side to ensure
their quickest possible combination with their respective mother particles.

6. Algorithm of interaction between particles and particle-free
materials

The algorithm for volume flux calculations has a modification to deal with mixed
cells containing materials with and without particles.

Consider the case of a cell filled with heterogeneous materials, one described
only by grid quantities, and the other, by particles (1 and 2, respectively, in
Figure 4). Suppose we need to divide the flux moving from left to right (shown
with a darker color) between the materials. The volume flux leaving the cell is first
filled with the volume of migrating particles. If the migrating particles’ total volume
exceeds this volume flux, then the above particle splitting algorithm is engaged (see
Section 4, case δV < 0).

Otherwise, the missing part of the outflowing volume flux is filled with the
particle-free material. If there are several particle-free materials, the volume is
distributed among them based on the VOF algorithm [1]. If the particle-free mate-
rials are still not enough, the remaining volume flux is filled with particles using the
splitting algorithm for the case of δV > 0 from Section 4.

7. Near-interface algorithms

As part of the proposed method, we have developed an algorithm involving the
particles located only near the interface. The region near the interface includes
mixed cells and one layer of adjacent pure cells of each material on each side.

Figure 5 shows possible particle layouts relative to the interface. The dark and
light cells (Figure 5a) are pure, and the intermediate-color cell (Figure 5b) is

Figure 5.
Particle layout near the interface: a) t = 0, b) t > 0.
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mixed. The particles in the cells are marked with a contrasting color. Figure 5, a
illustrates the case when both materials are represented by particles only near the
interface at t = 0, and Figure 5b shows the particle layout during the computation.

Thus, if the material is represented by particles only near the interface, then the
same material can be represented both by particles and without particles depending
on the interface location. To simplify the algorithm, the same material described by
particles and without particles cannot occupy the same cell. This condition for each
cell is formally given by

Vξ ¼

X

ξp

Vξp, or
X

ξp

Vξp ¼ 0: (16)

Let us consider two reasons leading to the case when two different representations
of the same material are present in the same cell. Figure 6a, b shows cells filled with
the same material. In each case, however, in one of the cells the material is
represented by particles (black dots), and in the other, without particles. The darker
color shows the volume flux relative to the cells’ total volume; the arrow indicates its
direction. Below we describe the unwanted cases and the ways to avoid them.

Figure 6a shows a volume flux from a cell with particles to a particle-free cell. In
this case, the particle splitting algorithm described in Section 4 stays unchanged in
the donor cell, but the particles that were supposed to migrate into the acceptor cell
are removed with an update of the thermodynamic state, and the particles staying
in the donor cell become ordinary (they are no daughter cells any more if they
were). Figure 6b shows a volume flux from a particle-free cell to a cell with
particles. In this case, the acceptor cell receives a particle, the volume of which is
equal to the volume flux and the state of which is the same as the donor-cell
material parameters. The added particle then immediately combines with one of the
particles in the acceptor cell. The combination rules are given below.

To preserve the layout, where particles are present only near the interface, the
particles lying beyond this region are removed from the cells and new particles are
created in the cells appearing in the region near the interface.

8. Particle combination algorithm

To balance the particle splitting algorithm (Section 4), we have developed a
particle combination procedure. The latter serves to prevent uncontrolled multipli-
cation of particles as a result of their splitting.

Two particles of the same material within the same cell must be combined if one
of the following criteria is met:

• One of the particles is a daughter of the other one;

Figure 6.
Conflicting cases of two representations of the same material: a) volume flux from a cell with particles to a
particle-free cell; b) volume flux from a particle-free cell to a cell with particles.
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• Two daughters have the same mother;

• The particles have close (to within a constant) coordinates;

• The particle number exceeds the maximum number specified for the cell;

• One of the particles has a relatively small volume.

Particle combination rules:

• If a daughter is combined with its mother, the resulting particle inherits the
mother’s coordinates;

• If two daughters of the same mother are combined (p1 and p2), the coordinates
of the resulting particle (p) are chosen in accordance with their mass ratio:

~xp ¼ xp1 þ xp2 � xp1
� �

mp2= mp1 þmp2

� �� �

, (17)

~yp ¼ yp1 þ yp2 � yp1

� �

mp2= mp1 þmp2

� �� �

;

• The parameters of the resulting particle are calculated subject to the laws of
conservation of their mass, specific internal energy and volume:

~ep ¼
ep1ρp1Vp1 þ ep2ρp2Vp2

ρp1Vp1 þ ρp2Vp2
,

~ρp ¼
ρp1Vp1 þ ρp2Vp2

Vp1 þ Vp2
,

~Vp ¼ Vp1 þ Vp2:

(18)

9. Particle-to-cell density and energy remapping algorithm

For each cell containing particles, the quantities are remapped as follows:

ρnþ1
ξ ¼

X

p

ρξpVξp=
X

p

Vξp,

enþ1
ξ ¼

X

p

eξpρξpVξp=
X

p

ρξpVξp,
(19)

where summing is performed for the particles of material ξ in the cell.

10. Method testing

10.1 Test problem 1. A moving cruciform density discontinuity

Domain 0 < x < 12, 0 < у < 12 is divided into two subdomains (0 and 1). In
subdomain 0: ρ0 ¼ 1, e0 =0, ux ¼ 1, uy ¼ 1, no particles are specified; in subdomain

1: ρ0 ¼ 10, e0 =0, ux ¼ 1, uy ¼ 1, each cell contains one particle. Р = 0 all over the
domain, so the problem involves virtually no gas dynamics, only convective flow.
The calculations were performed on a fixed grid of 60x60 cells.
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Results calculated by the SP method and EGAK (in what follows, SP is the
particle method with flux correction described above, PIC is the correction-free
particle method similar to the PIC method, and EGAK is used to denote the particle-
free code) are shown in the form of density distributions at t = 7.08 (Figure 7). The
figure shows that the result produced by the SP method is exact.

10.2 Test problem 2. A one-dimensional steady shock wave

We consider the following 1D problem statement. Domain 0 < x < 50, 0 < y
< 4 is occupied by an ideal gas with ρ = 1, Р = 0, u = 0, γ = 3. A plane shock wave
propagates in the material from left to right. Its parameters behind the shock front
are ρ = 2, e = 2, Р = 8, u = 2. The calculations were performed on a fixed grid of
100x4 cells. In the PIC and SP calculations, there were four particles in each cell.

Figure 8 shows the plots of density as a function of coordinate at t = 10 calcu-
lated by the SP, PIC and EGAK methods. One can see that the SP method gives
nearly the same result as EGAK and a better result compared to PIC. The exact
shock position is х = 40.

10.3 Test problem 3. A point explosion

Domain 0 < x < 20, 0 < y < 20 contains two materials: a circle of radius 0.1
with its center at the origin is occupied by an ideal gas with ρ = 1, е = 1, Р = 0, γ = 1.4;
the remaining part is occupied by an ideal gas with ρ = 1, е = 0, Р = 0, γ = 1.4.

Figure 7.
Test problem 1. Density distributions: a) t = 0; b) t = 7.08, method SP; c) t = 7.08, method EGAK.

Figure 8.
Test problem 2. Density as a function of shock position, t = 10.
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Calculations were performed by the SP, PIC and EGAK methods. In the SP and PIC
calculations, each cell initially contained four particles. In the SP problem calcula-
tion, the number of particles in the region with gas increased because of its strong
expansion. The calculations were done on a fixed regular grid of 100х100 cells.

The SP calculation results are presented in Figure 9 as a density distribution at
t = 100. Figure 10 shows plots of density as a function of radius for all the cells in
the domain occupied by the shock wave at a given instant. They demonstrate how
efficient the methods are in preserving the flow’s spherical symmetry. Figure 11
shows plots of density as a function of radius for section x = y.

Figure 9.
Test problem 3. Density distribution at t = 100.

Figure 10.
Test problem 3. Density across the cells as a function of radius, t = 100: a) EGAK; b) SP; c) PIC.

Figure 11.
Test problem 3. Density as a function of radius in section x = y, t = 100.
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These figures demonstrate that the SP result is again nearly as good at the EGAK
result and noticeably more accurate than the PIC result.

10.4 Test problem 4. A spherically converging shell

The initial problem geometry is borrowed from paper [16] and shown in
Figure 12. Domain 1: R1 = 0.8, ρ0 = 0.01, e0 = 0, u0 = 0, ideal gas with γ ¼ 5=3.

Domain 2: R2 = 1, ρ0 = 10, e0 = 0, UR
0 = � 1, equation of state of Mie-Grueneisen type

with constants ρ0 = 10, c0 = 4, n = 5, γ = 2. Boundary condition at R2: pressure P = 0.
Domain 3: vacuum with P = 0. Units of measurement: ρ - [g/cm3], t - [10 μs], L -
[cm]. The calculations were done on a fixed regular grid of 110x110 cells. The SP
calculations involved particles in both gas and shell domains (one particle per cell,
with a limitation of no more than four particles). Their results are compared with
the EGAK results. An interesting feature of this problem is that the number of
particles in the computation constantly decreases, because both materials are
compressed.

The main target result in this problem is maximum gas compression. Note that
the reference density obtained in convergence calculations by the 1D method [17] is
≈25. The maximum average gas density and respective time for SP and EGAK are
16.03 at t = 0.368 and 16.49 at t = 0.369, respectively. As an illustration, Figure 13a
shows a fragment of the domain with particles at t = 0.368. The figure also shows
density values across the cells of the compressed-gas domain from the calculations
by SP (Figure 13b) and EGAK (Figure 13c).

The maximum gas compression ratios and their respective time obtained
by EGAK and SP are close, but the maximum compression ratios are much
lower than the reference solution, which is explained by a small number of cells
in these calculations (the solutions converge to the reference solution with
mesh size). A smaller compression ratio in the SP calculation compared to EGAK
is attributed to the presence of gas spots “split-off” from the main domain in
the SP calculation. As for the flow symmetry preservation, SP is nearly as good as
EGAK.

Figure 12.
Geometry of test problem 4.
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11. Conclusion

The paper describes a monotonic split-particle method. The method has been
developed to simulate multi-material gas dynamic flows using a combination of grid
methods implemented in EGAK and the SP method for some layers. The calcula-
tions demonstrated that the SP method is close to EGAK in the accuracy of shock-
capturing simulations and is much more accurate as applied to convective flow
simulations, like the PIC method. At the same time, the SP method is free of the
major drawback of the PIC method, namely the severe nonmonotonicity of its
solution due to the discrete mass transfer. In addition, this method uses a relatively
small number of particles.

Further prospects of the SP method are related to its application to the problems
that require “remembering” the process history at Lagrangian points, like detona-
tion and combustion of explosives, elastoplastic behavior and fracture of materials,
etc. In particular, implemented to date have been the kinetic model of explosive HE
transformation by Morozov and Karpenko [18] and the model of materials fracture
by Kanel et al. [19]. This method has also been implemented in the 3D extension of
the EGAK code.
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Figure 13.
Test problem 4. a) Particle positions in the central domain; b) Density value across the gas cells calculated by
SP, and c) Density value across the gas cells calculated by EGAK.
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