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Chapter

Recombinant Inbred Mice as 
Models for Experimental Precision 
Medicine and Biology
David G. Ashbrook and Lu Lu

Abstract

Recombinant inbred rodents form immortal genome-types that can be  
resampled deeply at many stages, in both sexes, and under multiple experimental 
conditions to model genome-environment interactions and to test genome-
phenome predictions. This allows for experimental precision medicine, for which 
sophisticated causal models of complex interactions among DNA variants, pheno-
type variants at many levels, and innumerable environmental factors are required. 
Large families and populations of isogenic lines of mice and rats are now available 
and have been used across fields of biology. We will use the BXD recombinant 
inbred family and their derived diallel cross population as an example for  
predictive, experimental precision medicine and biology.

Keywords: BXD, experimental precision medicine, genome-by-environment, 
systems genetics, personalized medicine, recombinant inbred strains, diallel cross, 
prediction

1. Introduction

One of the major objectives of modern biology and medicine is prediction: 
being able to take information about an individual’s genome and environment and 
accurately predict their phenotype. This effort has taken on many forms and many 
names in different fields over time including population genetics [1], statistical 
genetics, quantitative genetics [2], genetical genomics [3], complex trait analysis 
[4], systems genetics [5, 6], systems medicine [7, 8], personalized medicine [9], pre-
dictive medicine and precision medicine [10, 11]. In humans, this has been greatly 
constrained by the N-of-1 problem, by which we mean that each person is a unique 
individual [12] – even monozygotic twins will differ in their environment. This has 
made it impractical, if not impossible, to accurately predict at the individual level 
disease risk or best treatment options for most common diseases, especially across 
populations [13–18], although we can, of course, make generalizations within a 
population. As sample sizes for genome-wide association studies have grown, it has 
become increasingly clear that any single commonly segregating variant is likely to 
have a very small impact on disease risk [19–21]. Indeed, an omnigenic model has 
been proposed, whereby variants in every gene are likely to affect every phenotype 
[22]. Even for Mendelian disorders such as Huntington’s disease, there are other 
alleles in the genetic background which modulate age of onset [23].
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How then, if there is so much complication in this one-to-one relationship (one 
gene variant to one phenotype), can we uncover the true many-to-many-to-many 
relationships that occur in biology? Phenotypes at many levels, including behav-
ior, organ systems, cells, proteins, metabolites, and mRNAs, all interact together 
with sets of many gene variants, and with an individual’s current and previous 
environmental exposures. We need to understand gene–gene (epistasis), gene-age, 
gene-sex, gene-treatment, and gene–environment interactions and all their combi-
nations. One answer to this is through the use of recombinant inbred (RI) popula-
tions and their derivatives.

2. Recombinant inbred families

Recombinant inbred (RI) populations are a seemingly simple idea: two inbred 
strains are crossed, and their F1 progeny are then crossed again to produce an F2. 
Pairs of these F2 animals are mated, and new lines are established through repeated 
rounds of sib-mating (Figure 1A). By generation F20, we have a population of 
99% inbred strains, each of which is a unique mosaic of homozygous genetic 
regions from both the parents, and for which an effectively infinite set of geneti-
cally identical individuals can be produced [24, 25]. This combination of genetic 
variability between strains but identical genome within strains allows the mapping 
of linkage between genotype and phenotype. The design has been expanded on in 
a variety of ways [26], such as increasing the number of parental strains (e.g. the 
8 founders used for the Collaborative Cross mice [27, 28]) to increase the number 

Figure 1. 
Production of the BXD family, transgenic crosses, and diallel crosses. Approximately half of the BXD strains 
are from an F2 (A; epochs 1, 2, 4 and 6), and approximately half of the BXD strains are from advanced 
intercrosses (AI; B; epochs 3 and 5). Red represents regions of the genome coming from C57BL/6 J (B6), and 
white represents regions from the DBA/2 J (D2). Solid arrows have been used to represent a single generation 
of breeding. Trangenic and non-transgenic crosses for QTL mapping can be produced by crossing hemizygous 
transgenic mice to RI individuals, to produce litters containing both genotypes (C). The transgene is represented 
in yellow. A diallel cross (DAX) includes all combinations of genotypes, including the inbred ‘diagonal’, and all 
reciprical crosses (D). All offspring of the DAX are isogenic, meaning that genotypes are replicable.
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of variants that segregates in the population, or using multiple rounds of crossing 
before inbreeding, producing so-called Advanced Intercross RI strains (AI-RI) to 
increase the number of recombinations, and therefore the precision of mapping 
(Figure 1B; [29]). Although RI strains were first developed in mice, and it is mice 
that we will concentrate on in this chapter, the design has now been used for a wide 
variety of organisms, including Arabidopsis [30, 31], Zea mays (maize) [32], barley 
[33], Drosophila melanogaster [34], Drosophila simulans [35], Caenorhabditis elegans 
[36] and rat [37].

These RI families are an essential complement to data collected in humans, 
allowing us to build experimental platforms for what is now called precision medi-
cine. Each isogenic RI strain within a family is effectively an immortal genome-
type. This is important because it allows the same genome to be resampled using 
any tissue, at any age, with any method, with any environmental exposure or treat-
ment that the researcher cares to use. This allows us to model higher-order genome-
environment interactions: the many-to-many-to-many problem stated above.

Whereas in human cohorts we have to imagine a counterfactual (e.g. what would 
have happened had I exercised more?), in isogenic strains we can effectively run 
this counterfactual – almost perfectly genomically and environmentally matched 
individuals can be phenotyped with only a single environmental perturbation 
between them. Even better, we can have multiple duplicates of these identical 
genome-types within each arm of the study, allowing us to reduce the effect of 
unwanted environmental perturbations, increasing our power to detect true 
associations [38]. However, in some sense, this is still an N-of-1 study, as only a 
single genome-type is being used. A problem many pre-clinical studies have had 
is that all experiments were carried out on a single genome-type and therefore 
effectively a single individual. The C57BL/6 J strain is often used to represent the 
entire mouse species [39, 40], when in fact its phenotype can often differ from even 
the closely related C57BL/6 N strain [41]. This may explain some of the failures to 
translate effects seen in mice to effects seen in humans, as in these studies only a 
single (genetic) individual is being examined, and then results extrapolated to the 
highly genetically diverse human population. RI families overcome this problem – 
many genome-types can be tested and many replicates within each genome-type. 
Therefore, we have a high-powered system to detect and test genome-phenome 
associations.

The goal is accurate genome-phenome prediction. With this goal in mind, we 
will use the BXD family of isogenic mouse strains as our example of how this can 
be achieved. The BXDs are by a wide margin the largest and most deeply pheno-
typed mammalian family and can be used as a testbed for experimental precision 
medicine.

3. The BXD family

The BXD family were among the first RI strains to be produced [24, 42, 43]. 
This work was started by Benjamin A. Taylor who crossed female C57BL/6 J (B6 
or B) and male DBA/2 J (D2 or D) strains—hence BXD (Figure 1A). The first sets 
of BXDs were intended for mapping Mendelian loci [42, 44], but the family was 
also used to map complex traits such as cancer and cardiovascular disease [45–48], 
variation in CNS structure [49–52], and behavioral and pharmacological differences 
[53–62]. Twenty-seven of the original 32 BXD strains are still available from The 
Jackson Laboratory (JAX). In the mid-1990s, Taylor began the production of a sec-
ond set of BXDs [44] and added nine new strains (BXD33–BXD42). BXD1-BXD42 
carry the strain suffix “/TyJ”.
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We started production of another wave of BXDs at UTHSC in the late 1990s 
[29]. These new lines were derived from advanced intercross (AI) progeny that 
had accumulated chromosomal recombination events across 8 to 14 generations 
[63] (Figure 1B). These AI-derived BXDs incorporate roughly twice as many 
recombinations between parental genomes than do conventional F2-derived BXDs 
[63–67]. This improves mapping precision nearly two-fold. BXD strains BXD43 
and above from UTHSC were donated to JAX once fully inbred, and carry the 
strain suffix “/RwwJ”.

The BXD family has been used to define specific genes and even sequence 
variants corresponding to 20 or more QTLs. These include two tightly linked genes, 
Iigp2 and Irgb10, for Chlamydia infectivity [68, 69], Fmn2 as a master controller of 
tRNA synthetases in neurons [70], Ubp1 for blood pressure [48], Hc for H5N1 influ-
enza resistance [71], Comt as a master controller of neuropharmacological traits 
[72], Alpl for hypophosphatasia [73], Mrps5 for longevity [74], Bckdhb for maple 
syrup urine disease, Dhtkd1 for diabetes [75], Hp1bp3 for cognitive aging [76], Ahr 
for locomotor activity [77], Cacna2d1 for glaucoma [78] and Gabra2 for behavioral 
traits [79]. Alleles discovered in the BXD have been successfully translated into 
medical applications in humans, such as stratified preclinical testing based on 
glaucoma risk alleles revealed in the BXDs [80, 81].

Two things now set the BXD family apart from all other recombinant inbred 
populations: the number of strains within the family, and the deep, coherent 
phenome that has been collected for them.

3.1 The largest mammalian recombinant inbred family

The BXD family is the largest mammalian recombinant inbred population, hav-
ing expanded during its lifetime, from ~20 [42], to ~35 [44], to ~80 [29], to a total 
of 198 strains with data on GeneNetwork.org. There are 123 BXD strains currently 
distributed by The Jackson Laboratory (JAX) and an additional seventeen strains 
available at UTHSC, soon to be donated to JAX [82]. All 140 of these strains are 
available under a standard material transfer agreement. This expanded number of 
easily accessible strains increases the power and precision of linkage studies [82].

As the number of strains increases, there is an increase in the number of 
recombination junctions within the population, and consequently, quantitative 
trait loci (QTLs) can be narrowed down to smaller intervals. This is improved still 
further by the fact that approximately half of the BXD family are derived from 
advanced intercrosses, each of which will have a larger number of recombinations 
than their F2 derived cousins. We have demonstrated that when using approxi-
mately half of the family (60–80 strains), precision is close to 1 Mb for many 
traits [82]. This is also partially due to two other features of the family. The first, 
common to all RIs, is that the effective heritability of the trait can be boosted by 
resampling the same genome-type [38], and the second, that because there are two 
parents in the population, there is a well-balanced distribution of the two haplo-
types across the genome (the mean minor allele frequency is ~0.44).

When carrying out QTL mapping the largest gain of power is given by increas-
ing the number of genome-types tested [38, 73], and therefore, as the largest RI 
family, the BXD have the most power to detect genotype–phenotype linkage. A 
simple app has been produced to estimate power to detect QTL in the BXD, avail-
able at http://power.genenetwork.org [82]. When we examine power in the BXD 
family, we see a fact that might seem counter-intuitive to some: power is always 
increased more by increasing the number of strains compared to increasing the 
number of within strain biological replicates, even when heritability is low. Even 
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at low-to-moderate heritabilities, increasing replicates above 6 within-strain gives 
very little improvement in power.

We should also note that the effect sizes seen in the BXD family (and other two-
parent RIs), appear to be high, but this is correct, as effect size is highly dependent 
upon the population being studied. Effect sizes measured in families of inbred lines 
are typically much higher than those measured in an otherwise matched analysis of 
intercrosses, heterogeneous stock, or diversity outbred stock. Two factors contrib-
ute to the higher level of explained variance of loci when using inbred panels. The 
first reason is due to replicability. When effect size is treated as the proportion of 
total genomic variance explained by the QTL, effect size will increase as environ-
mental effects decrease due to replication. That is, resampling decreases the stan-
dard error of the mean, suppressing environmental “noise” [38]. This is in addition 
to the increase in heritability above (i.e. an increase in total variance explained by 
the total genomic variance).

The second reason is that nearly all loci in inbred panels are homozygous and the 
same number of sampled animals will account for twice as much genetic variance 
as in an F2 cross, and four times as much variance as in a backcross [38]. When phe-
notyping with fully homozygous strains we are only examining the extreme ends of 
the distribution, providing a boost in power to detect additive effects. The downside 
is obvious: we cannot detect non-additive effects. However, if we add in members 
of the diallel cross population (DAX), we can now estimate both dominance and 
parent-of-origin effects. This is a topic we will come to later.

3.2 The deepest phenome for any family

As well as being the largest recombinant inbred family, the BXD are also the most 
deeply phenotyped. Over 40 years of data is now openly and publicly available at 
genenetwork.org, providing an unrivaled resource. This dense and well-integrated 
phenome consists of over 10,000 classical phenotypes [83]. The phenome begins 
with Taylor’s 1973 analysis of cadmium toxicity, through to recent quantitative stud-
ies of addiction [84–86], behavior [87–90], vision [91], infectious disease [92–94], 
epigenetics [95, 96], and even indirect genetic effects [97–99]. The BXDs have been 
used to test specific developmental and evolutionary hypotheses [49, 100, 101]. 
They have allowed the study of gene-by-environmental interactions, with environ-
mental exposures including alcohol and drugs of abuse [86, 102–105], infectious 
agents [71, 106–109], dietary modifications [110–115], and stress [116, 117]. The 
consequences of interventions and treatments as a function of genome, diet, age, 
and sex have been quantified [90, 96, 115, 118–120], and gene pleiotropy has been 
identified [121].

Beyond this, there is now extensive omics data for the BXD. Both parents have been 
fully sequenced [75, 122, 123], and deep linked-read and long-read sequencing of 152 
members the BXD family is underway. Over 100 transcriptome datasets are available 
(e.g, [124, 125]), as well as more recent miRNA [84, 126], proteome [118, 120, 127], 
metabolome [75, 118, 125], epigenome [95, 128], and metagenome [93, 129] profiles. 
Nevertheless, much more is still to be done, as many of these measures have only been 
taken in the liver or in specific brain regions [118, 120]. However, as each of these new 
datasets is added, they will be fully coherent with previous datasets, multiplicatively 
increasing the usefulness of the whole phenome.

Access to this plethora of data is freely available from open-source web services, 
allowing users to download the data, or to make use of powerful statistical tools 
designed for global analyses that are integrated into websites (e.g. GeneNetwork.
org, bxd.vital-it.ch, and Systems-Genetics.org) [125, 130, 131].
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It cannot be overstated how important it is that those using the BXDs gain access 
to coherent genomes and quantitative phenomes generated under diverse laboratory 
and environmental conditions [83, 132]. New data can be compared to thousands of 
publicly available quantitative traits, and with each addition, the number of net-
work connections grows quadratically—enabling powerful multi-systems analysis 
for all users [73, 111, 112, 118, 125, 133]. Causal pathways can be produced from 
genome variants, to gene expression, to metabolite levels, to phenotype [73]. Within 
minutes of finding a gene of interest, a researcher can look for correlations between 
its expression and thousands of other genes, across dozens of tissues. Enrichment 
analysis can then be carried out on these ‘gene-friends’ suggesting pathways and 
networks that your gene of interest may be associated with. Correlations can be 
found between the expression of your gene and over 10,000 phenotypes, giving 
suggestions of the role of the gene at the whole-organism level. Shared QTLs, where 
both the gene-expression and a phenotype of interest are associated with the same 
locus, provide strong evidence of a genetic link. Using GeneNetwork.org we can 
build biological networks, moving from genetic variant, to expression difference, 
to protein expression, to whole-system outcomes, with just a few keystrokes, and 
without touching a lab bench [134–136]. Entire manuscripts can be written without 
leaving a web browser [137]. This is a massive step forward that is under-appreci-
ated by many.

The above demonstrates how the BXD can help us achieve our goal of predic-
tive modeling of disease risk and the efficacy of interventions [138]. Indeed, the 
family has already been used to test specific functional predictions of behavior 
based on neuroanatomical variation [139]. The BXD family is well placed to 
address these questions that encompass both high levels of genetic variation and 
gene-environmental interactions: our many-to-many-to-many problem. This is 
bolstered by the family’s easy extendibility into a massive diallel cross popula-
tion (DAX).

4. Diallel crosses

The diallel cross is another simple idea that has been with us for over 60 years 
[140–142]. We now have the major opportunity to take full advantage of this 
approach using large panels of fully sequenced isogenic strains. A DAX is the set of 
all possible matings between several genome-types (Figure 1D). For the C57BL/6 J 
and DBA/2 J there are the two reciprocal F1s, and these have been used to study 
parent-of-origin effects and to estimate heritability (e.g. [53]). As the number of 
parental strains increases, the number of potential diallel crosses increases expo-
nentially, and tools have been developed to deal with large DAXs [143]. Although 
we have learnt much about the genetic architecture of traits [53, 143–147], QTL 
mapping has been more difficult, given the relatively small number of strains used 
[148]. We can now imagine the full DAX for the BXD family of 140 strains – 19,460 
replicable isogenic F1s, all of which have a reproducible, entirely defined genome, 
and any subset of which can be generated efficiently for in vitro and in vivo pre-
dictive biology and experimental precision medicine. Just as the C57BL/6 J and 
DBA/2 J are the parents of the BXDs, the BXD strains are the parents of a potentially 
huge isogenic DAX.

At the first level, this has important consequences for power and precision. The 
number of strains phenotyped can be increased massively, giving power to detect 
loci with even the weakest of effect sizes [148]. Precision can also be enhanced, as 
F1s can be produced which segregate for a narrow region of the genome, producing 
a small QTL interval containing fewer genes. All the data collected in these F1s can 
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be coherently integrated into the phenome already aggregated for the BXD, mean-
ing that every new phenotype measured adds quadratically to the phenome and that 
any user of this F1 has access to over 40 years of data.

At the next level up, it also allows us to detect, for example, dominance and 
parent-of-origin effects mentioned above. Small DAXs of mouse strains have been 
able to identify parent-of-origin effects, epistasis, and dominance, but have been 
unable to map the loci causing these effects [53, 143–146, 149, 150]. By using recip-
rocal crosses of inbred strains (e.g. BXD001xBXD002F1 vs. BXD002xBXD001F1), 
we can produce isogenic litters, the members of which are all genetically identical, 
and whose only differences are due to parent-of-origin effects [151] (Figure 1C). 
By building a large DAX of reciprocal crosses, the genomic loci causing these 
dominance, epistatic, and/or parent-of-origin effects can be identified. Mapping 
of these non-additive effects is a complete dark zone in fully homozygous inbred 
populations.

Finally, and most importantly, the DAX provides a population for the testing 
of predictions. Using the BXD family we have enough strains to make associa-
tions, whether gene-phenotype, environment-phenotype, or gene–environment-
phenotype, with high power. However, using only the inbred BXD lines, we do not 
have a second population in which to test predicted associations. The BXD DAX 
provides a matrix of 19,600 isogenic genome-types. If only the ‘diagonal’ of inbred 
BXD strains are used to detect associations and make predictions, any of the 19,460 
isogenic F1s are available to test these associations and predictions (Figure 1D).

We can expand the DAX even further using easily available isogenic strains. 
There are approximately 200 RI strains from other two-parent mouse populations, 
including AXB/BXA (29 strains), AKXD (20), BXH (11), BRX58N (7), CXB (19), 
ILSXISS (60), LGXSM (~18), NXSM (16) and SWXJ (12), plus approximately 55–75 
strains from the Collaborative Cross 8-parent RI population [28]. From these inbred 
parents, there are over 152,100 isogenic F1s that can be produced and replicated. An 
additional expansion of this design is to cross RI families to genetically engineered 
disease models.

5. Diallele crosses to genetically modified strains

Genetically modified animals, including humanized, transgenic and knockout 
mouse models, have been a vital piece in uncovering genotype–phenotype associa-
tions, but they have often suffered from the same N-of-1 problem as above – for 
example, a knockout has been produced on a single genetic background, and then 
phenotyped. There is ample evidence that a genetic modification produced on one 
genetic background can have a different phenotypic effect compared to an identi-
cal modification on a different genetic background [152–165]. Expanding above 
this N-of-1 had been difficult, as each new isogenic strain had to be produced 
independently with a consequent near linear increase in effort. However, each of 
these genetically modified isogenic lines can be added into a DAX. Now, each of any 
of hundreds of F1 crosses is genetically defined, replicable and isogenic, but also 
contains one copy of the genetic modification (Figure 1C and D). Given that there 
are now thousands of knockout strains available (e.g. from the International Mouse 
Phenotyping Consortium [166, 167]), creating a DAX is a relatively cheap and 
quick method by which to test the effects of genetic background [158, 168–171]. 
By using an RI population, we can map the location of modifier loci, genes, and 
variants [172–174].

An excellent example of this already exists: the Alzheimer’s disease BXD 
(AD-BXD) panel developed by Kaczorowski and colleagues [175, 176]. By crossing 
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C57BL/6J-congenic females hemizygous for the humanized 5xFAD transgene (JAX 
Stock No. 008730) to males from BXD strains, they produced litters, half of which 
had the 5xFAD transgene (the AD-BXD), and half of which did not have the 5xFAD 
transgene (non-transgenic-BXD). The whole litter is genetically and environmen-
tally identical except for the presence of the transgene, giving an immediate and 
directly comparable control (Figure 1C). By crossing the humanized 5xFAD line 
on a single genetic background to a diverse but defined set of BXDs, they produced 
a population that incorporates high levels of sequence variation mirroring that 
of humans. They have mapped genetic and molecular causes of cognitive loss in 
AD-BXD mice [154, 175–179], including a broad spectrum of cognitive loss similar 
to that of humans with familial and late-onset AD [177]. The human transgenes in 
the 5XFAD line [180] sensitizes BXD hybrids to a greater or lesser degree—some 
begin to lose conditioned fear memory as early as 6 months; others well after a year 
[175], demonstrating a gene-by-gene-by-age interaction. Variation is highly heri-
table and mappable and gives a powerful means by which to define genetic causality 
and mechanisms of memory and non-cognitive loss and resilience to loss.

Neuner et al., were also able to demonstrate ‘reverse translation’ from human 
genomic data to mouse phenotype [175]. They generated a polygenic genetic risk 
score using 21 human genes which increase Alzheimer’s disease risk, and showed that 
the allele dosage was significantly associated with cognitive outcomes in the AD-BXD. 
This confirms firstly, that naturally occurring variation in these networks has over-
lapping effects in mice and humans, and secondly that gene-phenotype associations 
translate across species. This approach can be applied to many other phenotypes.

Given that phenotypes from genetically engineered mice on a single genetic 
background cannot be reliably generalized to other mouse genetic backgrounds 
[158], it is unsurprising that there are difficulties in generalizing to other species. By 
crossing genetically modified lines to RI strains to produce a DAX, we overcome this 
problem and allow the integration and translation of data to other populations and 
other species.

6. Integration and translation with other populations

Compared to conventional F2s and advanced intercrosses (AIs), outcrossed 
heterogenous stock, or diversity outbred stock, the BXD are particularly advanta-
geous when the heritability of a trait is moderate or low because the genetic signal 
can be boosted greatly by resampling isogenic members of the same line many times 
[38]. The drawbacks of the BXDs are lower precision, and a decreased amount 
of variation in the population compared to e.g. multiparent families (such as the 
Collaborative Cross and the Diversity Outbred), and a consequent decrease in the 
total phenotypic variance [181]. We consider this an acceptable drawback, as we 
have shown that medically relevant phenotypes have variation in the family and 
it is possible to achieve subcentimorgan mapping precision using only half of the 
full set of strains [82]. Beyond this level of precision, an efficient method to transi-
tion from QTLs to causal genes, variants, and mechanisms is to take advantage of 
complementary resources. These include sets of other murine mapping resources, 
efficient in vitro and in vivo screens [74, 132, 182], and human genome-wide asso-
ciation study (GWAS) data.

As a specific example of combining murine populations, Taylor’s cadmium testicu-
lar toxicity mutation (BXD Phenotype 13035) that was unmappable in 1973 now maps 
to 3 Mb on GeneNetwork.org. When combined with SNP data for common strains, 
the variant can be restricted to a 400 Kb region that includes the causal Slc39a8 gene, a 
heavy metal transporter expressed almost exclusively in the testes [183].
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Mouse-to-human genetic translation has at least a 20-year history [184], but 
has taken off now that GWAS are routine [48, 78, 111, 112, 123, 125, 185, 186]. 
Human GWAS data can be used to refine QTL found in mice, e.g. taking advantage 
of the power to detect associations in the BXD to identify a homologous region 
in humans, and then using the precision of human GWAS to identify a candidate 
gene [185–187].

More importantly, mouse data can be used to determine the function and causal 
pathway for associations made in humans. Finding variant-phenotype associa-
tions for any phenotype with GWASs is now only limited by one’s ability to collect 
phenotypes, but interpreting and determining the function of these variants is far 
more difficult, given the environmental and genetic variation in any human popula-
tion. RI mice, such as the BXD, provide a method of ‘reverse-translation’, from 
human-to-mouse. Again, the work of Kaczorowski and colleagues above provides 
an excellent example [175] that can be applied to any other phenotypes.

7. Conclusions

Despite occasional arguments to the contrary [188, 189], mice, when used 
correctly, are a good model of human biology and medicine [12, 190–192]. Indeed, 
at least 40 Nobel Prizes have been awarded for research involving mice (http://
www.animalresearch.info/en/medical-advances/nobel-prizes) [193], and their 
use has been vital in understanding the pathogenesis of many diseases. For true 
predictive medicine, we need to understand all gene-by-gene-by-environment-
by-age-by-sex-by-treatment interactions [160], and animal models are the only 
way to do this at scale. The importance of using genetically diverse mice has often 
been overlooked, leading to difficulties with translation. RI families, such as the 
BXDs, and their expansions [130], including diallel crosses and reduced complex-
ity crosses [194, 195], overcome this problem and are a vital step towards accurate, 
individualized, predictive medicine.
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