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Abstract

Epigenetics “above or over genetics” is the term used for processes that result in 
modifications which are stably inherited through cell generations, without changing the 
underlying DNA sequence of the cell. These include DNA methylation, Post-translational 
histone modification and non-coding RNAs. Over the last two decades, interest in the 
field of epigenetics has grown manifold because of the realization of its involvement in 
key cellular and pathological processes beyond what was initially anticipated. Epigenetics 
and chromatin biology have been underscored to play key roles in diseases like cancer. 
The landscape of different epigenetic signatures can vary considerably from one cancer 
type to another, and even from one ethnic group to another in the case of same cancer. 
This chapter discusses the emerging role of epigenetics and chromatin biology in the 
field of cancer research. It discusses about the different forms of epigenetic mechanisms 
and their respective role in carcinogenesis in the light of emerging research.

Keywords: Epigenetics, DNA Methylation, Histone Modifications, Cancer

1. Introduction

Transmission of characters in a stable, inheritable manner is governed by the 
genetic make-up of a cell. This information for vertical transmission of characters 
is carried by the macromolecule deoxyribonucleic acid (DNA). The linear sequence 
of nucleotides in the DNA dictates the sequence of amino acids in the proteins and 
hence controls all the vital processes occurring within the cell. However, the linear 
length of DNA molecules is very long. For example, a typical human cell contains 
about 2 meters long DNA. Therefore, in order to accommodate DNA into nucleus, 
this genetic information is contained in the form of a nucleoprotein complex called 
chromatin [1]. This is particularly true about eukaryotic cells. Though prokaryotic 
cells also contain a nucleoid, it, however, is not well-organized.

The organization of DNA into chromatin is particularly important for two main 
reasons.

1. To bring about compaction of the large DNA molecule into a small nuclear space 
in an ordered manner.

2. To facilitate regulated gene expression.
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Alongside DNA, chromatin mainly consists of small, basic positively charged 
group of proteins called histones. The positively charged histones bind with the 
negatively charged DNA in an energetically favorable manner inside chromatin [2]. 
These proteins have remained the focus of intensive research for many years now. 
Apart from DNA and histones, chromatin also contains a huge array of non-histone 
proteins, most of which are not as well characterized and well-studied as histones.

Earlier it was thought that compaction of DNA into chromatin solely occurs to 
accommodate DNA. But later it was realized that this compaction plays a paramount role 
in orderly organization of DNA and thereby helps in differential gene expression. The 
fundamental repeating unit of chromatin is the nucleosome which consists of two copies 
each of histones H2A, H2B, H3 and H4 wrapped around 146 bp of DNA in a left-handed 
helical manner [1]. The histone proteins are named in the order in which they were dis-
covered. Because of being associated with the nucleosome core, these histone proteins 
are known as the core histones. Another class of histones binds DNA at the entry and 
exit sites into nucleosomes. This is known as the linker histone H1 and paves way for 
further compaction of nucleosomes into higher order chromatin structures (Figure 1).

Upon observation under a microscope, chromatin appears as two distinct enti-
ties within the nucleus. These are termed as euchromatin and heterochromatin. 
Euchromatin is the lightly stained part of chromatin which mostly lies towards 
the interior regions of nucleus and contains actively transcribed genomic regions. 
Heterochromatin is the darkly stained fraction which mostly lies towards the 
periphery of nucleus [3]. It contains regions which are transcriptionally silent and 
mostly contains repetitive DNA sequences. This spatial organization of chromatin is 
maintained through various mechanisms. These mechanisms serve as the “epigenetic 
carriers of nuclear information” within the cell and include covalent histone modi-
fications, non-coding RNAs and chromatin remodeling complexes and lately also 
included DNA methylation (Figure 2).

Figure 1. 
Representation of different levels of hierarchical chromatin organization. (A) Inside a compact chromosome, 
DNA and proteins are organized at different levels. (B) Ultrastructure of a nucleosome containing two copies of 
H2A,H2B,H3 and H4 inside 147 bp of DNA. 
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2. Epigenetics and chromatin biology: unifying themes and differences

At its heart, epigenetics refers to the study of heritable changes in gene expression 
without changes in the DNA sequence. This term was coined by Waddington and 
as the name indicates, epi (above or over genetics) is any moiety that can be stably 
inherited by cells across many generations without altering the sequence of nucleo-
tides in the DNA. The study of epigenetics previously involved study of covalent 
histone modifications and non-coding RNAs. However, DNA methylation has also 
been increasingly recognized as an epigenetic phenomenon owing to its non-sequence 
based heritable nature and its importance in maintaining cellular homeostasis and 
association of its perturbations with various diseases. Therefore, the definition and 
scope of epigenetics has changed dynamically since the inception of the field.

Quite often, epigenetics and chromatin biology are very loosely stated terms. 
However, to be more precise, epigenetics refers to the study of “epigenetic marks 
or signatures” which play a prominent role in maintenance of cellular homeostasis 
whereas chromatin biology refers to the study of “chromatin structure and func-
tion”. This encompasses nuclear dynamics, topology, localisation, organisation and 
three-dimensional (3D) structure [3]. There is a huge overlap between the two terms, 
and these are often used interchangeably. For example, epigenetic signatures and 
modifications play a paramount role in the maintenance of nuclear topology, overall 
chromatin organization and chromatin states.

Field of epigenetics is very interesting because of the reversible nature of epi-
genetic changes. This means that although these changes can be stably inherited, 
however, unlike DNA sequence, these changes can also be reversed under particular 

Figure 2. 
Major players involved in the propagation of epigenetic mechanisms in cells. DNA methylation and micro RNAs 
are involved in gene silencing, histone modifications are involved in both silencing and expression of genes.
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conditions. In fact, mechanisms are well in place within the cells which lead to the 
reversal of these modifications [4]. Interestingly, these changes can also be targeted 
for the reversal externally, using specific enzymes, under desired conditions. This 
may include the reversal of epigenetic modifications involved in disease progression 
with the help of enzymes [5]. For example, reversal of an epigenetic modification that 
is involved in carcinogenesis by an enzyme specific for the reversal to alleviate some 
of the symptoms.

Epigenetic modifications play a very prominent role in almost all the cellular 
processes like growth, cell division, maintenance of cellular identity etc. Therefore, 
any changes in these modifications can lead to serious outcomes. Perturbations in 
epigenetic modifications have been observed to be involved in various deleterious 
conditions including cancer [6].

In this chapter, we shall discuss about the various epigenetic mechanisms, their 
importance, major functions that they carry out in the cells and changes to these 
marks and their implications in cancer.

3. DNA methylation

DNA methylation involves transfer of a methyl group from S-adenosylmethionine 
to the 5’position of cytosine residues in DNA. DNA methylation is one of the most 
prominent epigenetic events that take place within the cells and has been shown 
to play important roles in various cellular processes like genome integrity, genome 
imprinting, X chromosome inactivation and development [7–9].

DNA methylation at 5 methyl cytosine is catalyzed by two groups of 
methyltransferases.

1. DNMT1 which catalyzes methylation on the newly synthesized hemi-methylated 
DNA strand, utilizing the parental strand as template for copying of methylation 
pattern. This class of enzymes are known as the maintenance methyltransfer-
ases as they play role in maintaining the methylation status following replica-
tion. These are critically important enzymes for mammals as mice deficient in 
DMNT1 display embryonic lethality [10].

2. DNMT3a and 3b. These are the enzymes which play role in methylating DNA at 
5′ methyl cytosine without utilization of a methylated template. These enzymes 
are therefore known as de novo methyltransferases and these have been known 
to catalyze methylation events during various important cellular phases like 
development. These enzymes are therefore highly expressed during embryogen-
esis and display reduction in expression pattern in adult tissues [11]. DNMT 3a 
and 3b are also extremely important for mammals since DNMT 3b deficient mice, 
similar to DNMT 1, are embryonic lethal whereas those deficient in DNMT 3a die 
by the age of 4 weeks [10].

Another member of the DNMT family of enzymes is DNMT 3 L. It was discov-
ered in 2000. DNMT 3 L lacks an intrinsic methyltransferase activity but assists 
DNMNT3a and 3b in methylating retrotransposons [12].

In eukaryotes, DNA methylation occurs predominantly within repetitive 
sequences in order to maintain genomic integrity [13]. Methylation on cytosine 
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residues usually takes place in the context of CG dinucleotides (Known as CpG) and 
around 75% of CpG dinucleotides in humans remain methylated. These CpG dinu-
cleotides are unevenly distributed but are concentrated in stretches of high frequency 
known as CpG islands. These islands remain mostly unmethylated and can be found 
in the promoters of constitutively expressed genes like housekeeping genes [14]. In 
humans, almost half of the estimated 29,000 CpG islands remains unmethylated 
under normal conditions [15–17].

Methycytosine residues often co-operate with other effectors to bring about a 
silenced chromatin state. Methyl binding domain (MBD) proteins recognize and 
bind to methylated cytosines. These MBD proteins act as a signal/binding platform 
for histone modifying and chromatin remodeling enzymes to bring about further 
compaction of chromatin [18]. Apart from binding methylated DNA, MBD 2 (a 
member of MBD family of proteins) has also been shown to promote the DNA meth-
yltransferase activity of NuRD (chromatin remodeling complex) by interacting with 
NuRD [19, 20]. This interaction brings NuRD complex in close proximity of cytosine 
residues which are later methylated by NuRD. Till date, six members of methyl bind-
ing domain proteins have been identified that include MBD1, MBD2, MBD3, MBD4, 
methylcytosine binding protein 2 (MECP2) and Kaiso [21]. All of these proteins are 
under intense investigation and efforts are being made to identify more members of 
the family.

Various genes contain regions of CpG dinucleotides in their promoters with 
variable degrees of methylation levels [14]. These levels are crucial for normal func-
tioning of the cells and any mis-regulation in this level is associated with a number 
of physiological outcomes. Methylated DNA elements often co-operate with other 
epigenetic elements to ensure proper silencing of chromatin and any increase in levels 
of DNA methylation are often involved in silencing of cognate genes which can lead 
to carcinogenesis [15, 22]. For example, it has been observed that increase in the levels 
of promoter DNA methylation in tumor suppressor genes leads to a decrease in their 
expression and hence a steady decline in their cellular activity is observed [15, 23–25]. 
Hypermethylated promoters can also serve as targets for transition mutations due 
to spontaneous deamination of 5’methyl cytosine into thymine [7, 26]. This leads 
to transmission of DNA with errors during replication to new cells. These cells are 
genomically unstable and with time, accumulate more and more mutations which 
in the absence of proper surveillance, eventually lead to cancer initiation [7, 16, 27]. 
Decrease in the DNA methylation of tumor suppressor genes has been observed in a 
number of primary tissues from cancer patients at various geographical locations.

Global hypomethylation can also ensue which can lead to loss of repression from 
the repetitive DNA sequences (like transposons) and imprinted genomic sequences. 
This can be accompanied by loss of methylation from genomic regions involved in 
maintaining chromosome stability like peri centromere. This can cause gross genomic 
instability which is a characteristic of many forms of cancer. Though the relationship 
between global loss of DNA methylation and cancer has not been very well studied 
and needs more research (Figure 3) [16, 28, 29].

Alternatively, certain genes undergo hypomethylation and therefore experience 
increase in expression that has been associated with carcinogenesis. Genes predomi-
nantly affected by hypomethylation include developmentally critical genes, enzymes, 
growth regulatory genes and tissue-specific genes such as germ cell-specific tumour 
antigen genes [30]. Various other genes which have been shown to be involved in 
carcinogenesis as a result of aberrant DNA methylation are listed in Table 1.
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S.No. Name of 

gene

DNA 

methylation 

change

Change 

in gene 

expression

Type of cancer References

1. P16 Increase Decrease Colorectal, Renal

Lung, Oral, 

Head and neck, 

Hepatic

[23, 29, 31–39]

2. Hmlh1 and 

hMSH2

Increase Decrease Colorectal, Renal [40–42]

3. P Cadherin Increase Decrease Breast, Hepatic, 

Pancreatic, Lung, 

Salivary gland

[26, 37, 43–45]

4. Cyclin D2 Decrease Gastric [46]

5. MAGE Decrease Melanoma [47]

6. P15 Increase Decrease Oral carcinoma [32]

7. RASSF1 Increase Decrease Nasopharyngeal 

Hepatic, Bladder

[37, 48–50]

8. MGMT Increase Decrease Oral, Head and 

neck

Bladder, Lung

[33, 35, 38, 39, 

50, 51]

9. FHIT Increase Decrease Lung [23, 43]

10. DAP-K Increase Decrease Oral, 

Nasopharyngeal

Head and neck, 

Lung

Pancreatic, Renal

[32, 33, 35, 48, 38, 

39, 51–53]

11. APC Increase Decrease Colorectal, Lung [40, 51, 54]

12. RAR 

(retinoic 

acid 

receptor)

Nasopharyngeal

Head and Neck

Lung

[23, 38, 39, 43]

Table 1. 
Changes in DNA methylation of different genes in different forms of cancer.

Figure 3. 
Schematic of two broad mechanisms involved in cancer progression through DNA methylation. Hypermethylation 
and silencing of tumor suppressor gene promoters to allow unchecked growth of damaged cells to accumulate more 
damage and generate cancer phenotype. Hypomethylation of proto-oncogenes to favor uncontrolled proliferation 
of cells to generate cancer mass.
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4. Epigenetic modifications in context of chromatin

The organization of DNA into chromatin, although very necessary, imposes 
constraints on all the nuclear processes which require DNA as a template like replica-
tion, transcription and repair. Therefore, in order to gain access to the underlying 
DNA, chromatin structure is dynamically regulated through various mechanisms. 
This flexibility is permitted by mechanisms like histone modifications, incorporation 
of histone variants and chromatin remodeling [2].

Histone modifications act as binding platforms for various effectors for appropri-
ate downstream signaling. Histone variants are incorporated by replacing canonical 
histones under specified conditions into nucleosomes. The variants possess different 
bio-physical properties compared to their canonical counterparts and hence play 
crucial roles in cellular processes like DNA repair. Chromatin remodeling leads to 
sliding of nucleosomes along chromatin, exposing regions of genome which could be 
acted upon by trans-acting factors for specified outcomes.

4.1 Histone modifications

Histone proteins undergo a variety of covalent modifications which can either lead 
to compaction or relaxation of the underlying DNA within chromatin. The outcome 
of these modifications is dictated by the type of modification, degree of modifica-
tion as well as stage of the cell cycle. Histone proteins consist of a highly structured 
C-terminal globular domain and an unstructured N-terminal tail. Globular domains 
are generally involved in mediating histone-histone and histone-DNA interactions 
while as N-terminal tails act as sites for covalent modifications. Among the different 
classes of histone proteins, histone H3 and H4 generally undergo covalent modifica-
tions in their tails. Though recently, H2A and H2B have also been observed to undergo 
certain modifications [55, 56]. Similarly, many modifications have been observed in the 
globular domain of histone H3 as well [1]. Histone modifications play role in numer-
ous biological processes like gene regulation, DNA repair, chromosome condensation 
and spermatogenesis [57]. Some of the well-recognized histone modifications include 
acetylation and ubiquitination of lysine (K) residues, phosphorylation of serine (S) and 
threonine (T) residues, methylation of arginine (R) and lysine (K) residues as well as 
other less known modifications [58, 59]. These modifications are largely postulated to 
affect chromatin function through two distinct mechanisms: By altering the electrostatic 
charge of histones, these could alter the structural properties or the binding of histones 
to DNA. As against the first mechanism, some of the modifications create binding 
surfaces for the recruitment of specific functional complexes to their sites of action e.g., 
proteins containing bromodomains recognize acetylated residues while those containing 
chromodomains recognize methylated residues [60, 61]. It was, In fact, the potential 
specificity of these interactions which prompted Struhl and Allis to propose the ‘histone 
code hypothesis’ according to which “specific combinatorial sets of histone modification 
signals dictate the recruitment of particular trans-acting factors to accomplish specific func-
tions” [62]. Initially, it was thought that histone proteins undergo covalent modifications 
after translation (post translational modifications) in a manner dictated by nucleosomal 
context. But recently, it has been observed that histones can undergo co-translational 
modifications as well, depending upon the cellular context. This observation has added 
an additional layer into the role of histones in regulation of cellular homeostasis and 
clearly calls for more research in the field. Perturbations in histone modifications is 
associated with many physiological disturbances, including carcinogenesis [5].
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4.1.1 Histone acetylation and deacetylation

Acetylation is the most widely studied post translational modification in histones. 
This modification involves transfer of an acetyl group from N-acetyl-Co-A to the 
€ amino group of lysine with the help of histone acetyltransferases (HATs). Histone 
acetylation is associated with loosing of chromatin structure due to neutralization 
of the positive charge on histones with the negative charge on acetyl group which is 
responsible for increase in transcription. In fact, various transcription activator or 
co-activator complexes contain HAT activity such as CBP 300, TAF II 250. Reversal of 
acetylation is carried out by another class of enzymes known as histone deactylases 
(HDACs). Both HATs and HDACs have been studied extensively in relation to various 
diseases, including neurodegeneration and cancer [4]. Depending upon the gene/s 
being involved (oncogenes or tumor suppressor genes), HATs and HDACs can have 
different effects on the cancer outcomes.

4.1.2 HATs, HDACs and cancer

Relationship between histone acetylation status and cancer has been demonstrated 
in various studies. For example, a loss of acetylation on lysine 16 of histone H4 (H4K16) 
has been observed in cancer cell lines and primary human tissues by Fraga et al. [63]. 
Decrease in promoter acetylation and consequent decline in expression of P21 gene 
has been observed in some forms of cancer with subsequent rescue of expression upon 
treatment of cells with HDAC inhibitors under similar conditions [64]. Another study 
has linked decrease in histone acetylation with tumor invasiveness and metastasis [65]. 
Accumulating data also shows that HDACs are involved in hematological malignancies 
like acute promyelocytic leukemia (APL) due to aberrant recruitment to non-target 
promoters, as a result of interaction with translocation-induced fusion proteins like 
RAR-PML [66]. Downregulation of E-cadherin due to decrease in promoter acetylation 
levels has been implicated in the invasive potential by carcinomas [67, 68]. A number 
of studies have also linked levels of specific classes of HDAC enzymes with different 
forms of cancer like increase in HDAC1 expression in gastric [69], prostate [70], colon 
[71], breast carcinoma [72], increase in HDAC2 expression in cervical [73], gastric [74] 
and colorectal carcinoma [75]; increase in HDAC3 expression in colon carcinoma [76] 
and increase in HDAC 6 in breast carcinoma [71]. Mutations in HDAC2 gene has also 
been reported in sporadic colorectal carcinomas [77].

Various mechanisms are responsible for the role of specific forms of enzymes in 
specific cancer types, largely depending upon their interaction partners and the path-
ways involved. For example, HDAC1 has been shown to play a role in transcriptional 
repression of various oncogenic targets of retinoblastoma gene (Rb). Therefore, loss 
of HDAC1 activity leads to compromise in efficiency of Rb in downregulation of tar-
get oncogenes [78]. HDAC3 has also been seen to interact with retinoblastoma protein 
(Prb) in cancer, Perhaps the most important HDAC III enzyme in cancer is SIRT1 due 
to its role in regulation of protein factors like P53 [79], androgen receptor [80], p300 
[81], E2F1 [82], DNA repair factor ku70 [83] and most importantly, NF-KB [84].

4.1.3 Histone methylation

Histone methylation involves transfer of methyl group(s) from S-adenosyl-
methionine to lysine or arginine residues on histones. The enzymes catalyzing histone 
methylation are known as histone methyltransferases (HMTs). Depending on the 
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target residue, histone methyltransferases are of two kinds 1. Histone lysine meth-
yltransferases (HKMTs) and histone arginine methyltransferases (HRMTs). Also, 
lysine residues have three replaceable amino groups on the β-carbon. Therefore, lysine 
can undergo mono, di or tri-methylation whereas arginine can undergo only mon and 
di methylation.

Histone methylation is most commonly observed on lysine residues of H3 and 
H4 tails [85]. It is the most diverse histone modification in terms of complexity and 
is involved in various functions, depending on the physiological context. Histone 
methylations commonly associated with gene activation include H3K4, H3K36 and 
H3K79 and those associated with gene inactivation include H3K9, H3K27 and H4K20 
[86]. Furthermore, variations in the degree of methylation on a single residue can also 
amplify the histone code further. For example, monomethylated H4K20 (H4K20me1) 
is involved in the compaction of chromatin and therefore transcriptional repression. 
However, H4K20me2 is associated with repair of DNA damage [63].

Histone methylation is involved in several cellular functions like maintenance of 
chromatin structure, DNA repair, gene silencing, prevention of hyper-recombination, 
maintenance of genome integrity et cetera. It is also involved in maintenance of 
X-chromosome integrity and silencing through excessively methylation of H3K9 on 
the second copy of human X chromosome in female cells. This provides a binding 
surface for methyl domain binding (MDB) protein and heterochromatin protein 
(HP1) to heterochromatinize and silence the second copy of X-chromosome [87, 88]. 
Since histone methylation plays a paramount role in regulation of gene expression and 
represents the most stable and complex histone modification, even slight changes to 
the methylation pattern can have deleterious effects on the organism. In Saccharomyces 
cerevisiae, a lethal mutation that leads to H3K4, H3K36 and H3K79 methylation 
inactivates many genes required for cell cycle progression and hence causes a delay 
in mitosis. It has been discovered that deletion of the methyltransferase genes which 
play role in the above-mentioned methylations allows this organism to live since the 
lysine residues in question are not methylated [89].

4.1.4 HMTs and cancer

Cancer cells use a diverse range of molecular mechanisms to alter histone meth-
ylation landscape. These include mis-regulation of histone methyltransferases and/
or demethylases, mistargeting of histone methyltransferases and mutations in 
methyltransferases. For example, if areas around oncogenes become unmethylated, 
these genes will attain the potential of being transcribed at an alarming rate. On the 
contrary, if areas around tumor suppressor genes become highly methylated, these 
genes will lose their activity and therefore cancer will be more likely to occur [90]. 
Accumulating data suggests that histone methylation is mis-regulated in various 
forms of cancer [91, 92]. Fraga et al. [63] have observed that loss of H4K20 trimeth-
ylation that leads to hypomethylation of repetitive sequences is a common event in 
human cancers which occurs at a early stage during tumorigenesis. Mutations on 
the genes encoding histone proteins are also linked with cancers. 30% of paediatric 
glioblastomas have mutations at key post translational modification sites in histone 
genes [93]. Recently, mutations in metabolic enzymes have also been observed to 
have a role in histone methylation status alteration. The mutated metabolic enzymes 
produce altered metabolites (popularly known as oncometabolites) which jeopardize 
the function of methylase enzymes. For instance, inhibition of histone demethylation 
Jumonji C enzymes by the oncometabolite d-2-hydroxyglutarate [94–97].
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4.1.5 Histone phosphorylation

Phosphorylation of histones takes place on serine, threonine, tyrosine and histi-
dine residues, predominantly in the N-terminal tails of all nucleosomal histones by 
histone kinase enzymes which transfer a phosphate group from ATP to the hydroxyl 
group of the target amino-acid side chain. Phosphate group contains significant nega-
tive charge and therefore phosphorylation is generally associated with transcriptional 
upregulation. Various proteins have been identified which contain phosphor-binding 
domains [98, 99]. Histone phosphorylation changes dynamically with the transcrip-
tional profile of the cell [100]. For example, H3Ser10 phosphorylation correlates with 
gene activation in mammalian cells and heat shock response induced transcription in 
Drosophila [101]. However, the same phosphorylation is associated with chromosome 
condensation and segregation during mitosis and meiosis [102]. Histone phosphory-
lations also play a pivotal role in response to DNA damage e.g., phosphorylation of 
H2A(X) on serine 139 in mammalian cells (referred to as γ H2AX) and S129 of H2A in 
yeast [103].

4.1.6 Histone phosphorylation and cancer

Regulation of the level of histone H3 phosphorylation by an interplay of the 
activities of kinases and phosphatases serves as a means of promoting chromosomal 
condensation and segregation in mitosis [104]. Phosphorylation of H3S10 has also 
been linked to the expression of proto-oncogenes like c-fos [105–107]. It has been 
detected with the aid of ChIP assay that phosphoacetylation of H3 tails exist at the 
promoters of several MAP- kinase activated genes as well as the promoters of c-fos and 
c-jun [108]. H2A(X) phosphorylation is involved breast cancer [109] and colon cancer 
[110]. Histidine phosphorylation on histone H4 has been shown to be involved in liver 
regeneration and cancer [111]. Phosphoacetylation of histones, involving phosphory-
lation of histone H3 on residue serine 10 and acetylation of histone H4 on lysine 12 
has been shown to have a role prognosis of oral squamous cell carcinoma [112].

4.1.7 Histone ubiquitination

It is a process in which ubiquitin molecules are added to lysine residues of his-
tones. Monoubiquitination is the major form of ubiquitination in histones. However, 
histones H2A and H2B can also be modified by polyubiquitination. The first ubiquiti-
nated histone to be identified was H2A [113]. H2A and H2B also hold the distinction 
of being the most abundantly ubiquitinated proteins in the nucleus [113, 114]. In 
addition, H3, H4 as well as H1 have been reported to be modified by ubiquitin but the 
biological function of these ubiquitinations has not been well characterised [115, 116]. 
Histone ubiquitinations perform a number of important nucleosomal functions. 
Chromatin immunoprecipitation (ChIP) experiments have revealed enrichment of 
monoubiquitinated H2A (H2Aub) in the satellite regions of genome and of H2Bub in 
transcriptionally active genes [117, 118].

4.1.8 Histone ubiquitination and cancer

Several recent studies have linked ubiquitination, especially H2Bub with inflam-
mation and cancer [119–121]. Histone H2Bub1 predominantly resides downstream 
to transcription start sites (TSS), a position which allows association with highly 
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transcribed genes and therefore makes this protein a likely target in cancer [117]. 
RNF20/RNF40 has been shown to negatively regulate cancer- related inflammation in 
mice and humans through increased recruitment of repressive NF-κB subunit p50 to 
various gene targets to downregulate their transcription [121]. RNF40 is also known 
to modulate NF-κB activity in colorectal cancer in mice [122] while as RNF20 and 
H2B ubiquitylation have also been shown to be involved in breast cancer [123]. Loss 
of H2B monoubiquitination has also been shown to activate immune pathways by 
alteration of chromatin accessibility in ovarian cancer [124–126].

5. Conclusion

Epigenome in a typical eukaryotic cell is packaged as an entity containing nucleo-
proteins-DNA and histones. This epigenome is compartmentalized into euchromatin 
and heterochromatin and contain various marks which are transmitted from one 
cell generation to another [127]. Covalent DNA and histone modifications are the 
carriers of epigenetic inheritance which are required for the maintenance of a stable 
epigenome [128]. Any disturbance in the propagation and maintenance of a stable 
epigenome is associated with diseases like transformation and cancer. The process of 
cellular transformation is associated with changes in the epigenetic landscape of DNA 
methylation and histone post-translational modifications. In recent past, genome 
wide studies have identified various genes related to diseases like cancer and neuro-
degeneration [4]. Many of these genes have been observed to code for key epigenetic 
enzymes like HDACs, which raises the possibility of their involvement in far reaching 
pathological problems. In recent years, non-coding RNA has also been increasingly 
investigated in relation to carcinogenesis and various types of non-coding RNAs have 
been associated with different forms of cancer [129, 130].

A stable epigenome also requires proper chromatin conformation. It has been 
observed that upon transformation, the 3D organization and nuclear topology 
also undergoes certain changes. These topological changes can be both cause and 
consequence of alterations in histone and DNA modifications. Topological changes 
in chromatin structure are associated with increased expression of repetitive DNA 
elements, which leads to hyper-recombination and gross genomic instability which 
can further lead a cell on the path of transformation.

Studies performed on chromatin structure and covalent modifications have paved 
way for better understanding as well as therapeutic intervention of various forms 
of cancer. Epigenetic approach of therapeutic intervention in cancer is definitely a 
better approach for cancer treatment since it aims at reversal of inheritable changes 
without changing the DNA or without affecting normal physiological processes. 
Also, tumor forms have recently been discovered with anatomical restrictions which 
contain mutations in histone variant genes. For example, H3.3, a variant of histone 
H3, contains a point mutation at residue 34 in which glycine changes to valine or 
arginine (H3.3G34V or H3.3G34R). These tumors are found almost exclusively in 
the cerebral hemispheres [131, 132]. Tumors with point mutations in histone variant 
H3.1 (H3.1K27M) are restricted to pons of brainstem while as H3.3K27M tumors are 
found along the midline of the brain [133]. This “anatomical restriction” in tumor 
types and the corresponding mutations in histone variants are indicative of an excit-
ing new dimension of the role of epigenetics in tumor biology [134, 135]. This also 
provides cues about the role of epigenetics in defining tumor micro-environment. 
Alternatively, many more tumor types can be screened for mutations in genes coding 
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for epigenetic factors to have better insights into the role of epigenetics in tumor 
progression. These findings also encourage the possibility of exploration of epigenetic 
therapy in resetting the balance in tumor micro-environment for therapeutic target-
ing. However, the field of epigenetic studies and epigenetic cancer therapy is still in its 
infancy and intense investigations are required for further exploration of the possibil-
ity of epigenetic targeting and treatment of cancer (Figure 4).

Figure 4. 
Schematic depicting two major pillars of epigenetic mechanisms that is, DNA methylation and histone modifications, 
their importance in maintaining normal cellular morphology and function and their mis-regulation leading 
to cancer.
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