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Chapter

On Some Important Ordinary
Differential Equations of Dynamic
Economics
Anastasios Tsoularis

Abstract

Mathematical modeling in economics became central to economic theory during
the decade of the SecondWorldWar. The leading figure in that period was Paul
Anthony Samuelson whose 1947 book, Foundations of Economic Analysis, formalized
the problem of dynamic analysis in economics. In this brief chapter some seminal
applications of differential equations in economic growth, capital and business trade
cycles are outlined in deterministic setting. Chaos and bifurcations in economic
dynamics are not considered. Explicit analytical solutions are presented only in rela-
tively straightforward cases and in more complicated cases a path to the solution is
outlined. Differential equations in modern dynamic economic modeling are exten-
sions andmodifications of these classical works. Finally wewould like to stress that the
differential equations presented in this chapter are of the “stand-alone” type in that
they were solely introduced to model economic growth and trade cycles. Partial
differential equations such as thosewhich arise in related fields, like Bioeconomics and
Differential Games, from optimizing the Hamiltonian of the problem, and stochastic
differential equations of Finance and Macroeconomics are not considered here.

Keywords:Walrassian condition, Marshallian condition, homogeneous function,
Cobb–Douglas form, endogenous growth

1. Introduction

Ordinary differential equations are ubiquitous in the physical sciences and are
fundamental for the understanding of complex engineering systems [1]. In eco-
nomics they are used to model for instance, economic growth, gross domestic
product, consumption, income and investment whereas in finance stochastic dif-
ferential equations are indispensable in modeling asset price dynamics and option
pricing. The vast majority of the ordinary differential equations in economic are
autonomous differential equations or difference equations, where time is an
implicit variable, whereas the more difficult to solve delay (differential-difference)
equations have received much less attention. Difference equations seem a more
natural choice of modeling economic processes as key economic variables are mon-
itored at discrete time units but they can present significant complications in their
asymptotic behavior and are thus more difficult to analyse. Differential equations
on the other hand, can be more amenable to asymptotic stability analysis. Partial
differential equations, usually of the second order, for functions of at least two
variables arise naturally in modern macroeconomics from solving an optimization
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problem formulated in a stochastic setting and in optimal control theory. Two books
that are recommended for delving deeper into the- economic applications of differ-
ential equations are the introductory one by Gandolfo [2] and the more advanced by
Brock and Malliaris [3]. Both books are excellent sources for ordinary differential
equations in economic dynamics. A more recent book which requires strong math-
ematical background is by Acemoglu [4].

2. Some differential equations of neoclassical growth theory and
business cycles

Some of the most important differential equations developed by economists
during a period spanning over sixty years are presented in this section. Most of them
beginning with Solow’s development of a growth model, which was partly moti-
vated by the works of Harrod and Domar, are models from Neoclassical Growth
Theory. The main postulate of Neoclassical Growth Theory is that economic growth is
driven by three elements: labour, capital, and technology. Economic growth is an
important topic in economics and Solow’s growth model is the first topic taught in
undergraduate economics because of its underlying simplicity and importance as
argued by Acemoglu [5]. The differential equation by Samuelson is concerned with
demand and supply scenarios. Phillips’ work is the earliest attempt to employ clas-
sical feedback control theory in order to steer a national economy towards a desired
target. The remaining works are differential equations with time lags inherently
present in production and capital accumulation. Due to space limitations, the expo-
sition is somewhat uneven with full mathematical analyses of most models and
cursory treatments of those with time lags. The choice of the differential equations
presented in this chapter is a judicious one, the list is by no means exhaustive, but is
meant to afford a glimpse into how the mathematical thinking of some famous
economists has influenced the economic growth theory in the twentieth century.

2.1 Harrod-Domar

The Harrod-Domar model was developed independently by Roy Harrod [6] and
Evsey Domar [7] to analyze business cycles originally but later was used to explain
an economy’s growth rate through savings and capital productivity. Output, Y, is a

function of capital stock, K, Y ¼ F Kð Þ, and the marginal productivity, dY
dK ¼ c ¼

constant. The model postulates that the output growth rate is given by

1

Y

dY

dt
¼ sc� δ,

where s is the savings rate, and δ the capital depreciation rate. The straightfor-
ward solution,

Y tð Þ ¼ Y0e
sc�δð Þt

:

clearly demonstrates that increasing investment through savings and productiv-
ity boosts economic growth but does not take into account labour input and
population size.

2.2 Samuelson

In his 1941 Paul Samuelson [8] paper employed simple differential equations
to investigate the stability of equilibrium for several demand–supply scenarios.
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The simplest stability analysis was carried out under the Walrasian and Marshallian
assumptions. In the former price increases (decreases) if excess demand is positive
(negative), whereas in the latter quantity increases (decreases) if excess demand
price is positive (negative). Excess demand is the difference between the quantity
that buyers are willing to buy and the quantity that suppliers are willing to supply at
the same price. Excess demand price is the difference between the price that buyers
are willing to pay for a given quantity and the price required by the suppliers.

Let D p, αð Þ and S pð Þ denote the demand and supply functions of price, p,
respectively with α a shift parameter representing “taste”. At equilibrium, price, p ∗ ,
and quantity, q ∗ , are given by

q ∗ ¼ D p ∗ , αð Þ ¼ S p ∗ð Þ

∂D

∂α
>0,

∂D

∂p
<0:

It is the task of comparative statics to show the determination of the equilibrium
values of price and quantity and their sensitivity on the “taste” parameter, α.

The dynamic formulation of the Walrasian assumption is

dp

dt
¼ f D pð Þ � S pð Þð Þ, f 0ð Þ ¼ 0, f 0 0ð Þ>0:

Retaining the first order term in a Taylor series expansion near the equilibrium,
p ∗ , we obtain the following linear differential equation

dp

dt
¼ a0

dD

dp
�

dS

dp

� �

p ∗

p� p ∗ð Þ,

with solution for an initial price, p0

p tð Þ ¼ p ∗ þ p ∗ � p0
� �

e
a0t

dD
dp�

dS
dp

� �

p ∗
:

The equilibrium is stable if dD
dp

� �

p ∗

<
dS
dp

� �

p ∗

. Price must rise when demand

increases.
The dynamic formulation of the Marshallian assumption is

dq

dt
¼ g pD qð Þ � pS qð Þ
� �

, g 0ð Þ ¼ 0, g0 0ð Þ>0:

Neglecting high order terms and using the trivial elementary calculus result,
dpD
dq ¼ 1

dD
dp

,
dpS
dq ¼ 1

dS
dp

, we obtain

q tð Þ ¼ q ∗ þ q ∗ � q0
� �

exp b0t
1
dD
dp

�
1
dS
dp

 !

q ∗

2

4

3

5

:

The equilibrium is stable if 1
dD
dp

� �

q ∗

<
1
dS
dp

� �

q ∗

. Quantity supplied must rise when

demand increases, while the change in price is dependent upon the algebraic sign of
the supply curve’s slope.
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2.3 Solow

Robert Solow [9] proposed a growth equation incorporating production, capital
growth and growth in the labour force absent from the Harrod-Domar model.

i. Production function: ¼ F K,Lð Þ, the quantity of goods by K units of capital
and L units of labour at time t. In a closed economy where all output is
invested or consumed,

Y tð Þ ¼ C tð Þ þ I tð Þ,

where C tð Þ and I tð Þ are the consumption and investment functions respectively.
An important assumption of the model are the Inada conditions [10]

∂F

∂K
>0,

∂F

∂L
>0,

∂
2F

∂K2 <0,
∂
2F

∂L2 <0:

In the limits.

lim
K!0

∂F

∂K
¼ ∞, lim

L!0

∂F

∂L
¼ ∞, lim

K!∞

∂F

∂K
¼ 0, lim

L!∞

∂F

∂L
¼ 0:

The Inada conditions ensure that F is strictly concave with slope decreasing from
infinity to zero.

The function F is linearly homogeneous of degree 1 in K and L (in economic
terms this is known as constant returns to scale, increasing capital and labour by a
certain amount, results in a proportional rise of production) if

Y ¼ F αK, aLð Þ ¼ αF K,Lð Þ, ∀α>0:

In particular, choosing α ¼ 1
L and set y ¼ Y

L , k ¼ K
L, representing the output and

capital per worker respectively

Y

L
¼ y ¼ F

K

L
, 1

� �

¼ f kð Þ:

The production function is expressed in terms of a unit of labour and the capital
to labour ratio. The assumption of constant returns to scale allows the simplified
function, f kð Þ.

ii. Growth of Capital in Economy: The growth of the capital stock, K, is
equivalent to growth in investment, I, which is used to increase capital
subject to depreciation. Depreciation of capital stock will be accounted for so
that I is essentially

investment ¼ rate of change of capitalþ capital depreciation rate

or

I tð Þ ¼
dK

dt
þ δK tð Þ,

where δ is the constant capital depreciation rate.
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Letting c tð Þ and i tð Þ denote the consumption and investment per labour unit

c tð Þ ¼
C

L
, i tð Þ ¼

I

L
,

y tð Þ ¼ c tð Þ þ i tð Þ ¼ c tð Þ þ
1

L

dK

dt
þ δk ¼ c tð Þ þ

dk

dt
þ δþ

1

L

dL

dt

� �

k:

iii. Growth of the Labour Force with full employment: The assumption in the
labour market is that the labour supply is equivalent to the population. There
is no unemployment and the growth of labour as function of time follows an
exponential growth pattern:

L ¼ L0e
nt

:

The fundamental differential equation of economic growth is then

dk

dt
¼ f kð Þ � δþ nð Þk� c tð Þ:

The differential equations and production functions outlined in these three
assumptions are the fundamental elements for Solow’s basic differential equation.
In Solow’s paper, a constant fraction of income is allocated to savings, in particular,
¼ y tð Þ � c tð Þ ¼ f kð Þ � 1� sð Þf kð Þ ¼ sf kð Þ, so that

dk

dt
¼ sf kð Þ � δþ nð Þk:

The equilibrium solution to the basic differential equation is found from sf kð Þ ¼

δþ nð Þk. A well-known function is the Cobb–Douglas production function, Y K,Lð Þ ¼

αKβL1�β, 0< β< 1, where β is the elasticity of output, KY
∂Y
∂K, with respect to capital. The

use of the Cobb–Douglas production function is justified because it exhibits constant
returns to scale: If capital and labour are both increased by the same factor, λ> 1, output

will be increased by exactly the same proportion, Y K,Lð Þ ¼ λ αKβL1�β
� �

. Also the

marginal product, ∂Y
∂K ,

∂Y
∂L, diminishes as eitherK or L increases since ∂

2Y
∂K2 <0, ∂

2Y
∂L2 <0.

Introduce kð Þ ¼ α K
L

� �β
¼ αkβ, so the differential equation becomes

dk

dt
¼ sαkβ � δþ nð Þk:

From dk
dt ¼ 0, k ∗ ¼ sα

δþn

� � 1
1�β

. Substituting k ∗ ¼ sα
δþn

� � 1
1�β

into y ¼ αkβ, the steady

state level of per capita income is

y ∗ ¼ a
1

1�β
s

δþ n

� �
β

1�β

:

The output per unit growth converges to n:

1

Y

dY

dt
¼

β

k

dk

dt
þ n ! n:

A multiplicative factor in the form of technological progress, tð Þ ¼ A0e
gt, can be

introduced in the production function, so that, Y tð Þ ¼ aK tð Þβ A tð ÞL tð Þð Þ1�β and

k tð Þ ¼ K tð Þ
A tð ÞL tð Þ, leading to

5
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dk

dt
¼ sakβ � δþ nþ gð Þk:

The first order nonlinear differential equation has solution

k tð Þ ¼
sα

δþ nþ g
þ k1�β

0 �
sα

δþ nþ g

� �

e� δþnþgð Þ 1�βð Þt

� 	 1
1�β

:

This solution includes the solution to the labour growth only model, n ¼ 0. The
steady state is

k ∗ ¼
sα

δþ nþ g

� � 1
1�β

:

Differentiation of dk
dt ¼ sakβ � δþ nþ gð Þk with respect to k at k ∗ gives

β � 1ð Þ δþ nþ gð Þ<0, the equilibrium is stable. The steady state level of per capita
income is

y ∗ ¼ a
1

1�β
s

δþ nþ g

� �
β

1�β

,

a constant, since s, δ, n, g are all constant.

Y tð Þ ¼ αKβ A0L0e
g

1�β
þnð Þt

� �1�β

¼ akβA0L0e
g

1�β
þnð Þt. The output per unit growth,

1
Y
dY
dt , converges to

g
1�β

þ n.

The Solow residual is the part of growth unexplained by changes in capital and

labour. For Y tð Þ ¼ aK tð Þβ A tð ÞL tð Þð Þ1�β

∂Y

∂t
¼ aβK tð Þβ�1 A tð ÞL tð Þð Þ1�β dK

dt
þ aK tð Þβ 1� βð Þ A tð ÞL tð Þð Þ�β dA

dt
L tð Þ þ

dL

dt
A tð Þ

� 	

:

The growth rate per unit output is

1

Y

∂Y

∂t
¼

β

K

dK

dt
þ 1� βð Þ

1

L

dL

dt
þ 1� βð Þ

1

A

dA

dt
,

Solow residual ¼
1

Y

∂Y

∂t
�

β

K

dK

dt
þ 1� βð Þ

1

L

dL

dt

� 	

:

A positive Solow residual would indicate a faster output growth than that of
capital and labour.

2.4 Phelps

Phelps [11] used the neoclassical growth model to address the consumption per
unit of labour at equilibrium in the so-called “golden rule”. At equilibrium with
labour force growth rate, n, only the consumption per unit of labour is

c tð Þ ¼ f kð Þ � nk:

For a maximum consumption per unit of labour
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dc

dk
¼

df

dk
� n ¼ 0:

Since d2f

dk2
<0, the turning point is a maximum given by df

dk ¼ n. The “golden rule”

concludes that the marginal output per worker must equal the growth rate of the
labour force at maximum per capita consumption.

2.5 RCK

The Ramsey–Cass–Koopmans model, or RCK model, is a neoclassical model of
economic growth which differs from Solow’s model in its inclusion of consumption,
based primarily on the work of Ramsey [12], with later significant extensions by
Cass [13] and Koopmans [14].

dk

dt
¼ f kð Þ � δþ nð Þk� c tð Þ:

A steady state is when c tð Þ ¼ f kð Þ � δþ nð Þk.
There is a second equation of the RCK model, the social planner‘s problem of

maximizing a social welfare function expressed by the integral

ð

∞

0

e�ρtL tð Þu c tð Þð Þdt ¼

ð

∞

0

e n�ρð Þtu c tð Þð Þdt,

where ρ>0 is the discount rate and u c tð Þð Þ is a strictly increasing concave utility
function of consumption. The objective is formally stated thus

u ∗ ¼ max
c tð Þ

ð

∞

0

e n�ρð Þtu c tð Þð Þdt

subject to

dk

dt
¼ f kð Þ � δþ nð Þk� c tð Þ

k0 ¼ k 0ð Þ:

The Hamiltonian is

H cð Þ ¼ e n�ρð Þt u cð Þ þ λe ρ�nð Þt f kð Þ � δþ nð Þk� c tð Þð Þ
h i

,

where λ is the costate variable (Lagrange multiplier). From

∂H

∂c
¼ e n�ρð Þt ∂u

∂c
� λ ¼ 0,

λ ¼ e n�ρð Þt ∂u

∂c
:

Also for the costate variable

dλ

dt
¼ �

∂H

∂k
¼ �λ

∂f

∂k
� δþ nð Þ

� 	

,
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and

dλ

dt
¼ n� ρð Þλþ

∂
2u
∂c2

∂u
∂c

dc

dt
λ:

Hence

n� ρð Þ þ
∂
2u
∂c2

∂u
∂c

dc

dt
¼ �

∂f

∂k
þ δþ nð Þ,

whence

dc

dt
¼

∂u
∂c
∂
2u
∂c2

�
∂f

∂k
þ δþ ρ

� 	

:

This is a nonlinear differential equation that describes the optimal evolution of
consumption, known as the Keynes-Ramsey rule. Along with the differential equa-

tion, dkdt ¼ f kð Þ � δþ nð Þk� c tð Þ, form the RCK dynamical system which does not

admit an analytical solution. At equilibrium,

∂f

∂k

� �

k ∗

¼ δþ ρ,

c ∗ ¼ f k ∗ð Þ � δþ nð Þk ∗
:

The Jacobian matrix at equilibrium,

J ¼

ρ� n �1

�

∂u

∂c
∂
2u

∂c2

∂
2f

∂k2

� �

k ∗

0

2

6

6

6

6

4

3

7

7

7

7

5

has eigenvalues real and opposite in sign as its determinant is

�
∂u
∂c
∂2u
∂c2

∂
2f

∂k2

� �

k ∗
<0 f kð Þð and u cð Þ are both concave), therefore the equilibrium is a

saddle point.

2.6 Romer

The growth in the Solow model is exogenous, the steady state depends on the
exogenous parameters, , g, which are due to outside trends. In the absence of

A tð ÞL tð Þ growth cannot be maintained. The marginal product of capital, ∂Y
∂K ¼

aβA tð Þ1�β L
K

� �1�β
¼ aβA tð Þ1�β

K
Lð Þ

1�β , is inversely proportional to the capital per labour, KL. In

countries with lower capital per labour the marginal product of capital should be
higher which is not the case. The disparity could be attributed to the different g
values in A tð Þ, which is treated as an exogenously given parameter in the Solow
model, so an explanation is lacking.

Romer [15] proposed a mathematical theory of endogenous growth based on the
following three assumptions:

8
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i. The production function, Y ¼ F K,A,Lð Þ offers increasing returns to scale,
that is F λK, λA, λLð Þ> λF K,A,Lð Þ.

ii. The change in capital is identical to Solow’s model, dKdt ¼ sY � δK, where s is the

fraction in savings, δ is the exogenous capital depreciation rate. Labour, L, is

also exogenous, dLdt ¼ nL, and is comprises labour involved in research

technology, LA, and labour involved in the production of the final goods,
LY ,L ¼ LA þ LY .

iii. Technology is exogenous and evolves in time, dAdt ¼ γLθ
AA

φ, 0< θ< 1,φ< 1.

As is evident from the three assumptions, Romer’s growth model consists of
three sectors: the research sector of ideas, the intermediate goods sector which
implements the ideas of the research sector and the final goods sector which pro-
duces the final output.

Let gA be the technology growth rate, taken to be constant along the stable path,

gA ¼
1

A

dA

dt
¼ γLθ

AA
φ�1,

dgA
dt

¼ γθLθ�1
A

dLA

dt
Aφ�1 þ γ φ� 1ð ÞLθ

AA
φ�2 dA

dt
¼ 0,

θ
1

LA

dLA

dt
þ φ� 1ð Þ

1

A

dA

dt
¼ 0,

θnþ φ� 1ð ÞgA ¼ 0,

gA ¼
θn

1� φ
:

In Romer’s model, the output production function is given by

y ¼ kβ
LY

L

� �1�β

,

and the capital dynamics is

dk

dt
¼ skβ

LY

L

� �1�β

� nþ gA þ δ
� �

k:

The respective stable equilibria are

k ∗ ¼
LY

L

s

nþ gA þ δ

� � 1
1�β

,

y ∗ ¼
LY

L

s

nþ gA þ δ

� �
β

1�β

:

The labour involved in the production of the final goods, LY , is determined in
Romer [15] by maximizing the net profit for the final goods sector and obtaining the

closed form expression for LY

L ¼ r�n
r�nþβgA

, where r is the interest rate, and all param-

eters are exogenous except for gA which is derived endogenously.
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A nice accessible exposition of both Solow’s and Romer’s growth models is Chu
[16]. Jones [17] argued that the predicted scale effects of Romer’s theory of growth
is inconsistent with the time-series evidence from industrialized economies and that
long-term growth depends on exogenous parameters including the rate of popula-
tion growth.

2.7 Mankiw, Romer and Weil

Mankiw, Romer and Weil [18] argued that the marginal product of capital, ∂Y
∂K, is

lower in poorer countries is due to their deficiency in human capital. Human capital
is the accumulation of knowledge and skills achieved through training and educa-
tion, which are essential ingredients in adding economic value. The production
function is of the Cobb–Douglas type

Y tð Þ ¼ H tð ÞαK tð Þβ A tð ÞL tð Þð Þ1�α�β ¼
H tð Þ

A tð ÞL tð Þ

� �α K tð Þ

A tð ÞL tð Þ

� �β

A tð ÞL tð Þ,

y tð Þ ¼
Y tð Þ

A tð ÞL tð Þ
¼

H tð Þ

A tð ÞL tð Þ

� �α K tð Þ

A tð ÞL tð Þ

� �β

¼ hαkβ,

where H tð Þ is the human capital stock which depreciates at the same rate, δ, as
K tð Þ. As in Solow’s model, a fraction of the output, sY tð Þ, is saved but in this model,
it is split between human and capital stock, s ¼ sH þ sK . The evolution of the
economy is determined by

dk

dt
¼ sKh

αkβ � nþ g þ δð Þk,

dh

dt
¼ sHh

αkβ � nþ g þ δð Þh:

The equilibrium is

k ∗ ¼
nþ g þ δ

s1�α
K sαH

� � 1
αþβ�1

,

h ∗ ¼
nþ g þ δ

sβKs
1�β

H

 ! 1
αþβ�1

:

In the steady state,

y ∗ ¼ nþ g þ δð Þ
αþβ

αþβ�1s
�β

αþβ�1

K s
�α

αþβ�1

H :

Introduce the transformations, x1 ¼ k
k ∗ , x2 ¼ h

h ∗ , so that the equilibrium shifts to

1, 1ð Þ: Then

dx1
dt

¼ nþ g þ δð Þ xβ1x
α
2 � x1

� �

,

dx2
dt

¼ nþ g þ δð Þ xβ1x
α
2 � x2

� �

:

For small deviations, ξ1, ξ2, from the equilibrium the linear system
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dξ1
dt

¼ nþ g þ δð Þ β � 1ð Þξ1 þ αξ2½ �,

dξ2
dt

¼ nþ g þ δð Þ βξ1 þ α� 1ð Þξ2½ �:

The eigenvalues of the Jacobian matrix,

nþ g þ δð Þ
β � 1 α

β α� 1

� 	

,

are given by the roots of the quadratic

λ2 þ 2� α� βð Þλþ 1� α� βð Þ ¼ 0:

From the production function, 1� α� β>0. Since the sum of the eigenvalues is
αþ β � 2<0, and the product is 1� α� β>0, both roots have negative real parts
and the equilibrium point is stable.

2.8 Kaldor

Kaldor [19] presented a model of the trade cycle involving non-linear invest-
ment and saving functions that shift over time in response to capital accumulation
or decumulation so that the system moves from stable equilibrium to unstable
equilibrium to stable equilibrium again. In Kaldor’s model investment, I, and sav-
ings, S, functions are non-linear with respect to the level of activity, X, measured in
terms of employment.

Kaldor used a differential equation system with general non-linear forms.
Net investment, I, and savings, S, are functions of national income, Y, and capital
stock, K:

I ¼ I Y,Kð Þ,

S ¼ S Y,Kð Þ,

∂I

∂Y
>0,

∂I

∂K
<0,

∂S

∂Y
>0,

∂S

∂K
<0,

∂I

∂K
<

∂S

∂K
:

Also growth in capital determines investment is given by

dK

dt
¼ I Y,Kð Þ:

Since income will rise if investment is greater than savings, the dynamics of the
national income is captured by the differential equation

dY

dt
¼ α I Y,Kð Þ � S Y,Kð Þ½ �, α>0:

The necessary and sufficient assumptions for the generation of a perpetual
cyclical movement are:

i. For normal income levels,
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∂I

∂Y
>

∂S

∂Y
:

ii. For extreme income levels, either low or high,

∂I

∂Y
<

∂S

∂Y
:

iii. At equilibrium, where dK
dt ¼ 0, income levels are normal.

2.9 Phillips

National governments design their expenditure policies to steer the national
economy towards a desired income. The theory of feedback control or servomech-
anisms provides the mathematical methodology of correcting deviations of the
controlled variables from their target values. Feedback policies applied to economic
stability were implemented by Phillips [20].

If Y is national income and Da is the aggregate demand then for some adjust-
ment coefficient, a>0,

dY

dt
¼ a Da � Yð Þ:

A similar differential equation holds for the actual, Dg and target government
demand, D ∗

g , with b>0, namely,

dDg

dt
¼ b D ∗

g �Dg

� �

:

Aggregate and government demand are related by

Da ¼ mY þDg,

where m is the private sector’s marginal propensity to spend.
Eliminate Da to obtain

dY

dt
¼ a m� 1ð ÞY þ aDg:

Differentiate the above to obtain

d2Y

dt2
¼ a m� 1ð Þ

dY

dt
þ ab D ∗

g �Dg

� �

¼ a m� 1ð Þ
dY

dt
þ abD ∗

g þ ab m� 1ð ÞY� b
dY

dt

or

d2Y

dt2
þ bþ a 1�mð Þ½ �

dY

dt
þ ab 1�mð ÞY � abD ∗

g ¼ 0:

Phillips’model is thus described by the linear second-order differential equation
where Y is the target variable and D ∗

g is the control variable. Investigated three

types of feedback policy:
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i. Proportional, D ∗

g ¼ �kPY, where kP >0. This policy does not prevent income

reduction and induces oscillations.

ii. Derivative, D ∗

g ¼ �kD
dY
dt , where kD >0. This policy does not prevent income

reduction but avoids oscillations.

iii. Integral, D ∗

g ¼ �kI
Ð

t

0

Ydt, where kI >0. This policy prevents income

reduction but can induce unstable movement.

2.10 Kalecki

Kalecki [21] was the first economist to investigate the relationship between
production lags and endogenous business cycles by considering a closed economic
system over a short period of time without trend. A tð Þ is the gross capital accumula-
tion (unconsumed goods). There is a “gestation period”, θ, for any investment I tð Þ.
Deliveries L tð Þ are equal to investment orders, I t� θð Þ at time, t� θ:

L tð Þ ¼ I t� θð Þ:

Any orders placed during the “gestation period”, t� θ, tð Þ, remain unfulfilled,
A tð Þ is equal to the average of investment orders I tð Þ allocated during the period
t� θ, tð Þ:

A tð Þ ¼
1

θ

ð

t

t�ϑ

I τð Þdτ:

If K tð Þ is the capital stock, and U its physical depreciation

dK

dt
¼ L tð Þ �U ¼ I t� θð Þ � U:

The rate of change in investment is for some constants, m>0, n>0:

dI

dt
¼ m

dA

dt
� n

dK

dt
¼

m

θ
I tð Þ � I t� θð Þ½ � � n I t� θð Þ � U½ �:

Denoting the deviation of I tð Þ from the constant demand for restoration of the
depreciated industrial equipment U by J tð Þ ¼ I tð Þ �U, and differentiating J tð Þ

dJ

dt
¼

m

θ
J tð Þ � J t� θð Þ½ � � nJ t� θð Þ

or

θ
dJ

dt
þ nθ þmð ÞJ t� θð Þ �mJ tð Þ ¼ 0:

During the interval t∈ �θ, 0½ � Kalecki assumed that J tð Þ ¼ 0. A standard way to
solve this differential equation with delay is to assume a solution of the form, Deαt,
with D and α (where α is a complex number), to be determined. The general
solution of the differential equation for some constants, c1 and c2 is
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J tð Þ ¼ ebt c1 cos ωtð Þ þ c2 sin ωtð Þ½ �:

The sign of the real parameter, b, classifies the behavior of the model as explo-
sive for b>0, cyclical for b ¼ 0, and damped for b<0.

2.11 A Solow model with lags

Zak [22] considered a version of the Solow model with delay. Capital can be used
τ periods later, so at time t, the capital to be put into productive use is k t� τð Þ. If
f kð Þ is the production function, s∈ 0, 1ð Þ is the constant savings rate and δ∈ 0, 1½ � is
the constant capital depreciation rate, Zak’s model is

dk

dt
¼ sf k t� τð Þð Þ � δk t� τð Þ:

At equilibrium,

sf k ∗ð Þ ¼ δk ∗
:

Deviations of the form, et, from equilibrium are governed by

dk

dt
¼ s

df

dk
� δ

� �

e�τ,

with characteristic equation

λ� s
df

dk
� δ

� �

e�λτ ¼ 0:

In many cases depending on the initial conditions, the roots of the characteristic
equation have real parts with opposite signs, indicating the presence of a saddle
point unlike Solow’s stable model. The model exhibits endogenous cycles when the
roots are purely imaginary.

2.12 Goodwin

Goodwin [23] presented a nonlinear model of nonlinear business cycles with
time lags between decisions to invest and the corresponding outlays. Changes at
time, t, in income, y tð Þ, induce investment outlays, Oi tþ θð Þ, at a later time, tþ θ.
Therefore

Oi tþ θð Þ ¼ φ
dy

dt

� �

¼ φð _yÞ:

Hence the nonlinear delay differential equation modeling the evolution of
income is

ϵ
dy tþ θð Þ

dt
þ 1� αð Þy tþ θð Þ ¼ O tð Þ þ φð _yÞ,

where O tð Þ is autonomous investment outlay and ϵ, α are constants. The deriva-

tive, dφð
_yÞ

d_y , measures the rate of growth in investment with relative to the income

growth, termed as acceleration coefficient. Expanding the two leading terms in
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Taylor series and neglecting higher order terms, Goodwin obtained the nonlinear
delay differential equation

εθ
d2y

dt2
þ 1� αð Þθ þ ϵ½ �

dy

dt
þ 1� αð Þy tð Þ � φð _yÞ ¼ O tð Þ:

Goodwin assumed that O tð Þ is constant, O tð Þ ¼ O ∗ , and introduced a new
variable

z tð Þ ¼ y tð Þ �
O ∗

1� α
,

where O ∗

1�α
is the income at equilibrium. The transformed differential equation

is then

εθ
d2z

dt2
þ 1� αð Þθ þ ϵ½ �

dz

dt
� φ _zð Þ þ 1� αð Þz ¼ 0:

The asymptotic behavior of the transformed equilibrium, z ¼ 0, is determined
by the eigenvalue solutions of the characteristic equation

εθλ2 þ 1� αð Þθ þ ϵ� _φ 0ð Þ½ �λþ 1� αð Þ ¼ 0,

with characteristic roots,

λ1,2 ¼
_φ 0ð Þ � 1� αð Þθ þ ϵ½ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� αð Þθ þ ϵ� _φ 0ð Þ½ �2 � 4εθ 1� αð Þ

q

2εθ
:

Since

λ1λ2 ¼
1� α

εθ
>0

and

λ1 þ λ2 ¼
_φ 0ð Þ � 1� αð Þθ þ ϵ½ �

εθ
,

can be either positive or negative, both eigenvalues have positive or negative real
parts. So if _φ 0ð Þ< 1� αð Þθ þ ϵ the deviations from equilibrium are damped oscilla-
tory motions, but if _φ 0ð Þ> 1� αð Þθ þ ϵ the system is unstable and drifts away from
the locally linearized region of stability.

2.13 A brief literature survey of current research

We close this chapter by providing a very brief snapshot of the current state of
the art in theories of economic growth. Most of the very recent works cited are
predominantly mathematical in nature. There is an enormous literature, not
touched upon here, which employs Econometrics methods, like for instance panel
data regression to estimate economic growth based on explanatory variables such as
income, investment, policy indicators, education and others over several decades.

In a short article Zhao [24] discusses how technology was integrated into
economic growth by Romer.
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Boyko et [25] use least squares linear regression to determine the values of the
coefficients at which the production functions of Cobb–Douglas in Solow’s growth
model provide the best fit for available statistical data. Borges et al. [26] examine
the dynamics of Solow’s economic growth model assuming that the labour force
growth rate function is a solution of a delay differential equation thereby avoiding
the use of exponential growth, L tð Þ ¼ L0e

nt, often criticized as a rather unrealistic
choice. Their approach is motivated by the fact that there are delays in entering and
retiring an individual from the labour force, relative to their birth date.

Zhang et al. [27] base their analysis of how the redistribution of emission quotas
would impact short-run equilibrium in a specific market of interest and long-run
growth on the Solow growth model with endogenous dynamics and exogenous
technological shocks.

Zhang [28] develops an endogenous growth model based on modifications of
both Solow’s model by introducing endogenous knowledge. and Romer’s by
allowing knowledge to be gained from learning as well as from research.

The paper by Caraballo et al. [29] is devoted to analysis of the stability of the
economy according to an extended version of Kaldor’s economic growth model.
They consider the role of the government’s monetary and fiscal policies and we
study whether or not a time delay in implementing and the fiscal policy can affect
the economic stability.

Dayal [30] considers long run historical data and uses difference equation simu-
lation to explore the Solow growth model to assess the growth changes in the recent
decade.

Perez-Trujillo et al. [31] investigate the impact of improvement in accessing
innovation and knowledge on economic growth and convergence among countries
using an augmented Solow-Swan growth model on data from 138 countries.

Turnovsky [32] discusses contemporary aspects of stabilization policy in
reference to Phillips’ contributions in a lengthy paper of substantial mathematical
control theory content.
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