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Abstract

Medical image segmentation and classification algorithms are commonly 
used in clinical applications. Several automatic and semiautomatic segmentation 
methods were used for extracting veins and arteries on transverse and longitudinal 
medical images. Recently, the use of medical image processing and analysis tools 
improved giant cell arteries (GCA) detection and diagnosis using patient specific 
medical imaging. In this chapter, we proposed several image processing and analysis 
algorithms for detecting and quantifying the GCA from patient medical images. 
The chapter introduced the connected threshold and region growing segmenta-
tion approaches on two case studies with temporal arteritis using ultrasound (US) 
and magnetic resonance imaging (MRI) imaging modalities extracted from the 
Radiopedia Dataset. The GCA detection procedure was developed using the 3D 
Slicer Medical Imaging Interaction software as a fast prototyping open-source 
framework. GCA detection passes through two main procedures: The pre-process-
ing phase, in which we improve and enhances the quality of an image after remov-
ing the noise, irrelevant and unwanted parts of the scanned image by the use of 
filtering techniques, and contrast enhancement methods; and the processing phase 
which includes all the steps of processing, which are used for identification, seg-
mentation, measurement, and quantification of GCA. The semi-automatic interac-
tion is involved in the entire segmentation process for finding the segmentation 
parameters. The results of the two case studies show that the proposed approach 
managed to detect and quantify the GCA region of interest. Hence, the proposed 
algorithm is efficient to perform complete, and accurate extraction of temporal 
arteries. The proposed semi-automatic segmentation method can be used for stud-
ies focusing on three-dimensional visualization and volumetric quantification of 
Giant Cell Arteritis.

Keywords: Giant Cell Arteritis, Enhancement, Detection and Classification, 
Segmentation

1. Introduction

Giant cell arteritis (GCA), also called temporal arteritis or cranial arteritis is 
a systemic inflammation of medium to large-sized vessels [1]. The cause of the 
disease is currently unknown; however, autoimmunity is one hypothesis [2]. 
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GCA most commonly occurs in females (female to male ratio 2-4:1) over the age of 
50 years [3]. Temporal artery involvement classically presents with sudden onset 
of severe headache associated with inflammatory and ischemic symptoms; [1] 
however, GCA may involve other large-sized arteries, namely the aorta, subclavian, 
iliac, ophthalmic, occipital, and vertebral arteries, which have different presenta-
tion and may be involved independently from the cranial arteries [4].

Left untreated, GCA can lead to permanent visual loss and various systemic 
complications; therefore, there is a need for effective diagnosis. The American 
College of Rheumatology proposed criteria for the diagnosis of GCA [5]. The diag-
nosis mainly relies on clinical presentation, inflammatory markers (typically high 
erythrocyte sedimentation rate (ESR)), and usually histological confirmation by 
temporal artery biopsy. Temporal artery biopsy has been the standard test to con-
firm the diagnosis of GCA, which although highly specific, is considered invasive 
and lacks sensitivity [2, 6, 7]. Consequently, diagnosis of GCA often relies on the 
combination of clinical symptoms, serum inflammatory markers, and radiological 
imaging.

2. Diagnosis of GCA by radiological imaging

The role of radiological imaging is becoming increasingly important in the diag-
nosis and follow-up of GCA. Generally, the different radiological imaging modali-
ties visualize different aspects of the involved vessel wall thickening and luminal 
stenosis. The first line imaging modality, especially for cranial GCA is color duplex 
sonography (CDS) [4, 8, 9]. CDS assesses vascular wall anatomy and luminal lining 
and diameter. A characteristic finding of GCA on CDS is the (halo) sign, which 
is homogenous, hypoechogenic circumferential vessel wall thickening. Another 
finding is the lack of compressibility of the artery manifested by the application of 
transducer-imposed pressure on the temporal arteries (compression sign) [4, 8]. 
The (halo) sign has a sensitivity ranging from 55 to 100% and specificity of 78 to 
100% in the diagnosis of temporal arteritis [8]. The wide range of sensitivity may 
be attributed to operator experience and arterial involvement. A systematic review 
published in 2016 discussed the use of the different imaging modalities in the diag-
nosis and follow-up of GCA [10]. The review findings suggest that CDS is an easy, 
cost-effective diagnostic imaging tool for the evaluation of cranial vessels, as well as 
the carotid, subclavian, axillary, and brachial vessels. The reliability of the unilat-
eral halo sign is debatable; however, the presence of a bilateral (halo) sign discards 
the need for temporal artery biopsy. Many studies have compared ultrasound (US) 
imaging versus temporal artery biopsy in the evaluation of GCA [11–15]. In a pro-
spective cohort study published in 2019, Zou et al. discussed the results of clinical 
examination following the US versus biopsy of the temporal artery biopsy directly, 
considering MRI as a reference diagnostic data. The study included 980 patients 
with a mean age of 61.12 ± 6.56 years who complained of at least one symptom 
consistent with GCA but have not been diagnosed or treated with glucocorticoids 
[11, 14]. US and MRI imaging included bilateral temporal arteries, axillary arteries, 
and their branches. The study concluded that the clinical examination following US 
detection of GCA had high accuracy and a lower risk of overdiagnosis and unneces-
sary glucocorticoid treatment of low to medium risk GCA [2]. Moreover, there was 
a higher number of false-negative diagnoses reported by temporal artery biopsy. 
These results are consistent with other studies like the TABUL study [1].

Other important noninvasive imaging modalities are contrast-enhanced com-
puted tomography (CT) scan and CT angiography (CTA). Both scans visualize 
cranial and extracranial arteries, the aorta for example, and can visualize associated 
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complications [16, 17]. On CT, the diseased vessel wall appears edematous with 
concentric enlargement and usually shows late contrast enhancement. CTA on 
the other hand is better for visualization of the luminal vascular pathology. Both 
modalities are excellent for the diagnosis of GCA when the involvement of a large-
sized vessel other than the temporal artery is suspected. However, there is a scarcity 
of data on the use of CT/CTA in the diagnosis of GCA. Berthod et al. discussed in a 
case–control study CT imaging of the aorta in suspected GCA, which included 174 
participants (64 with GCA, 43 with polymyalgia rheumatica, and 67 controls) [18]. 
The study results showed that using CT in the evaluation of the aorta is diagnostic 
of GCA which is morphologically different that atheromatous lesions. The study set 
an aortic wall thickness of ≥2.2 mm as pathological and indicative of GCA.

Additionally, magnetic resonance imaging (MRI) and MR-angiography (MRA) 
have a prominent role in the diagnosis of GCA. The t2 weighted MRI images show 
a hyperintense rim at the edematous segment of the vessel wall. Moreover, t1 
weighted images depict mural thickening and contrast enhancement. MRA, as 
CTA, better visualizes irregular luminal lining and can assess the extent of arterial 
wall damage and the effectiveness of treatment [8]. The use of MRI in the clinical 
setting is available; however, its diagnostic accuracy is still indefinite as the available 
literature has approached this issue differently. A systematic literature review and 
meta-analysis discussed the diagnostic accuracy of MRI imaging of the temporal 
and occipital arteries. They reviewed six studies with 509 patients that used either 
clinical diagnosis or temporal artery biopsy as the reference standard. They found 
that when the clinical diagnosis was used as the reference standard, MRI had a 
lower pooled sensitivity and specificity (73%, 88%) than that of the US (77% and 
96%, respectively). However, when compared with temporal artery biopsy, MRI 
had a higher sensitivity (93% vs. 70%) and a similar specificity to sonography (81% 
vs. 84%). Thus, they advised that both modalities have good diagnostic accuracy of 
superficial temporal arteries GCA [17].

Furthermore, fluoro-D-glucose integrated with computed tomography (FDG-
PET/CT) is also currently used in the diagnosis of large-sized vascular wall inflam-
mation. This modality shows the increased uptake of glucose by the inflammatory 
cells lining the vessel wall [19].

The choice of image processing technique depends on the available imaging 
modality and the level of expertise in the clinical setting, taking on consideration 
the risks of radiation or contrast exposure, in contrast to the benefit of timely 
and accurate diagnosis of GCA versus the overdiagnosis and overtreatment of 
GCA based on conventional diagnostic criteria. The European League Against 
Rheumatism (EULAR) has issued recommendations on the use of different imaging 
modalities in the evaluation of large vessel vasculitis [20]. However, currently, there 
is no clearly defined protocol for imaging in suspected GCA; yet, there is increasing 
attention over the advantages and disadvantages of using each imaging modality in 
accordance with the clinical presentation.

3. GCA image processing and analysis

Recently, the use of medical image processing and analysis tools improved GCA 
detection and diagnosis using medical imaging. These tools provide physicians with 
semi-automatic detection and quantification of suspected regions of interest and 
enhance GCA diagnosis.

Medical imaging processing refers to the process of digital imaging by using 
computer software. This process includes several types of techniques and operations 
such as image enhancement, segmentation, registration, and visualization [21]. 
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The rapid advancement of image processing and analysis improved the medical care 
process in clinical applications.

The current advances in medical imaging made in medical fields such as imaging 
modalities, diagnostics, and treatment applications are designed on digital imaging 
technology processing and analysis. Medical image processing has been recognized 
as a source of innovation in the advanced medical care process including medical 
informatics, artificial intelligence, and bioinformatics. Recently, many libraries, 
tools, and software products can process and manipulate images from differ-
ent modalities (CT, MRI, US, PET) and are available for clinical application and 
research purposes [22].

Medical image segmentation and classification algorithms are commonly used in 
clinical applications. Several automatic and semiautomatic segmentation methods 
were used for extracting veins and arteries on transverse and longitudinal medical 
images [23]. The deformable contour model, connected threshold, fast marching 
method, and many other methods were used for extracting the arteries from US 
images. Other studies reported the application of region growing, diffusion-based 
filter, edge detection combined with morphology methods, and Hough transforms 
[12, 23, 24]. In this chapter, we proposed several image processing and analysis algo-
rithms for detecting and quantifying the GCA from patient medical images. The 
chapter introduced the connected threshold segmentation approach on two case 
studies for temporal arteritis using US and MRI imaging modalities extracted from 
the Radiopedia Dataset [12].

4. GCA image processing and analysis software

The GCA detection procedure was developed using the 3D Slicer Medical 
Imaging Interaction software as a fast prototyping open-source framework [25]. 
The 3D slicer is a free open-source software system providing extendibility by 
plug-ins development that interacts with the application core. It is an open-source 
software platform for medical image informatics, image processing, and three-
dimensional visualization. Built over two decades through support from the 
National Institutes of Health and a worldwide developer community, Slicer brings 
free, powerful cross-platform processing tools to physicians, researchers, and the 
general public.

The main focus of the 3D slicer is to enable the creation of highly interactive 
medical imaging software applications; it integrates different tools for medical 
imaging, computational modeling, computer graphics, deep learning, and numeri-
cal modeling for building applications with complex interaction mechanisms. It 
also provides a graphical user interface, multiple consistent views for the same data, 
3D rendering, data retrieval, hierarchical organization for data objects, advanced 
visualization of multi-modal imaging, and support for 3D + t data.

3D slicer is an object-oriented cross-platform library implemented in C++ that 
supports Windows, Linux, and macOS. It integrates and extends widely-used open-
source C++ libraries which are the Visualization Toolkit (VTK) and the Insight 
Toolkit (ITK), both supported by Kitware Inc. The ITK is an open-source, cross-
platform library that provides an extensive suite of software algorithms for image 
analysis, it builds a set of fundamental algorithms especially for segmentation and 
registration. While the VTK supports a wide variety of visualization algorithms and 
advanced modeling techniques.

In addition to ITK and VTK, third-party packages can be integrated and used 
with MITK, such as the DICOM Toolkit (DCMTK, supported by Offis in Germany), 
and other commonly used C++ libraries (Boost, Qt, OpenCV among others). The 
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software includes numerous modules, extensions, datasets, pull requests, patches, 
issues report, suggestions—is made possible by users, developers, contributors, 
and commercial partners around the world. This development is funded by various 
grants and agencies [26].

5.  Giant cell arteritis detection using medical image processing and 
analysis

Medical imaging is a commonly used method for detecting GCA and the diag-
nosis of arteries related diseases. Nowadays, medical image processing and analysis 
methods are used to facilitate the identification of the boundaries of internal organs 
from medical images and thus enhance the diagnostics of specific abnormalities. 
Patients with GCA may be indicated for medical imaging examination for initial 
diagnosing or monitoring of the disease activities.

GCA detection can be defined as the procedure in which the GCA region of 
interest can be detected and identified from medical images. In clinical application, 
the GCA diagnostic planning is defined as the process in which it is planned, using 
the computer system, where the GCA disease can be detected and quantified.

GCA detection passes through two main procedures: the pre-processing phase 
and the processing and analysis phase. The pre-processing phase improves and 
enhances the quality of an image after removing the noise, irrelevant and unwanted 
parts of the scanned image. The enhancement of image quality is obtained by the 
use of filtering techniques, removal of noise, and contrast enhancement methods. 
The processing phase includes all the steps of processing, which are used for identi-
fication, segmentation, measurement, and quantification of GCA.

GCA segmentation is composed of a series of image processing algorithms 
that depend on the medical image type and quality. The core image processing 
algorithms include:

a. The image enhancement and denoising algorithms:

1. Gaussian Blur Module and Gaussian Blur Batch Make Module: these modules 
convolve the image with a Gaussian kernel wherein the Gaussian has a stan-
dard deviation specified by the user (GUI field “sigma”) and the kernel width 
in each dimension is 6 times the standard deviation of the Gaussian.

2. The Median Image Filter is commonly used as a robust approach for noise 
reduction. This filter is particularly efficient against ‘salt-and-pepper’ noise. 
In other words, it is robust to the presence of gray-level outliers. Median 
Image Filter computes the value of each output pixel as the statistical median 
of the neighborhood of values around the corresponding input pixel.

3. Image editing tools include cropping, adding and subtracting, cutting, 
change the directions and orientations.

b. Image processing and analysis that includes:

1. Threshold selection based on pixel intensity histogram analysis.

2. Image segmentation with the selected threshold result and the use of an 
interactive segmentation tool that allows physicians to edit, and modify the 
segmented region as requested.
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c. Region of interest post-processing that includes surface or volume reconstruc-
tion, measurements, deformation, and simplifications for clinical application. 
The measurements include the calculation of ROI area, volume, distances from 
organs, and other basic measurements and statistics (Mean, median, SD…etc).

The proposed method for detecting the GCA is shown in Figure 1. The image 
enhancement and the segmentation based on the threshold method are calculated 
from 2D MRI and US image slices. The US image shows the left temporal artery, and 
the MRI shows the right temporal right artery segmentation.

This approach of segmentation allows the semi-automatic detection of the 
outlines of the artery in the enhanced medical image. The methods of segmentation 
by the threshold, region growing, and interactive segmentation is commonly used 
in the literature. In this chapter, we tested the methods on two case studies using 
semi-automatic methods for detecting the GCA.

The semi-automatic segmentation is done by studying the histogram and the 
threshold analysis of the 2D US and MRI images. The histogram analysis is used 
to identify the pixel densities of all areas of interest. In this study, we assumed 
that there are differences calcification density distribution between the blood, 

US image Case Study

Volume 

[cm3]

Threshold 

(Pixel 

Densities)

Diameter 

[mm]

Surface area 

[mm2]

Roundness

Temporal 

Artery Wall

3.29 −85 − −25.3 181 8622.2 0.12

GCA Wall 

Thickening

0.73 −87− −32.9 160 1989.5 0.25

MRI Image Case Study

Temporal 

Artery Wall

2.31 −376 

− −127.6

201 4618.9 0.18

GCA Wall 

Thickening

0.28 −400 

− −157.4

88 594.3 0.35

Table 1. 
The US and MRI histogram and statistical analysis.

Figure 1. 
The flow chart GCA detection method.
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artery wall, and the GCA region since the density of the GCA region is often 
lower than the blood and the normal wall densities. The image histogram analysis 
is summarized in Table 1. The temporal artery wall and the GCA wall thickening 
diameters were calculated in both images, the results in Table 1 show an increase 
in the artery wall in both cases (160 mm and 88 mm). Furthermore, the GCA 
artery wall roundness was higher than the normal artery roundness in both cases 
(0.25 mm and 0.35 mm), respectively. The pixel density threshold analysis shows 
that there are few differences between the normal and GCA regions as indicated 
in Table 1.

In the pre-processing phase, various filtering and thresholding algorithms are 
applied successively to obtain the artery contour and boundary. This contour is 
separated and segmented into three contours (regions): the artery wall, the blood, 
and the abnormal region (GCA). Results in Figure 2 show the two cases before and 
after image pre-processing.

The segmented regions were quantified and measured using the 3D slicer 
measurement and quantification tools.

6. Giant cell arteriti’s case studies

In this chapter, two case studies were conducted to assess the connected thresh-
old and region growing segmentation algorithms as a semi-automatic detection 
and quantification of temporal arteritis on US and MRA images. The histogram 
threshold analysis was performed to analyze and study the pixel distribution in 
both mages. Otsu’s method was used to divide the images into two parts, namely; 
foreground and background regions. To segment the temporal artery, we performed 
the threshold segmentation algorithm on the foreground region by comparing two 
different statistical distributions. The semi-automatically segmented regions were 
compared with manually segmented regions. The segmentations were validated by 
experts and the different similarity metrics were used to identify the variations in 
segmentation.

6.1 US case study

In the clinical application, the temporal artery characteristics can be found 
and detected using US images. GCA detection compared to the normal artery is 

Figure 2. 
Pre-processing filters and algorithms for the enhancement of MRI image of a 50 years old female patient.
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shown in Figure 3 [27]. The data in Figure 3(a) and (b) show the longitudinal 
and transverse views of normal temporal artery and acute temporal arteritis in 
Figure 2(c) and (d) of an adult women aged 45 years old. As seen in Figure 2, the 
arrows indicate the vasculitis wall swelling. The ultrasonography features showed 
a hypoechogenic halo of the temporal artery in longitudinal (left) and transverse 
(right) view. The data show that the normal artery diameter is 0.3-1 mm and the 
temporal artery diameter is 1-2 mm.

In our proposed method, the US image data of a 40 years old female patient 
with a visible thickening of the left temporal artery that causes a chronic left 
temporal headache was used to test our segmentation method. [Radiopaedia.
org/GCA case studies] The data is validated by comparing the artery wall 
segmentation results with the manual ones from experts. The typical US image 
used in this chapter is shown in Figure 4(a) and (b). Figure 4(a) shows a 
longitudinal view of GCA with wall thickness on the lower side of the temporal 
artery. Figure 4(b) shows the results of segmented regions using the threshold 
segmentation. The area in yellow represents the wall segment, the red indicates 
the blood segment while the green area represents the GCA region of interest. 
The temporal artery has been well-segmented and the clinical characteristics 
have been identified and documented. The results show the diameters of the 
lumen, wall, and the blood flows velocity at the region of interest along with the 
superficial temporal artery. The diameter of the artery wall was significantly 
thicker than the normal artery. The GCA region of interest diameter was 1.6 mm 
with an area of 19.9 cm2.

6.2 MRI case study

The MRI case study represents a patient of a 50-year-old female with clinical 
suspicion of temporal arteritis, the left temporal artery and its frontal and parietal 
branches show significant wall thickening [12].

Figure 3. 
Color doppler ultrasound showing longitudinal (a) and transverse (b) views of normal temporal artery and 
acute temporal arteritis. (c, d) The arrows indicate the vasculitis wall swelling [27].
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Figure 4. 
The left temporal artery of 40 years female patient, (a) shows the temporal artery before segmentation, (b) the 
threshold segmentation of GCA region of interest [12].

Figure 5. 
The left temporal artery of 50 years female patient, (a) shows the temporal artery before segmentation, (b) the 
threshold segmentation of GCA region of interest [12].
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Prominent mural enhancement is identified in these arteries when compared 
to the contralateral side. The contralateral temporal artery and its branches show a 
normal appearance.

The high-resolution MRI imaging of the superficial temporal artery is shown 
in Figure 5(a) and (b). The arrow in Figure 5(a) shows the position of the 
abnormal temporal arteries. The images in Figure 5(b) show the frontal branch 
and the parietal branch after image pre-processing and enhancement. The region 
growing segmentation of the region of interest in both images shows the GCA 
regions. The average superficial temporal artery wall thickness was 0.71 mm. 
According to the literature mural thickening >0.5 mm was considered as a sign of 
mural inflammation [28].

7. Conclusion

In this chapter, we discussed the use of medical image processing and analysis 
in detecting and quantification of GCA. We discussed a semi-automated segmenta-
tion of temporal arteries from 2D temporal artery US and MRI images using image 
processing and analysis algorithms. These algorithms depend on various image 
processing algorithms, including image enhancement, noise reduction, pixel 
densities histogram analysis, and statistical analysis tools. First, the Gaussian filters 
and noise reduction algorithms are applied to enhance the temporal artery struc-
tures, which effectively enhances the temporal artery contrast, because the shape 
information of the blood flow is considered. Afterward, seed points are detected 
automatically through threshold pre-processing operation. Based on the set of seed 
points and threshold analysis, region growing is applied, which grows in the target 
region. Then, the temporal artery region is extracted by connected threshold and 
region growing approaches, which are capable of segmenting the artery due to the 
pixel intensity thresholds and the seed point approach. Three regions of interest 
were extracted, the temporal artery wall, the blood flow, and the GCA region. Then 
the statistical and measurement tools are used to quantify the diameters, area, and 
volume of the GCA regions, and to detect and identify the size and location of the 
GCA region. The semi-automatic interaction is involved in the entire segmentation 
process for finding the segmentation parameters. Hence, the proposed algorithm 
is efficient to perform complete, and accurate extraction of temporal arteries. The 
proposed semi-automatic segmentation method can be used for studies focusing 
on three-dimensional visualization and volumetric quantification of Giant Cell 
Arteritis.
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