
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter

Using Ontologies in Autonomous
Robots Engineering
Esther Aguado and Ricardo Sanz

Abstract

The construction and operation of autonomous robots is heavily based of
systemic conceptualizations of the reality constituted by the robot, its controller
and the environment where it performs. In this chapter we address the role that
computer ontologies play in the whole life cycle—engineering and operation—of
autonomous robots: from its conception and construction by human engineering
teams to deployment and autonomous operation in dynamic and uncertain
environments. This chapter summarizes the state of the art, gives some examples
and establishes a roadmap for future activity in this domain to produce shareable
ontologies that could streamline autonomous robot development and exploitation.

Keywords: Robotics, Engineering, Ontology, Autonomy, Adaptation

1. Introduction

Technical systems are designed and built to perform a variety of operations in
pursue of user needs. In many cases we want these systems to operate without
human intervention for performance, cost or safety reasons. We want many tech-
nical systems to be autonomous. From fridge thermostats to the country-wide
electrical utilities we expect 100% availability even in changing circumstances.

Autonomy requires the ability to perform the assigned task without external
help. The autonomous car shall be able to negotiate an intersection and the autono-
mous space probe shall be capable of reorienting itself. But autonomy without
robustness is a no go. Real autonomy also requires capabilities for enduring distur-
bances during operation. Conventional control systems are built to overcome some
forms of disturbance—up to a limit. Autonomy shall be robust to operate in a wider
range of circumstances.

In many cases, these systems need to be endowed with autonomy features to be
able to operate in unstructured and hazardous environments. Many real-world
situations show high levels of disturbance and uncertainty that displace the system
from the normal operating region for which it was designed. In other cases, the
disturbances come from inside the system. Electrical interference or device faults
can lead the system to mission-level failure.

In all these situations—when the system is pushed out of the designed region of
operation—the system requires certain adaptation capabilities to provide the levels
of robustness and resilience necessary to overcome the adverse situation and ensure
mission fulfillment.

As said, these disturbances may come from outside the system, such as changes
in the environmental conditions, e.g. amount of obstacles, terrain characteristics,

1

etc., or from the system itself, such as failures in individual components used to
perform a specific task or providing communication mechanisms. To overcome
localized failures, autonomous systems require, when deployed, a certain level of
redundancy to enable the use of fault-handling techniques to overcome these dis-
turbances. These redundancies can be structural—e,g, when having spare compo-
nents or using triple modular redundancy—or functional—e.g. when having
different ways of reducing car speed.

In any case, all these mechanisms require ways of representing the knowledge
about them both at design time—by engineers building the system—and at run-
time—by the autonomous system itself. Engineers capture this knowledge in the
engineering models and autonomous systems may use it in knowledge-driven
perception-decision-action loops.

In this chapter, we address the use of ontologies as substratal assets for these
knowledge based processes. Ontologies can be used to decouple those conceptual
elements for system adaptation from the particular implementation used in a concrete
deployed system. Decoupling design knowledge and realization promotes reusability,
modularity, and scalability. All of them, critical properties of sound engineering
processes. Ontologies can provide a shared understanding of all stages of the system
life cycle—from conceptualization to decommission—to both ease the task of the
engineer and improve system run-time operation. In this chapter, we specifically
focus on the benefits of using ontologies in autonomous systems, especially in auton-
omous robots, and present an implementation case with adaptive mobile robots.

The chapter is organized as follows: Section 2 defines what is an ontology and
collects well-known ontologies for autonomous robots. Section 3 defines what is
autonomy and other the key concepts we aim to reach in this type of systems.
Section 4 presents the scope of ontologies within the life cycle of autonomous
systems. Section 5 addresses a concrete proof-of-concept of ontologies for
augmenting the autonomy level in a mobile robot. Section 6 discusses the general
implications at system level when using ontologies. Section 7 presents a roadmap for
the use of ontologies to streamline autonomous robot development and exploita-
tion. Lastly, Section 8 presents the conclusions of the chapter.

2. Ontologies for autonomous robots

Ontology—with upper case—is the branch of philosophy dedicated to the study
of being. From this perspective of analyzing what exists, derives the use of ontol-
ogies—with lower case—in computer and information science. Computer ontol-
ogies are specifications of conceptualizations [1]. They formally document the types
of entities that exist in a domain, their properties, and the relationships between
them1. A conceptualization is an abstract, simplified perspective in some area of
interest. The conceptualization includes the objects, concepts, and other entities and
the relationships among them. Ontologies are used in information systems to guar-
antee the conformance of a knowledge base with a certain conceptual specification.

Ontologies are built on top of terms that are used to capture the concepts. They
provide a formal naming and definition of categories, properties, and relations
between concepts, data, and entities. In practice, ontologies are just computer-
readable files in a specific computer language that reify a conceptualization of
elements of a specific domain.

1 To be precise, they formally document the information about the types of entities, their properties, and

the relationships between them.

2

Robotics Software Design and Engineering

In general, ontologies define a common vocabulary for a domain, allowing the
reuse of domain-specific knowledge. Moreover, it provides a common understand-
ing about a field for both people and artificial agents. It is this shareable knowledge
among humans and software entities that makes ontologies a valuable asset in
autonomous robot engineering. In [2] the authors remark the importance of for-
mally represented knowledge and its foundation in conceptualizations that are
shared among people. In our case these conceptualizations will be shared among
humans—engineers—and intelligent machines—robots. These concepts are widely
used in computational operations nowadays. For instance, in [3], the authors use an
ontology-based method to assign tasks to a satellite cluster; in [4] they use ontology-
aided reconfiguration to manage an IT infrastructure; and in robotics, works like
the one presented in [5], make use of ontologies to define an information model to
integrate the knowledge of heterogeneous fleets of robots in underwater operations.

2.1 Ontologies in robotics

The IEEE 1872-2015 standard [6] was published in early 2015. This is a standard
for the robotics and automation domain that defines a set of ontologies for robots.
The most popular of these ontologies is the core ontology for robotics and automa-
tion (CORA) which specifies the most general concepts in the robotics domain [7].

This standard is based on the Suggested Upper Merged Ontology (SUMO) [8].
SUMO—a top-level ontology—is used to provide differentiation among terms that
refer to physical and abstract entities and serves as the basis of the robotics ontology.
In SUMO, classes such as agent, process or proposition are defined. This knowledge is
then specialized by CORA with classes such as Robot or Robotic System. Other ontol-
ogies defined in this standard are the position (POS) ontology [9] that captures the
main concepts and relations regarding the position, orientation, and pose which are
key elements for robot navigation and manipulation, and the RPARTS ontology that
provides a set of specific types of roles that specialize the general role of robot parts.

The IEEE 1872 ontologies are explicit and formal, however, they are maybe too
general for practical use. For this reason, there are a variety of more specific
ontologies with different scopes in the robotics domain. Olszewska [10] presents an
autonomous robot architecture ontology (ROA). ROA defines the main concepts
and relations for defining a robot architecture. This ontology has been tested in
driving a human-robot interaction scenario. A human operator specifies a task and
this task is divided and associated with a robot according to its capabilities. All these
types of entities are captured in the ontology and used to create information ele-
ments that enable human-robot communication. In [11] an extension of CORA
is presented with concepts of design, environment, and interaction on artificial
systems.

Most of these ontologies reuse knowledge from other ontologies. Sometimes
ontologies are identified with knowledge bases, especially after the use of standard-
ized languages to capture both generic and specific knowledge. In order to facilitate
reuse, ontologies are designed following the principle of modularisation. Modularity
provides a series of benefits in contrast to the problems of using big, complex,
monolithic ontologies [12]:

• Scalability for querying data and reasoning. Small-scale ontologies allow easier
concept assertion and reasoning than when handling a large number of entities.

• Scalability for update and maintenance. Ontologies, as any other artifact
requires maintenance and may need to be updated and enlarged with new
knowledge. This task is easier if the knowledge is structured in modules.

3

Using Ontologies in Autonomous Robots Engineering
DOI: http://dx.doi.org/10.5772/intechopen.97357

• Complexity management. The design process is more straightforward when
working with small modules—i.e. a reduced set of concepts—integrated into
the final ontology.

• Understandability. It is easier to understand an ontology in small portions than
a huge ontology, either in a textual or visual form.

• Context-awareness. The use of modular ontologies simplifies the
contextualization in the creation of knowledge. Each module can focus on any
aspect regarding one context.

• Reusability. The split of an ontology into modules provides the reuse of specific
parts in other ontologies.

Nevertheless, modular ontologies may lead to some problems during the process
of creation and use. For example, the integration of other concepts by importing
existing ontologies may lead to unexpected consequences such as inconsistencies
related to reused vocabulary—e.g. conflicting definitions for homonyms. Keeping
safety and correctness in a modular ontology is a key element when extracting or
importing knowledge among ontologies and modules.

2.2 Standard ontologies beyond CORA

As said, CORA is a quite general standard that is not very effective for concrete
applications. The above-mentioned ontologies by Olszewska or Fiorini try to pro-
vide more specific ontologies directly usable in concrete applications.

This fact is recognized by the Standards Association of the IEEE who is currently
developing a collection of CORA-based standards to address different aspects of the
robotics domain. These standards address different aspects of relevance like task
specification, autonomy, ethics, agility, or verification of autonomous behavior.

In particular, the Robotics and Automation Society Standing Committee on
standards working group 1872.22 is elaborating a CORA-based standard ontology for
autonomous robotics [13]—the Autonomous Robotics (AuR) Ontology.

The AuR standard under development shall extend the CORA ontology by
defining additional ontologies for the autonomous robots domain. These ontologies
will address different aspects of relevance: (i) general concepts for autonomous
robots; (ii) core design patterns specific to autonomous robot systems; and (iii)
general use cases and/or case studies.

2.3 Ontologies and model-driven engineering

Currently, there are no generally accepted method or framework for the design
of complex robotic systems [14]. However, this task of building complex robotic
systems can easily leverage extant systems and software development methods. In
complex system developments, the design is focused at a different level of abstrac-
tions, and modularity is used to both organize the design and implement the system
[15]. Examples of this modular approach are the developments based on object-
oriented methods, middleware, and component-based design.

The structural, modular organization of design knowledge and the exploitation
of formally captured system knowledge is the basement of the large collection of

2 https://standards.ieee.org/project/1872_2.html

4

Robotics Software Design and Engineering

model-based approaches in model-driven engineering (MDE). For example, OMG’s
Model-driven Architecture (MDA) focuses on design models a level of abstraction
up of objects and components to reach modular reusable abstractions that can be
later particularised for specific uses (Platform-Independent Model (PIM)!
Platform-Specific Models (PSM)). In the system’s domain—closer to the robotics
domain—languages like Systems Modeling Language (SysML) are gaining momen-
tum due to their universality as a vehicle for augmented design formalization.
However, MDE methods often suffer from a lack of semantics and truly formal
knowledge representations that can be effectively exercised [16].

To overcome these bottlenecks, a formal ontology can be included as part of the
model definition. One example of a model that makes use of ontologies to specify
the system behavior and architecture is the Teleological and Ontological Model for
Autonomous Systems (TOMASys) framework [17]. TOMASys is a domain-
independent metamodel that allows the construction of models to define architec-
tural alternatives in component-based systems. This metamodel is teleological
because it incorporates core concepts in the engineering conceptualization as are the
concepts of system intention and the purpose of the designers when creating a
specific subsystem. And it is ontological because it defines a formal vocabulary for
systems structure and behavior.

The ontological approach followed in this chapter and presented in the proof-of-
concept in Section 5 is built upon the TOMASys framework that was designed
following the ideas of model-based systems engineering and particularized for the
autonomous system engineering domain.

3. Autonomy and relate

The work described in this article addresses the use of ontologies for the aug-
mentation of autonomy in robots [18]. As ontologies foster the use of formality in
conceptualizations, it seems natural to try to provide a definition of the adjective
autonomous.

The term “autonomous” is a buzzword these days and has received different
meanings in different contexts3. In the analysis of the use of the term “autonomous”
in automatic control and robotics, there are two major generalized uses of the term
“autonomous”:

• A robot is said to be autonomous if it has the capability of moving by its own
resources and under self-control.

• A robot is said to be autonomous if it has the capability of performing certain
tasks without human—or external—help. A task-generalization of the former.

In our position as autonomous systems engineers, it is the second interpretation
that we focus on. In systems engineering the task to be performed by the system is
always something of value to the final user. An useful mobile robot shall not just
wander around but perform some task of value during this wandering (find an
object, move an object, detect intruders, etc.). When we say that a robot is autono-
mous we mean that it is capable of performing its assigned activities—e.g. generate a
map—without the need of external intervention [19]. This also applies to the

3 It has indeed a long tradition of use in the domains of healthcare and political science.

5

Using Ontologies in Autonomous Robots Engineering
DOI: http://dx.doi.org/10.5772/intechopen.97357

capability of movement—including the whole robot navigation infrastructure—
and to all the other functions that the robot may perform subsidiarily to the
main task [20].

3.1 Autonomy and disruption

A second aspect concerning task execution that is of maximal importance is the
distinction between (i) being able to perform certain tasks alone (e.g. moving to a
pose or building a map); (ii) doing so while handling some degree of disturbance;
and (iii) being able to perform these tasks alone in the presence of severe distur-
bances4. In the first case, a simple automaton can do the job. In the second case, a
feedback control system can do the job. In the third case, a perception-thought-
action loop is necessary to provide both feedback, adaptation, and anticipation.
Some people use the term “automatic” for the first or second cases, keeping
“autonomous” for the third. In the automatic control domain, some authors may
use “open loop” and “closed-loop” to make this distinction, but for us, the second
case also includes closed-loop controllers for operational set-points.

A more thorough distinction could be done concerning the nature of the distur-
bances, especially when severe. In the case of anticipated, well known severe dis-
turbances, the system could be built in accordance to them to be able to respond
adequately and predictably. If the disturbances are not predictable—or don’t want
to bother about their anticipation—the system can be built to respond reactively to
them. In the design of the system, we shall define, however, a set of bounds of the
system operational environment to be able to design the system to behave robustly
in this region.

In the work described in this chapter, we address situations where the system
finds itself outside the boundaries set for its operation at design time—its normal
operational profile. In these circumstances, the only possibility for keeping the
mission going is for the robot to adapt to the new situation: it shall change its very
design/realization to be able to still achieve mission objectives in this new situation.

3.2 Autonomy and trustworthiness

Trustworthiness is a necessary but not sufficient condition to carry out tasks in
open environments [23]. In real operation, autonomous systems are deployed in
complex environments plagued with uncertainty. This affects the system capability
to complete the mission assigned to it by the user. For a user to confidently rely on
an autonomous system, the system shall be trustworthy.

Trust and trustworthiness may seem similar but they must be distinguished;
especially in an autonomous system, where behavior assurance is quite more com-
plex. Trust is a human-system relational property; i.e. something that the human
user perceives or feels about the robot. On the contrary, trustworthiness is a prop-
erty of the system itself, i.e. that the system is robust and resilient in relation to its
mission and hence, it deserves trust by the human user [24]. This implies that a
human user may not trust a trustworthy system [25] because user perception is

4 A severe disturbance is a disturbance that violates the system design assumptions for normal

operational conditions. An example of severe external disturbance is a slippery floor for an unmanned

ground vehicle (UGV) when designed to operate on a non-slippery floor. An example of severe internal

disturbance is the failure of a laser range sensor used in robot navigation. See [21] for a discussion of

types of system change under the Klir general systems framework [22].

6

Robotics Software Design and Engineering

affected by limited knowledge, observation capability, and biased by previous
experiences.

The problem we are addressing here is achieving trustworthiness, specifically
dependability and mission assurance. The framework discussed here provides engi-
neering tools in terms of system and mission concepts and relationships to define
system design alternatives to deal with abnormal scenarios and unpredictable envi-
ronments.

The underlying idea is to break the design/operation barrier. Using ontologies
we can make available the engineering design knowledge at run-time to allow
system self-reconfiguration using self-knowledge. With this approach, the scope of
the ontologies covers from the system conceptualization until the system deploy-
ment. The use of ontologies at run-time provides an information-driven adaptation
capability to enhance system autonomy [18].

4. Ontologies in the life cycle of autonomous systems

In systems engineering, the life cycle of an artifact usually includes eight stages:
(i) identify the needs, (ii) define the system concept, (iii) specify system require-
ments, (iv) design the system, (v) implement the system, (vi) verify the system,
(vii) deploy the system and (viii) operate it5. In the first six stages, the work is
typically iterative until the deployment phase, when requirements and design deci-
sions are frozen and remain implicit in the final artifact.

In fault-tolerant systems, a set of methods and algorithms intervene at run-time
to keep the functional activity of the system, i.e. to maintain the operation as it was
designed. The fault-tolerance mechanics is predefined, blind, and triggered by
certain events. There is no system knowledge to reason about but its reification in
rigid adaptation mechanisms. The idea we pursue in this work is the usage of
ontologies to include the knowledge of engineering as part of the run-time system to
endow the system with flexible reconfiguration capability based on system knowledge.
With this approach, the design phase and the deployed phase maintain an explicit
link through the system knowledge because the system ontology provides a
metamodel that spans the whole system life cycle. This link can be exploited to
combine other subsystems and create new designs at run-time more suitable for
addressing certain contingencies.

Ideally, the system knowledge base should encode all include all the system con-
cepts developed in early phases of the system life cycle, for example, user needs as the
artifact is produced to satisfy the needs defined in the first stage. With this informa-
tion, the system could be able to ensure the mission and reason about it at any stage.

In adaptive systems, with component or functional redundancy, the early stages
of the life cycle are not addressed. The reconfiguration in this case aims to comply
with the initial system design or a few designs for possible known contingencies.

However, by providing the system with capabilities to trace until the needs that
justify its existence as well as the requirements that justify that design, the system
can augment its autonomy in search of trustworthiness. If a requirement is imposed
by a component that is not functioning and is going to be substituted with another
element, that requirement is no longer applicable to the system. Therefore, besides
the component in use, other adjustments can be made in the system for better
performance.

5 A final decommissioning stage is also of importance, esp. in terms of sustainability, for real-world

systems. We do not address this stage here.

7

Using Ontologies in Autonomous Robots Engineering
DOI: http://dx.doi.org/10.5772/intechopen.97357

An example of this case is the use of different navigation sensors in a mobile
robot. Suppose we have an autonomous robot with laser and ultrasound sensors to
navigate. An initial objective may be to reach a point as fast as possible. According
to the final design of the robot, that requirement would be specified with a specifi-
cation of a targeted velocity value.

The laser is a device with a high refresh rate so the robot can navigate safely at
higher velocities. If the robot enters a room with glass walls, the laser is not reliable.
If the robot detects through the reasoning that the environmental conditions are not
suitable for the laser and triggers a reconfiguration to use the ultrasound sensor, the
robot can keep its operation to fulfill the mission. However, as the design has
changed, the requirements that can be fulfilled are not the same. In this case, as the
ultrasound sensor has a shorter range, the maximum velocity of the robot shall be
significantly less to keep a safe operational profile. Once the robot has traversed that
glass room, the laser can be re-activated so the requirements must change again to
achieve the maximum performance available.

This is a naive example of how a system engineering knowledge base can
improve a navigation task. However, real-world missions are composed of complex-
orchestrated tasks, for instance, the operation of a waiter-robot which must serve a
drink, or a miner-robot that must obtain a certain mineral. In this case, that knowl-
edge can be further exploited with deep reasoning to perform adaptation at
different tasks and several stages of the system life cycle.

5. Fault-tolerant mobile robot proof-of-concept

Following the naive example above, an ontology-driven reconfiguration capa-
bility for mobile robots has been explored in the Metacontrol for Robot Operating
System (MROS) project6. In this implementation, the robot’s mission is to move to a
certain point. During the mission, several contingencies may occur. In this case, we
contemplate the internal contingency cases of (i) laser rangefinder failure and (ii)
low battery. Additionally, the mission has some operational requirements associated
in terms of performance, safety, and energy consumption that the robot must
ensure during the navigation.

The assurance of the operational requirements along with the contingency han-
dling is governed by a knowledge base structured on description logics and exerted
by a reasoner. The key of this approach is the usage of the general modeling
framework presented in Section 2.3, TOMASys. The TOMASys ontology is particu-
larized with two sets of individuals: the navigation-domain ontology and an
application-specific ontology. We use a modular approach in the construction of the
ontology to be capable of reusing a part of the non-specific knowledge in any
navigation application in mobile robotics. The ontologies are instantiated for run-
time use as a knowledge base composed of three OWL 2 [26] files.

The TOMASys metamodel is used to depict structure and behavior with an
explicit representation of the objectives of the system as well as the components
required to realize them. The system concepts provided by this metamodel are
divided into two main groups:

• The static knowledge is stored in Functions and Function Designs. The
Function element allows the definition of abstract Objectives for the system
to complete the mission. The Function Design element stores all the design

6 https://robmosys.eu/mros/

8

Robotics Software Design and Engineering

alternatives the system engineer has thought as possible to fulfill a certain
Function.

• The instantaneous state is captured with Objectives, which define a set of
operational requirements pursued at run-time when executing a Function;
Function Groundings, that are used at run-time to specify which Function

Design is in use; and Components, used to describe the structural modules at
that instant. Lastly, Quality Attributes affect both static and run-time
knowledge. They are used to make explicit the operational requirements of the
mission.

• Each Objective has a Quality Attribute associated to meet operational
requirements such as safety, performance, and energy consumption. Likewise,
each Function Design has a Quality Attribute value estimation to select the
best design alternative to meet the mission requirements. Additionally, the
Function Grounding measures the real Quality Attribute value to monitor if
those requirements are being fulfilled.

As it was previously mentioned, the knowledge base is completed with two sets
of individuals. The navigation-domain file contains instances of widely-used navi-
gation sensors such as ultrasound, laser, RGBD cameras, etc., and other important
elements in autonomous robots such as the battery. These elements are instances of
the TOMASys class Component. Besides, popular Quality Attributes are defined
such as energy, safety, and performance.

The application-specific knowledge base is made of all the Function Designs,
these are the design alternatives to perform navigation. Other elements are the
instance of an Objective, the instance of a Function Grounding, this is the Func-
tion Design in use, and the Quality Attributes relative to them. Each Function

Design has a Quality Attribute estimation in safety and energy, which is calcu-
lated for the Function Grounding. This calculated Quality Attribute value is
compared with the non-functional requirements (NFR) defined for the Objective.
The NFRs are the Quality Attributes required for the specific mission.

5.1 Run-time reconfiguration for fault-tolerance

To use the knowledge base at run-time, it is written in a machine-readable
format using the Web Ontology Language (OWL). A descriptive logic (DL) rea-
soner uses it during the system operation to evaluate the robot’s functioning. Once
an Objective is defined, and it is linked to the Function that solves it, a Function
Grounding is selected according to the mission requirements and the Component
availability. In the MROS proof-of-concept, two possible classes of contingencies
are addressed: component fault and mission requirements non-fulfillment.

Each Component has a required by relationship with the Function Design that
makes use of it. If a Component is malfunctioning, those Function Designs that use
it becomes unavailable. Figure 1 depicts the main relationships contained in the
knowledge base. The two components considered, laser and battery, are required
for all Function Designs except one. In case of laser failure, the Function Design

degraded mode should be selected. Likewise, in the case of a low battery, the
Function Design energy saving mode should be selected. This is implicitly shown
in the figure, as there are no links between those Function Design individuals and
the corresponding Component individual.

The ontology also includes some rules using the Semantic Web Rule Language
(SWRL) to perform functional diagnosis. This is done by asserting the information

9

Using Ontologies in Autonomous Robots Engineering
DOI: http://dx.doi.org/10.5772/intechopen.97357

about the status of the Components that compose the system, the design in use to
solve a function (Function Grounding), and the status of the Objective.

There are three sets of rules that: (i) set the Objective in error if the objective
requirements, NFR Quality Attributes, are not met; (ii) set an Function Ground-

ing in error if a Component in use is in error; and (iii) propagate Function
Grounding error to the Objective. Lastly, there are some additional rules regarding
the storage in a log file of the Function Grounding that have been in error and the
status of a Function Design realisability depending on the status of the Compo-
nents. For instance, if the laser is in error, the only Function Design with
realisability with a true value will be f_degraded_mode according to Figure 1.
Table 1 shows three example SWRL rules used in this proof-of-concept.

Figure 1.
Main individuals and relationships of the proof-of-concept knowledge base. The Objective o_navigate is fulfilled
by the Function Grounding fg_normal_mode, this Function Grounding is a realization of the Function Design
f_normal_mode which solves the Function f_navigate. This Function is required as is the one that solves the
Objective. Component required for this Function Design are laser and battery. Among all the possible Function
Design, the one that does not require the laser if it becomes unavailable is f_degraded_mode. Additionally,
Quality Attributes values relative to the non-functional requirements (NFRs) of the Objective are depicted for
the Quality Attributes of safety and energy.

Rule no.1 tomasys:Component(?c) tomasys:c_status(?c, false) mros:requiredBy(?c, ?fd) tomasys:typeFD(?fg,

?fd) tomasys:FunctionGrounding(?fg)! tomasys:fg_status(?fg, INTERNAL_ERROR)

If a Component has a status in false (in error), and that component is required by a Function Design

with the same type as the Function Design in use, Function Grounding, then that Function Grounding

status is set as INTERNAL ERROR.

Rule no.2 tomasys:FunctionGrounding(?fg) tomasys:fg_status(?fg, INTERNAL_ERROR) tomasys:solvesO(?

fg, ?o) tomasys:Objective(?o)! tomasys:o_status(?o, INTERNAL_ERROR)

If a Function Grounding has a status in INTERNAL ERROR, and that Function Grounding solves an

Objective, then that Objective status is set as INTERNAL ERROR.

Rule no.3 tomasys:Component(?c) tomasys:c_status(?c, false) mros:requiredBy(?c, ?fd)! tomasys:

fd_realisability(?fd, false)

If a Component has a status in false (in error), and that Component is required by a Function Design

then that realisability is set to false.

Table 1.
SWRL rules for proof-of-concept implementation. The first one sets the Function Grounding in error if it uses a
faulty Component, the second one sets the Objective in error if the Function Grounding is in error and the third
one marks as unreachable the Function Design that require unavailable Components.

10

Robotics Software Design and Engineering

When the system needs adaptation because the mission (Objective) is in error
according to rule no. 2, a selection of a design alternative is required. In this case,
rule no. 3 is applied to determine the solution available in terms of components. An
equivalent rule in terms of Quality Attributes and NFRs is used to select the
design compliant with the mission requirements. If there are several Function
Designs available, the module in charge of the reconfiguration, called
Metacontroller, selects the Function Design with higher estimated performance.

In this case, each Function Design represent a system mode. For instance, the
normal mode uses the laser to navigate at maximum velocity levels in environments
with few obstacles but not crowded. The degraded mode, uses an RGBD camera
instead of a laser to navigate, as the refresh rate of this device is considerably less
than the laser, the velocity is reduced to keep navigation with safety. By contrast,
the energy-saving mode is a very safe and slow implementation to reduce at maxi-
mum the battery consumption, impacting the duration of the mission, and there-
fore, the performance.

The ontology implementation has been evaluated in a complete robotic application,
a patrolling corridors mission.While the robot performs the patrol, contingencies such
as the laser error described previously. The robot used is a TurtleBot2 composed of a
Kobuki platform RPLidar A2 laser and an Orbec Astra RGBD camera. The experiments
consisted of simulating a laser error at a random instant. These data were corrupted by
generating realistic data as if something was blocking the laser, or if there was a
misalignment, maybe due to a hit or a fall of the robot. This was done by publishing
scanmessages with erroneous data (a vector of 0’s) in the gazebo plugin topic. Figure 2
depicts the simulation used to develop the reasoner to implement the ontology-driven
reconfiguration. The output from the reasoner once the laser is malfunctioning and the
robot with the navigation mode to degraded is shown in Figure 3.

The main experiment carried measures the recovery time for a laser failure using
ontology-driven reconfiguration. After 50 iterations of the experiment, the time
required is 1.995 s with a standard deviation of 0.478. Without it, the estimated
recovery time for this failure is about 300 s (indeed tied to system maintenance).

Furthermore, another testbed has been used to prove the ontology reusability
along with the reconfiguration performance. In this case, we have used a simulation
of an unmanned underwater vehicle performing exploration in a flooded mine [27].

Figure 2.
Simulation of robot patrolling with navigation and localization system; in red, the button to inject laser failure.

11

Using Ontologies in Autonomous Robots Engineering
DOI: http://dx.doi.org/10.5772/intechopen.97357

With this proof-of-concept, we have implemented a fault-adaptive subsystem in
general terms to ensure mission requirements and face component faults. This
approach provides a general and reusable asset for systems in which there are
design alternatives in terms of behavior and/or components. This approach aptly
realizes the vision of using ontologies for building knowledge bases to decouple the
mission-oriented system operation core from the reconfiguration needed to over-
come disturbances or failures. Moreover, with this experimental setting, we have
shown evidence of the advantages of automatic reconfiguration through ontological
architectures for reducing the recovery time for laser contingencies.

6. Systemic implications of ontologies

As stated in Section 2, ontologies provide a variety of tools to define a system in
terms of concepts and the relationships among them. Besides, given their formal
nature, they can be included in the system as an explicit source of knowledge to
improve its run-time operation.

Ontologies can be treated as a sub-system itself, that may be designed following
the systems engineering principles of modularity, scalability, and reusability. The
proof-of-concept presented here (Section 5), is an example of the use of ontologies
to augment the autonomy level of a robot, increasing its dependability by improv-
ing mission assurance. In this proof-of-concept system ontologies are components
of the deployed system.

However, the use of ontologies as part of autonomous systems engineering
processes goes well beyond this [18], because they can have a strong impact on the
many processes of the systems life cycle [28]. In this section, we analyze three
classes of impacts: (i) impacts on complexity; (ii) impacts on collaboration; and (iii)
impacts on risk management.

6.1 Implications on complexity

Section 2 summarised some of the benefits of modularity in ontologies. The key
feature of the modular approach is the reduction obtained in the ontology

Figure 3.
Console from the reasoner ROS2 node to implement the ontology-driven reconfiguration; in red the component
status of the laser as ’FALSE’, malfunctioning and the navigation mode required, the Function Grounding
’DEGRADED MODE’.

12

Robotics Software Design and Engineering

complexity when working on small modules integrated into a whole ontology. This
conceptual decomposition and complexity reduction can be extrapolated to the
conceptualization that underlies all system engineering processes7, especially in
systems-of-systems contexts, [29].

The use of a knowledge base that makes explicit the requirements and the design
decisions on the system, provides systems engineering knowledge that can be leveraged
at the whole life cycle. The explicitness of mission-oriented conceptsmakes it easier for
the developer at the verification phase to understand possible fault sources and inte-
gration problems. The trend in systems engineering towardsmodel-based approaches is
rooted in the formal verification capability thatmodels provide at all stages (esp. at early
stages where the costs of re-engineering are much lower). At the early stages of the
model, complexity is lower and formal analyses may bemore exhaustive and effective.

In the deployment phase—as shown in our proof-of-concept—ontologies may be
used as fault-tolerance assets. The use of ontologies to reason about the state of the
mission and the architectural components in use in general terms, provide a common
framework to decouple reconfiguration actions from the particular implementation.
This separation of concerns allows for a strong reduction in the complexity of the
fault-tolerant mechanisms by both (i) the localized nature of the fault-tolerant
mechanisms; and (ii) the possibility of reusing general tested assets such as TOMASys
and some of the more general knowledge bases (as the ones presented here8).

6.2 Implications on collaborative systems

The use of ontologies in the construction of formal knowledge bases provides a
common understanding within a domain. The encoding of ontologies in machine-
readable formats such as OWL allows a truthful integration when sharing informa-
tion between different agents and/or tools. This integration obviously includes the
possibility of collaboration between different types of systems in a group mission.
This collaboration is not limited to the activities in the systems life cycle as described
earlier but spans all classes of multi-agent collaboration in fielded systems.

An example of this is the enabling of collaborative work between fleets of robots,
especially when they are heterogeneous. For example, the shared information
between an unmanned aerial vehicle (UAV) and an unmanned ground vehicle
(UGV) may encounter incompatibilities just in the coordinate systems they use, as
the UGV does not take into account the vertical axis. Moreover, robots may have
different capabilities, a UAV may be able to map the environment whilst the UGV
may have an arm to interact with it.

The same occurs when the system includes a human as an external operator or
supervisor, the system must exchange information to ensure collaborative work.
Usually, the combination of data is done implicitly by the system designers. How-
ever, using ontologies for formal integration of all the different perspectives of a
system of systems with an explicit conceptualization provides a robust and trust-
worthy method for sharing information that affects the way humans interact and
collaborate with machines.

6.3 Implications on risk management

As said before, a formal definition of system concepts can be used for better
formal analysis along the whole life cycle. This upstream analysis implies a

7 See for example http://www.sebok.org.
8 Available at: https://github.com/MROS-RobMoSys-ITP/mros_ontology

13

Using Ontologies in Autonomous Robots Engineering
DOI: http://dx.doi.org/10.5772/intechopen.97357

reduction of the probability of faults during system operation but it also includes
the possibility of better diagnostic features. having explicit knowledge on relation-
ships among system entities allows the system to trace the source of faults and take
action in the implicated parts.

Besides, the system may adapt itself as the case presented in Section 5 to reduce
damage or can even take preventive action based on deep reasoning. When the
system is able to adapt to overcome problems derived from environmental changes
or malfunctioning components, the system becomes more autonomous and trust-
worthy.

Design decisions have always associated risks. Usually, the final design is com-
monly the solution with less risk in the context where the system is deployed. The
use of ontologies provides a tool for risk management as design decisions may be
justified in the knowledge base. Furthermore, this information can be used at run-
time to apply the most suitable solutions if the operational environment changes.

In the proof-of-concept presented here, quality attributes are used to select
among design alternatives. When risk augments because of not meeting the security
standards of the mission, other designs can be used. This may affect the perfor-
mance of the mission but ensures its fulfillment. The system engineer must coordi-
nate adequately those quality attributes to ensure a trade-off between performance
and security. In this context, risk ceases to be a collateral effect of system design and
operation to become a first-level citizen in the explicit design of the system.

7. Towards a full life cycle ontology

Ontologies are commonly used to store information within a domain. For this
reason, they are a valuable asset to model the shared understanding of the system
and its concepts at different stages of its life cycle. Here, we propose to take a
further step and use that information model at run-time to provide the system with
knowledge-driven self-adaptation.

The proof-of-concept presented here addresses reconfiguration to ensure the
mission fulfillment within a set of predefined operational requirements. The main
limitation is imposed by the set of alternative designs predefined for the system and
its possible contingencies. Here, ontologies have been used to orchestrate the
deployment of different design solutions at run-time.

To increase the autonomy levels of systems, particularly in the case of robots, we
propose to take a further step and include all early phases of system life cycles, from
the need identification to fulfill a mission to the verification of the system (see
Figure 4).

When the system is deployed, each time a contingency is detected and it
requires reconfiguration, the system should return to the needs evaluation and
analyze which tools it has available to satisfy the need. According to that, it can
adopt some requirements and come across with a design by itself. That design may
be tested in simulation with a digital twin or just deployed if it has been evaluated in
previous operations.

To reach such an elevated autonomy level, a massive effort in ontology stan-
dardization in systems engineering is required9. Moreover, the design engineers
must encode all the information they have about the system in terms of those

9 See for example the efforts of the IEEE 1872.1 working group on robot task standardization or the IOF

group on systems engineering.

14

Robotics Software Design and Engineering

standards. That information also includes discarded ideas and the reason why they
are not included in the final design, as can become part of a contingency solution.

To select the best possible design available in case of contingency, knowledge
bases should include metrics regarding the cost (in terms of time, energy consump-
tion, reliability) of the resulting system after applying reconfiguration. This selec-
tion must preserve the mission fulfillment with optimal features.

8. Conclusions

Ontologies provide a baseline for shared information between systems, subsys-
tems, and external agents. But that information can also be a tool for augmenting
the autonomy levels of systems. Ontologies provide a formal conceptualization of
entities and their relationships. The knowledge stored can be used along architec-
tural models in system engineering to provide a general framework for autonomous
systems.

A concrete realization of this general framework has been tested with a mobile
robot navigating to a point in a cluttered environment. The proof-of-concept
address two contingency types, (i) a component-level failure, as the case when the
laser becomes unavailable, or (ii) not reaching the mission requirements in terms of
safety or energy consumption.

The contingencies are solved by reasoning about the status of the components in
use and the status of the objective and its quality attributes associated. Once a
contingency is encountered, the reasoner provides the most suitable design

Figure 4.
Going back in the system life cycle from an operational failure.

15

Using Ontologies in Autonomous Robots Engineering
DOI: http://dx.doi.org/10.5772/intechopen.97357

alternative to overcome it according to the component availability and the esti-
mated quality values in terms of energy consumption, safety and performance.

However, this proof-of-concept focus on the selection of alternatives. To pro-
vide a complete module of self-adaptation and reconfiguration in the whole life
cycle of systems, we need to take a larger perspective. To reach complete autonomy,
the system needs to have access to knowledge from the needs for which it is
designed, besides the design alternatives and the restrictions the engineers have
faced. With this information, in case of failure, the system can have a wider picture
of its context and take corrective action at different levels of its architecture to
adapt to run-time situations.

To achieve this vision a full system life cycle ontology for autonomous systems is
needed. Current efforts in ontology development for systems engineering, robots,
and autonomous systems are quite valuable but they shall be (i) based on a general
systems foundation; (ii) harmonized, and (iii) built with a modular ontology
approach.

Acknowledgements

This work was supported by RobMoSys-ITP-MROS (Grant Agreement No.
732410) and ROBOMINERS (Grant Agreement No. 820971) projects with funding
from the European Union’s Horizon 2020 research and innovation programme.

Author details

Esther Aguado* and Ricardo Sanz
Autonomous Systems Laboratory, Centre for Automation and Robotics UPM-CSIC,
Universidad Politécnica de Madrid, Spain

*Address all correspondence to: e.aguado@upm.es

© 2021 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

16

Robotics Software Design and Engineering

References

[1]Gruber TR. A translation approach to
portable ontologies. Knowledge
Acquisition. 1993;5(2):199–220.

[2] Guarino N, Giaretta P. Ontologies
and knowledge bases: Towards a
terminological clarification. In: Towards
very Large Knowledge bases:
Knowledge Building and Knowledge
sharing. IOS Press; 1995. p. 25–32.

[3] Zhao X, Wang Z, Cui Y, Zheng G.
Novel Ontology-Based Method for
Generating Satellite Cluster’s Task
Configuration. Journal of Aerospace
Information Systems. 2020;17(2):86–96.

[4] Poggi F, Rossi D, Ciancarini P.
Integrating Semantic Run-Time Models
for Adaptive Software Systems. In:
Journal of Web Engineering. vol. 18;
2019. p. 1–42.

[5] Zhai Z, Martínez Ortega JF, Lucas
Martínez N, Castillejo P. A Rule-Based
Reasoner for Underwater Robots Using
OWL and SWRL. Sensors (Basel,
Switzerland). 2018 10;18(10):3481.

[6] IEEE Standard Ontologies for
Robotics and Automation. IEEE Std
1872-2015. 2015:1–60.

[7] Prestes E, Carbonera JL, Rama
Fiorini S, M Jorge VA, Abel M,
Madhavan R, et al. Towards a core
ontology for robotics and automation.
Robotics and Autonomous Systems. 2013;
61(11):1193 – 1204. Ubiquitous Robotics.

[8]Niles I, Pease A. Towards a Standard
Upper Ontology. In: Proceedings of the
International Conference on Formal
Ontology in Information Systems -
Volume 2001. FOIS ’01. New York, NY,
USA: Association for Computing
Machinery; 2001. p. 2–9.

[9] Carbonera JL, Fiorini SR, Prestes E,
Jorge VAM, Abel M, Madhavan R, et al.
Defining positioning in a core ontology

for robotics. In: 2013 IEEE/RSJ
International Conference on Intelligent
Robots and Systems; 2013. p. 1867–1872.

[10]Olszewska JI, Barreto M, Bermejo-
Alonso J, Carbonera J, Chibani A,
Fiorini S, et al. Ontology for
autonomous robotics. In: 2017 26th IEEE
International Symposium on Robot and
Human Interactive Communication
(RO-MAN); 2017. p. 189–194.

[11] Fiorini SR, Carbonera JL,
Gonc¸alves P, Jorge VAM, Rey VF,
Haidegger T, et al. Extensions to the
core ontology for robotics and
automation. Robotics and Computer-
Integrated Manufacturing. 2015;33:
3 – 11. Special Issue on Knowledge
Driven Robotics and Manufacturing.

[12] Parent C, Spaccapietra S. In:
Stuckenschmidt H, Parent C,
Spaccapietra S, editors. An Overview of
Modularity. Berlin, Heidelberg: Springer
Berlin Heidelberg; 2009. p. 5–23.

[13]Olivares-Alarcos A, Beßler D,
Khamis A, Goncalves P, Habib MK,
Bermejo J, et al. A review and comparison
of ontology-based approaches to robot
autonomy. The Knowledge Engineering
Review. 2019;34.

[14] Ragavan SV, Ganapathy V. A
General Telematics Framework for
Autonomous Service Robots. In: 2007
IEEE International Conference on
Automation Science and Engineering;
2007. p. 609–614.

[15] Bayat B, Bermejo J, Carbonera J,
Facchinetti T, Fiorini S, Gonçalves P,
et al. Requirements for building an
ontology for autonomous robots.
Industrial Robot: An International
Journal. 2016 08;43.

[16] Kleppe AG, Warmer J, Bast W.
MDA Explained: The Model Driven
Architecture: Practice and Promise.

17

Using Ontologies in Autonomous Robots Engineering
DOI: http://dx.doi.org/10.5772/intechopen.97357

USA: Addison-Wesley Longman
Publishing Co., Inc.; 2003.

[17]Hernández C, Bermejo-Alonso J,
Sanz R. A self-adaptation framework
based on functional knowledge for
augmented autonomy in robots.
Integrated Computer-Aided
Engineering. 2018;25:157–172.

[18] Sanz R, Bermejo J, Morago J, Hern´
andez C. Ontologies as Backbone of
Cognitive Systems Engineering. In:
Bryson J, Vos MD, Padget J, editors.
Proceedings of AISB CAOS 2017:
Cognition And Ontologies. Bath, UK;
2017. p. 218–223.

[19] Sanz R, Matía F, Galán S. Fridges,
Elephants and the Meaning of
Autonomy and Intelligence. In:
Groumpos PP, Koussoulas NT,
Polycarpou M, editors. IEEE
International Symposium on Intelligent
Control, ISIC’2000. Patras, Greece;
2000. p. 217 – 222.

[20] López I, Sanz R, Hernández C,
Hernando A. General Autonomous
Systems: The Principle of Minimal
Structure. In: Grzech A, editor.
Proceedings of the 16th International
Conference on Systems Science. vol. 1;
2007. p. 198–203.

[21] López I. A Framework for Perception
in Autonomous Systems [Ph.D. thesis].
Departamento de Automática, ETS de
Ingenieros Industriales, Universidad
Politécnica de Madrid; 2007.

[22] Klir GC. An Approach to General
Systems Theory. Van Nostrand
Reinhold; 1969.

[23] Abbass HA, Scholz J, Reid DJ. In:
Abbass HA, Scholz J, Reid DJ, editors.
Foundations of Trusted Autonomy: An
Introduction. Cham: Springer
International Publishing; 2018. p. 1–12.

[24] Amaral G, Guizzardi G,
Guizzardi R, Mylopoulos J. Ontology-

based Modeling and Analysis of
Trustworthiness Requirements:
Preliminary Results. In: Dobbie G,
Frank U, Kappel G, Liddle SW,
Mayr HC, editors. International
Conference on Conceptual Modeling
(ER 2020). Vienna, Austria; 2020.
p. 342–352.

[25] Kok B, Soh H. Trust in Robots:
Challenges and Opportunities. Current
Robotics Reports. 2020 12;1:1–13.

[26]W3C. OWL 2 Web Ontology
Language Structural Specification and
Functional-Style Syntax (Second
Edition). World Wide Web
Consortium; 2012. REC-owl2-syntax-
20121211.

[27] Aguado E, Milosevic Z,
Hernández C, Sanz R, Garzon M,
Bozhinoski D, et al. Functional Self-
Awareness and Metacontrol for
Underwater Robot Autonomy. Sensors.
2021;21(4). Available from: https://
www.mdpi.com/1424-8220/21/4/1210.

[28] ISO/IEC/IEEE. ISO/IEC/IEEE
15288-2015 Systems and software
engineering – System life cycle
processes. International Standards
Organisation; 2015.

[29]Guariniello C, Raz AK, Fang Z,
DeLaurentis D. System-of-systems tools
and techniques for the analysis of cyber-
physical systems. Systems Engineering.
2020;23(4):480–491.

18

Robotics Software Design and Engineering

