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Chapter

Machine Learning in Estimating
CO2 Emissions from Electricity
Generation
Marco Rao

Abstract

In the last decades, there has been an outstanding rise in the advancement and
application of various types of Machine learning (ML) approaches and techniques in
the modeling, design and prediction for energy systems. This work presents a simple
but significant application of a ML approach, the Support Vector Machine (SVM) to
the estimation of CO2 emission from electricity generation. The CO2 emission was
estimate in a framework of Cost-Effectiveness Analysis between two competing
technologies in electricity generation using data for Combined Cycle Gas Turbine
Plant (CCGT) provided by IEA for Italy in 2020. Respect to other application of ML
techniques, usually developed to address engineering issues in energy generation, this
work is intended to provide useful insights in support decision for energy policy.

Keywords: CO2 emissions, energy systems, machine learning, support vector
machines, cost-effectiveness analysis, forecasting

1. Introduction

The science of decision support is foundational for every type of policy, and this
work offer a proposal to analyze its role in energy policy.

An example of application of a particular machine learning (ML) technique to an
energy policy problem is presented. It is important to understand the role of ML in
energy and environmental analysis, for two solid reasons.

The first concerns the need to process large volumes of data and to elaborate and
model complex relationships, typical of the energy analysis and of the environmen-
tal analysis. In this context, the use of AI (Artificial Intelligence) and machine
learning is almost mandatory.

The second concerns the need to a concerted effort to identify how these tools
may best be applied to tackle major problems of recent years, like climate change
[1]: about this, CO2 emissions is key variable that we must control to achieve the
global objective of mitigating damage for humanity.

This work has a specific goal. Using known tools from the scientific literature on
energy generation costs, we intend to show how the use of a machine learning
technique (the support vector machines, SVM) can produce a more accurate
modeling of these costs.

The link with CO2 emissions is provided by the possibility of using the cost
model in a cost-effectiveness analysis (C-E A), in which the cost is represented by
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the Levelised Cost of Energy (LCOE) and the effectiveness is represented by the
CO2 emissions of the technologies considered per unit of energy produced.

The CO2 estimation is then obtained by selecting the best generation options
according to the C-E A results.

The meaning of this work is the following.
Imagine that you are an energy analyst, in the public or private sector, and you

need to use only one or just few variable/s (such as a forecast on the cost of natural
gas), to estimate the costs of an electricity generation technology.

This task can be accomplished using a cost model of electricity generation in
which a single piece of information can vary, leaving everything else unchanged (or
imposing a certain trend on it).

The metric used is the indicator LCOE (Levelised Cost of Energy) provided by
IEA (International Energy Agency), using 2020 data.

Once you have obtained a certain level of accuracy in estimate of energy cost, it
is possible to move into a context of cost-effectiveness analysis, in which the best
energy option in terms of Incremental Cost-Effectiveness Ratio (ICER) was selected
to produce energy and, finally, provide a certain level of CO2 emissions for the time
horizon in which such a technology is still the “best option”.

In other words, the estimate of energy cost and the cost-effectiveness analysis,
allow us to trace the scenarios for electricity generation mix and, finally, calculate a
quantitative forecast of the CO2 emitted.

The proposed work just intends to show the application of one of the existing
machine learning techniques to the estimation of the LCOE, starting from some
explanatory variables.

A linear model (LM) and an SVM are compared in the prediction of the LCOE
value for a combined cycle gas plant (CCGT) with a focus on the fuel cost, Opera-
tion and Maintenance (O&M) cost and CO2 price using IEA data for Italy in 2020.

The work carried out intends to highlight the possibilities of applying machine
learning techniques not only in the purely engineering aspects of energy systems,
but also in the statistical-economic ones at a higher level of abstraction.

Some words about why to focus on power generation systems.
As countries work towards a low carbon world, it is crucial that policymakers,

modelers, and experts have at their disposal reliable information on the cost of
generation.

IEA [2] reports that the levelised costs of electricity generation of low-carbon
generation technologies are more and more low the costs of conventional fossil fuel
generation. Renewable energy costs continue their descent in recent years and their
costs are now competitive with dispatchable fossil fuel-based electricity generation
for many countries.

2. Methodology

This section presents the main tools used in this work: the LCOE methodology
provided by IEA and the SVM, the used machine learning technique. Just before
SVM presentations a very brief remind about ML and its use in energy systems and
CO2 emissions estimates will be provided.

2.1 Levelised cost of energy

The Levelised Cost of Energy (LCOE) is the selected tool to measure the cost of
an energy unit produced by the considered technologies. LCOE is a methodology
described in the joint report by the International Energy Agency and the OECD
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(Organization for Economic Co-operation and Development) Nuclear Energy
Agency (NEA) (now at the ninth edition in a series of studies on electricity gener-
ating costs) [1]. This report includes cost data on power generation from natural
gas, coal, nuclear, and a broad range of renewable technologies.

The metric for plant-level cost chosen is the well-known levelised cost of elec-
tricity (LCOE) (IEA are now considering system effects and system costs with the
help of the broader value-adjusted LCOE, or Levelised Cost of Value-Adjusted
LCOE, VALCOE metric, here not considered).

The LCOE is widely considered as the principal tool for comparing the plant-
level unit costs of different base load technologies over their operating lifetimes
since indicates the economic costs of a technology family, not the financial costs of a
certain projects in a certain market. Due to the equality between discounted average
costs and the stable remuneration over lifetime electricity production LCOE recall
the costs of electricity production in regulated electricity markets with stable tariffs
than to the variable prices in deregulated markets.

Despite many limitations, LCOE has maintained its utility and appeal since it is a
uniquely straightforward, transparent, comparable, and well understood metrics
remaining a widely used tool for modeling, policy making and public debate.

The calculation of the LCOE is based on the equivalence of the present value of
the sum of discounted revenues and the present value of the sum of discounted
costs. Another way on the left-hand side one finds the discounted sum of benefits
and on the right-hand side the discounted sum of costs:

LCOE ¼ PMWh ¼

P

Capitalt þ O&Mt þ Fuelt þ Carbont þDt
� �

∗ 1þ rð Þ�t

P

MWh ∗ 1þ rð Þ�t (1)

where:

PMWh The constant lifetime remuneration to the supplier for electricity;
MWh The amount of electricity produced annually in MWh;

1þ rð Þ�t The real discount rate corresponding to the cost of capital;
Capitalt Total capital construction costs in year t;
O&Mt Operation and maintenance costs in year t;
Fuelt Fuel costs in year t;
Carbont Carbon costs in year t;
Dt Decommissioning and waste management costs in year t
PMWh is equal to levelised cost of electricity (LCOE).

Eq. (1) is the formula used here to calculate average lifetime levelized costs
based on the costs for investment, operation and maintenance, fuel, carbon emis-
sions and decommissioning and dismantling provided by OECD countries and
selected non-member countries.

2.2 Machine learning

Machine learning (ML) is the field of artificial intelligence (AI) that provide
methods to learn from data over time creating algorithms not being programmed to
do so.

The literature about ML is relatively recent but is so vast that only some hint to
review works can be made here, as an access point to this world1.

Machine learning approaches are normally categorized as in the follows.

1 Here we just remind a recent review of the state of art in machine learning techniques [3].
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Supervised machine learning, that trains itself on a labeled data set;
unsupervised machine learning that uses unlabeled data with algorithms to
extract the features required to label, sort, and classify the data in real-time, without
human intervention; semi-supervised learning (SsL) namely a medium between
supervised and unsupervised learning: SsL uses a smaller labeled data set during
training and make classification and feature extraction from a larger, unlabeled data
set; reinforcement machine learning is like supervised learning, but do not
requires sample data for training (since using “trial and error” mode).

About the machine learning algorithms for use with labeled data the regression
algorithms (as linear and logistic regression); decision trees (based on a set of
decision rules to perform classification); instance-based algorithms: it uses classi-
fication to estimate how likely a data point is to be a member of one group, or
another based on its proximity to other data points.

Methods based for use with on unlabeled data are: clustering algorithms: (like
K-means, TwoStep, and Kohonen clustering); association algorithms: (that find
patterns in data by identifying ‘if-then’ relationships namely association rules);
neural networks: (that create a layered network of calculations featuring an input
layer, when data in; one or more hidden layer, where calculations are performed;
and an output layer. Where each conclusion is assigned a probability); deep neural
network that uses multiple hidden layers, each of which successively refines the
results of the previous layer. Deep learning models are typically unsupervised or
semi-supervised. Certain types of deep learning models—including convolutional
neural networks (CNNs) and recurrent neural networks (RNNs)—are driving pro-
gress in areas such as computer vision, natural language processing (including
speech recognition), and self-driving cars.

In this work, the machine learning approach used is the SVM one.
SVMs2 are machine learning algorithms built on statistical learning theory for

structural risk minimization. In pattern recognition, classification, and analysis of
regression, SVMs outperform other methodologies. The significant range of SVM
applications in the field of load forecasting is due to its ability to generalize (also,
local minima lead to no problems in SVM).

SVM was chosen, in this work, for the sake of simplicity, since the performed
Support Vector Regression (SVR) [5], extremely easy to understand in comparing a
traditional statistical tool with a competing machine learning based one.

Often, the available applications of SVM in the energy sector are oriented on the
engineering side3 while in this work the approach is oriented in support decisions
for energy policy field.

Using one of the possibilities offered by SVMs, namely the SVR, the follows
show how it is possible to obtain more accurate forecasts of costs per unit of energy
produced, using LCOE as a metric.

The best available accuracy is then used in a context of cost-effectiveness
analysis.

In the following, a method to select among competing options (options that
can be differ even for slight changes in some significant LCOE parameters), the
one characterized by the best Incremental Cost-Effectiveness Ratio (ICER) is
presented.

The possibility of making this choice during the lifetime of the plant leads to the
possibility of identifying the best technology available, year by year, to get the
corresponding profile of the associated CO2 emissions.

2 For a good introduction to this topic see [4].
3 See, for example [6].
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2.2.1 Machine learning for energy systems and CO2 emission estimation

The growing utilization of data collectors in energy systems has resulted in a
massive amount of data accumulated (an increasing mass of mart sensors are now
extensively used in energy production and energy consumption) leading to a con-
tinuous production of big data and, consequently, to a massive number of opportu-
nities and challenges in decision support science.

Today, ML models in energy systems are essential for predictive modeling of
production, consumption, and demand analysis due to their accuracy, efficacy, and
speed or to provide an understanding on energy system functionality in the context
of complex human interactions.

Salimi et al. [7] propose a comprehensive review of essential ML to present the
state of the art of ML models in energy systems and discuss their likely future trends.

Machine learning was used for estimate CO2 emission from energy systems in
several context, using different approach. It is possible to recall, among an increas-
ing number of works in recent years:

Leerbeck et al. [8] about flexibility of the electricity demand, a machine learning
algorithm developed to forecast the CO2 emission intensities in European electrical
power grids distinguishing between average and marginal emissions in Danish
bidding zone DK2;

Magazzino et al. [9] an investigation on the causal relationship among solar and
wind energy production, coal consumption, economic growth, and CO2 emissions
for these three countries;

Cogoljević et al. [10] on the linkage between energy resources and economic
development the focus of that work is to develop and apply the machine learning
approach to predict gross domestic product (GDP) based on the mix of energy
resources with a higher predictive accuracy;

Wu et al. [11] about proposing a standardized framework for estimating the
indirect building carbon emissions within the boundaries of various types of Local
Climate Zones (LCZs using a random forest machine learning method);

Mele and Magazzino [12] on the relationship among iron and steel industries, air
pollution and economic growth in China (using a Long Short TermMemory, LSTM,
approach);

Li et al. [13] on the forecasting of energy consumption related carbon emissions
for the Beijing-Tianjin-Hebei region.

Huang et al. [14] on the uses of gray relational analysis to identify the factors
that have a strong correlation with carbon emissions for China to reduce carbon
emissions by studying prediction of carbon emissions (using LSTM).

Csillik and Asner [15] on the creation of an automated, high-resolution forest
carbon emission monitoring system that will track near real-time changes and will
support actions to reduce the environmental impacts of gold mining and other
destructive forest activities for the Peruvian Amazon (using deep learning models).

Csillik et al. [16] on the use of a random forest machine learning regression
workflow to map country of Peru by combining 6.7 million hectares of airborne
LiDAR measurements of top-of-canopy height with thousands of Planet Dove sat-
ellite images into, to create a cost-effective and spatially explicit indicators of
aboveground carbon stocks and emissions for tropical countries as a transformative
tool to quantify the climate change mitigation services that forests provide.

Niu et al. [17] to determine whether China can achieve the commitment of
reducing carbon emission intensity in 2030, through a general regression neural
network (GRNN) forecasting model based on improved fireworks algorithm
(IFWA) optimization is constructed to forecast total carbon emissions (TCE) and
carbon emissions intensity (CEI) in 2016–2040.
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2.3 Our methodology

The present work reports an experiment performed using a simple LCOE model,
built according to basic methodology proposed by IEA. The performed experiment
is simple and straightforward. Two energy scenarios were produced, one based on a
certain hypothesis of change in the fuel cost, the other based on a hypothesis of
change in fuel cost, O&M cost, and CO2 price, for the CCGT type plant, over a
period of 30 years.

In each scenario, a certain LCOE profile is obtained for the time horizon consid-
ered. A simple regression analysis is then performed on this variable, using as
explanatory variables, first the cost of fuel, and then the operating costs.

The analysis is carried out both using a LM and the SVM, with further manual
tuning of the last to improve its performance. The manual tuning for SVR was used
for the sake of simplicity since the main goal of the study is to suggest the applica-
tion of this ML technique to gain forecasting accuracy to use in the following phase,
the cost-effectiveness analysis.4

To evaluate the accuracy of the forecast, the Root Mean Square Error (RMSE),
the Mean Average Error (MAE) and the Mean Average Percentage Error (MAPE)
were used.5

This simple test was performed to show the accuracy of the fuel cost and O&M
cost as a predictor of CCGT LCOE.

Once established the best technique, the data from the two scenarios in a third
scenario are modified, under certain hypothesis explained in the follows, to made a
C-E A between a technology represented by IEA data and another of the same type
with little changes in O&M costs. Using ICER as a winning criterion, it is possible to
select the best energy generation option and, finally, to trace the corresponding CO2

emission estimate trend over the plant’s lifetime.
All the data coming from IEA [2].
The LCOE model.
First, a LCOE model based on IEA Eq. (1), with the following level of detail, was

built.
The basic relationships of the model are:

PF ¼ Power ∗ 8760 ∗AVLF ∗
AAF
100

∗ 1� AuxPð Þ (2)

ws ¼ 1� wd (3)

ks ¼ krftþ EMRP ∗B (4)

i ¼ wd ∗ kdþ ws ∗ ks (5)

d ¼ i= 1þ ið Þ (6)

dfi ¼
X

j

1= 1þ ið Þ j (7)

icfinal ¼ icfinalþ
ic

CnsT

� �

∗ dfi (8)

df ¼
X

j

1= 1þ dð Þ j (9)

4 Indeed, manual tuning is often considered as one of the most significant choice [18].
5 See [19] for a complete discussion about the used metrics.
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icfinal ¼ icfinalþ
ic

CnsT

� �

∗dfi1 (10)

dfi ¼
X

j

1= 1þ ið Þ j (11)

Pro ¼ Proþ PF ∗ df (12)

OM ¼ FOMþ VOMð Þ ∗PFð Þ ∗ df (13)

Fue ¼ CFueð Þ ∗PFð Þ ∗ df (14)

CO2 ¼ PCO2ð Þ ∗PFð Þ ∗ df (15)

Cost ¼
X

j

OMþ Fueþ CO2ð Þ (16)

Decom ¼ n ∗Decom ∗Pro (17)

LCOE ¼ Power ∗ icfinal ∗ 1000þ CostþDecomð Þ=Pro (18)

Where:

CC Cost of Capital (USD/MWh)
Power net capacity (MWe)
AVLFmin AVerage Load Factor min value (%)
AVLFmax AVerage Load Factor max value (%)
AAF Average Availability Factor (%)
AuxP Auxiliary Power (%)
Lifetime Time horizon of plant (years).
wdmin min weight of cost of debt on total cost (%)
wdmax max weight of cost of debt on total cost (%)
kdmin min value of debt rate (%)
kdmax max value of debt rate (%)
tmin min value of taxation (%)
tmax max value of taxation (%)
krftmin min value of free risk rate (%)
krftmax max value of free risk rate (%)
EMRPmin min value of Expected Market Risk Premium (%)
EMRPmax max value of Expected Market Risk Premium (%)
Bmin min value of Beta (%)
Bmax max value of Beta (%)
CnsTmin min value of Construction Time (years)
CnsTmax max value of Construction Time (years)
FOMmin Fixed Operation and Maintenance Costs min (USD*MWh)
FOMmax Fixed Operation and Maintenance Costs max (USD*MWh)
VOMmin Variable Operation and Maintenance Costs min (USD*MWh)
VOMmax Variable Operation and Maintenance Costs max (USD*MWh)
Cfuemin min value of Costs of Fuel (USD*MWh)
Cfuemax max value of Costs of Fuel (USD*MWh)
Effmin min value of Efficiency (%)
Effmax max value of Efficiency (%)
PCO2min min value of CO2 price (USD*MWh)
PCO2max max value of CO2 price (USD*MWh)
Decommin min value of Decommissioning (USD*MWh)
Decommax max value of Decommissioning (USD*MWh)

All other parameters are settled using the IEA values.
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We have set two type of scenario, basing on the following assumptions about
certain variables of the model. The basic hypothesis is a constant decreasing of 2%
for every variable changed, except every 6 years (a totally arbitrary choice), simu-
lating an increasing amplification of this cycle (every 6 years, the percentage vari-
ation of the cost respect to the previous value is double than it and then is multiplied
for the number of the occurring, so the first time at year 6, this value is roughly 4,
namely 2% multiplied by 2 and then multiplied per variation 1).

Table 1 describes the hypothesis used in this first step of the analysis.

3. Results

Figure 1 shows the results obtained by performing a SVR about the data from
IEA [1] for the first scenario considered (Figure 2).

The values of RMSE for the Linear Model (LM), the SVM Model Before Tuning
(SVMBT) and the SVM Model After Tuning (SVMAT) are:

RMSE MAE MAPE

Linear Model 1,30E-14 8,39E-15 8,39E-17

SVM 5,25E-01 4,01E-01 4,01E-03

Tuned SVM 1,74E-03 1,54E-03 1,54E-05

Figure 1.
Comparison between LM and SVMBT in predicting LCOE of CCGT technology for Italy (simulating data over
lifetime of the plant - base data: Italy, 2020 - sources: IEA) - scenario 1 - Y = LCOE (USD/MWh), X = fuel
cost (USD/MWh).

Fuel Cost (baseline 45.5

USD/MWh)

O&MCost (baseline: 6.99

USD/MWh)

CO2 price (10.1

USD/MWh)

Scenario

1

Linear decreasing of 2% per

year except every 6 years

constant constant

Scenario

2

Linear decreasing of 2% per

year except every 6 years

Linear decreasing of 2% per

year except every 6 years

Linear decreasing of 2% per

year except every 6 years

Table 1.
Scenarios used for the regression of LCOE on fuel cost and O&M cost
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with a clear improvement of performance of the SVM after tuning. The linear
model since the strong relationships between the fuel cost and the LCOE is clearly
preferable respect to the SVM (Figures 1–4).

The values of RMSE for the Linear Model (LM), the SVM Model Before Tuning
(SVMBT) and the SVM Model After Tuning (SVMAT) are:

RMSE MAE MAPE

Linear Model 3.87E+00 2.70E+00 2.70E-02

SVM 2.77E+00 1.59E+00 1.59E-02

Tuned SVM 2.61E+00 1.45E+00 1.45E-02

Recalling that in the second case the O&M cost was used as a predictor, we can
more appreciate the gain in terms of RMSE obtained by using the SVM.

The increasing accuracy of the SVR respect to the LM, can be used to perform a
CO2 emission estimation in a cost-effectiveness analysis.

Figure 2.
Comparison between LM and SVMAT in predicting LCOE of CCGT technology for Italy after tuning
(simulating data over lifetime of the plant - base data: Italy, 2020 - sources: IEA) - scenario 1 - Y = LCOE
(USD/MWh), X = fuel cost (USD/MWh).

Figure 3.
Comparison between LM and SVMBT in predicting LCOE of CCGT technology for Italy (simulating data over
lifetime of the plant - base data: Italy, 2020 - sources: IEA) - scenario 2 - Y = LCOE, X = O&M Cost.
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Let us look at a simple and plain experiment based on IEA data [2] for Italy,
2020 in the following scenario:

Fuel Cost (baseline 45.5

USD/MWh)

O&MCost (baseline: 6.99

USD/MWh)

CO2 price (10.1 USD/MWh)

Scenario

3

Decreasing of 15% at 15th

year then linear decreasing

of 1% until rest of the

lifetime.

Decreasing of 15% at 15th

year then linear decreasing

of 1% until rest of the

lifetime.

Decreasing of 15% at 15th

year then linear decreasing of

1% until rest of the lifetime.

In scenario 3 we made a simulation basing on the hypothesis of a sudden shock
for the three variables above reported in the 15th year, immediately followed by a
linear decrease of them until end of the lifetime, starting from IEA 2020 data as a
baseline value.

For scenario 3 the errors in predicting LCOE using O&M Cost over the consid-
ered time horizon are:

RMSE MAE MAPE

Linear Model 4.25878 3.49147 0.03491

SVM 2.70117 1.52912 0.01529

Tuned SVM 2.58541 1.52378 0.01524

In Cost-Effectiveness Analysis it is possible to calculate the Incremental Cost-
Effectiveness Ratio (ICER), used as a measure of cost the LCOE and used as a
measure of effectiveness through the quantity of CO2 emitted. The ICER can be
used as a selection criterion between different options then, the winning options
will be producing a certain level of emissions.

Now, let us imagine comparing two types of plants of the same technological
family, in this case the CCGT. In this hypothetical exercise, the second type of plant
is characterized by higher operating costs (+5% of the IEA base value).

In addition to this, let us imagine that the second type of plant has an average
load factor of 94%.

Figure 4.
Comparison between LM and SVMAT in predicting LCOE of CCGT technology for Italy after tuning
(simulating data over lifetime of the plant - base data: Italy, 2020 - sources: IEA) - scenario 2 - Y = LCOE,
X = O&M Cost.
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Now, let us repeat the simulation performed for scenario 3 for the first type of
CCGT plant (the real one), but only from the 20th year.

The meaning of this operation is as follows:

• to use systems with different characteristics (in this case we have changed the
O&M costs and the load factor of a single technology family);

• to calculate the ICER corresponding to each plant in a defined time interval (in
this case, from when the LCOE starts to vary);

• to calculate the degree of uncertainty on the value of the ICER thanks to the
MAPE of the SVR, defining the variation range for the ICER6;

• to select the technology that has the lowest ICER and then we calculate the
corresponding emissions over the time horizon considered;

• finally, to calculate the emissions profile corresponding to the winning
technology, year by year.

The results are shown in Figure 5.
Figure 5 illustrates what happens using the ICER criterion as a selector of the

winning generation option. For the first 20 years, the first type of installation is
selected, and the corresponding emissions are those of the blue line. From 20 years
of age onwards, using the ICER as a criterion means choosing the second type of
plant and the curve that shows the new profile of the emissions is the orange one.

4. Conclusions

ML can help in providing accurate forecasts of CO2 emissions from power
generation, especially when we face simultaneous variation of major driver (like

Figure 5.
CO2 emissions from different kind of CCGT plants in scenario 3 (sources: IEA, 2020 + imaginary data).

6 Namely, ICER max/min = ICER +/� ICER*MAPE.
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fuel cost, operating cost of the plant and so on); only a little piece of the possible
comparisons between traditional techniques and a particular ML method was
shown, focusing on the better performance of the ML one (SVM) respect to the
traditional one (the LM).

In our case, the performed step was:

1. improving LCOE forecasting performance,

2.comparing multiple competing options by use of the ICER in Cost-
Effectiveness Analysis;

3.consider the uncertainty about ICER using the MAPE (in this case, but is just
an option) calculated by SVM;

4.choosing the best technology and calculating the CO2 emissions for it;

5.defining the trend of the CO2 emissions in the lifetime of the plant by step 4.

Recalling that a basic LCOE model can be brought to a great level of granularity,
it is easy to imagine how this type of analysis could gain in depth and significance if
the required data are available. Indeed, also in case of missing data, significant
simulation can be provided by using each available piece of information on energy
costs.

The experiment performed was conducted at the highest level of simplicity to
better focus on the reasons that suggest ML integration not only about the engi-
neering features of electricity generation field but also in support decision tools
about energy policy.
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