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Chapter

Assessing Host-Pathogen 
Interaction Networks via  
RNA-Seq Profiling: A Systems 
Biology Approach
Sudhesh Dev Sareshma and Bhassu Subha

Abstract

RNA sequencing is a valuable tool brought about by advances in next  generation 
sequencing (NGS) technology. Initially used for transcriptome mapping, it has 
grown to become one of the ‘gold standards’ for studying molecular changes 
that occur in niche environments or within and across infections. It employs 
high-throughput sequencing with many advantages over previous methods. In 
this chapter, we review the experimental approaches of RNA sequencing from 
isolating samples all the way to data analysis methods. We focus on a number of 
NGS platforms that offer RNA sequencing with each having their own strengths 
and drawbacks. The focus will also be on how RNA sequencing has led to develop-
ments in the field of host-pathogen interactions using the dual RNA sequencing 
technique. Besides dual RNA sequencing, this review also explores the application 
of other RNA sequencing techniques such as single cell RNA sequencing as well as 
the potential use of newer techniques like ‘spatialomics’ and ribosome-profiling 
in host-pathogen interaction studies. Finally, we examine the common challenges 
faced when using RNA sequencing and possible ways to overcome these challenges.

Keywords: RNA-Seq, transcriptome, next generation sequencing, systems biology, 
host-pathogen interactions

1. Introduction

1.1 RNA sequence profiling

RNA sequencing (most commonly abbreviated as RNA-Seq) is an advanced 
sequencing approach that has transformed the way we look at the intricacies that 
exist within complex biological systems. Using high-throughput next generation 
sequencing (NGS) technology, RNA-Seq allows the detection and quantification 
of RNA transcripts in a biological sample with high accuracy [1]. Further analysis 
of RNA-Seq data can reveal a dynamic scale of information ranging from alterna-
tive spliced transcripts, gene fusions, single nucleotide polymorphisms (SNPs), 
post-translational modifications, temporal fluctuations in RNA expression during 
infection across cells [2–5]. This extensive capability of RNA-Seq has also recently 
found its way into studies investigating host-pathogen interaction networks with 
hopes of further elucidating this multi-faceted system [6, 7].
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One of the earliest papers describing the term ‘RNA-Seq’ successfully mapped 
the transcriptome of the yeast genome using a high-throughput sequencing 
platform [8]. In fact, a handful of studies had already started using the RNA-
Seq method even before the term was coined [9–13]. Commonly referred to as 
‘transcriptome sequencing’, these studies mainly adopted the massively parallel 
pyro-sequencing technology which was one of the newer sequencing technolo-
gies at the time [14]. While DNA sequencing and genomic studies have led to 
many breakthroughs, RNA-Seq brings forth a more functional, integrated view of 
expressed genes with distinct advantages over previous methods. Different aspects 
of RNA-Seq will be discussed in the following sections leading to its role in unravel-
ling host-pathogen interaction networks.

2. Introduction to RNA Seq approaches in biology and medicine

Transcriptomics is an area that is being continuously developed especially with 
the recent advances in technology that make it easier to carry out large-scale analy-
sis of RNA. Prior to the use of RNA-Seq, traditional methods used to study tran-
scriptomes include hybridization-based, sequence-based and tag-based approaches 
[15]. A popular hybridization-based approach is the use of microarrays. The main 
principle behind microarrays is complementary binding of nucleotides. A microar-
ray or ‘gene chip’ is prepared containing thousands of different oligonucleotides or 
cDNA molecules [16]. Extracted RNA samples converted into cDNA are fluores-
cently labelled and allowed to hybridise on the microarray [17]. This approach has 
proven to be useful in studies looking to compare the levels of gene expression but 
it does not generate quantitative values and can only be used for known genes [18]. 
A related method called genome tiling array, however, has the ability to examine 
genomic regions without prior knowledge of its expression [19]. Like any other 
method scrutinised over time, the pitfall of microarrays stem from inconsistent 
protocols, high background noise due to cross-hybridization, low technical repro-
ducibility as well as other technical issues [20, 21].

As for sequence-based approaches, a method used for gene discovery early on 
was expressed sequence tags (ESTs), which are single-pass sequence reads selected 
from cDNA libraries [22]. Aside from being expensive, the single-pass reads 
produced using this method are more prone to error and likely to have redundancies 
in large datasets [23]. On the other hand, tag-based approaches like serial analysis 
of gene expression (SAGE) and massively parallel signature sequencing (MPSS) 
employ the principle of generating short ‘tags’ (9–20 base pairs) which are then 
sequenced and quantified on a large scale [24, 25]. Both methods make use of bead-
based technology and produce accurate quantitative levels of gene expression but 
mostly focusing on the 3′-ends [26]. Cap analysis of gene expression (CAGE) was 
then introduced to examine 5′-end short tag sequences revealing more information 
about promoters and transcription start sites [27]. Altogether, these relatively costly 
methods were common during the Sanger sequencing era and could only be opti-
mally used in conjunction with already known genome or EST databases. In addi-
tion, these approaches had limitations such as cloning biases, technical challenges 
and general lack of strength to be solid stand-alone approaches for transcriptome 
analysis [28, 29].

After decades of utilising Sanger sequencing, the development of Next 
Generation Sequencing (NGS) was a giant leap for researchers everywhere. There 
has been constant development in NGS technologies hence they can be more 
distinctly categorised as second-, third- and even fourth generation sequencing. 
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Second generation sequencing mainly consists of two methods which are sequenc-
ing by hybridization (SBH) and sequencing by synthesis (SBS) [30]. SBH was 
the main principle behind microarray technology using known DNA sequences 
as explained previously. Meanwhile, SBS is different from Sanger sequencing 
because dideoxy terminators are not used. In addition, it employs repeated cycles of 
nucleotide incorporation and also tiny-volume reactions that are massively run in 
parallel. Most second generation methods commonly rely on sequencing reactions 
that take place in micro wells or channels [30]. One of the most common second 
generation sequencing technology is developed by Illumina, producing short read 
lengths. On the other hand, third- and fourth generation sequencing technolo-
gies are more focused on producing longer read lengths. These technologies have 
creatively exploited the principle of sequencing reactions occurring in millions 
of tiny wells either by specially engineered chambers or biological nanopores 
[30]. The front runners of third- and fourth generation sequencing are currently 
Pacific Biosciences and Oxford Nanopore Technologies. Their technologies will 
be discussed in the coming sections. Also known as deep sequencing, these high-
throughput sequencing technologies eventually led to the development of next 
generation RNA-Seq. Originally described by Nagalakshmi et al. [8], preliminary 
RNA-Seq studies focused on improving genomic annotation by examining novel 
untranslated regions, promoter regions, intergenic transcripts, alternative gene 
splicing events and single nucleotide polymorphisms (SNPs) among others [31–35]. 
Advances in next generation RNA-Seq has allowed diverse studies spanning areas 
like diagnosis of genetic conditions, characterisation of immune microenviron-
ments, understanding cellular frameworks and viral genetics [36–40]. Table 1 
shows a comparison of RNA-Seq with some of the main methods used to study the 
transcriptome.

Microarray SAGE* Next-Gen* RNA-Seq

Type of method Hybrid-based Tag-based cDNA library 
preparation & high 
throughput sequencing

Amount of input material High High Low

Probes Yes No No

Cost Medium Low High

Data analysis Based on relative 
intensity

Based on amplified 
SAGE tag counts

Based on amplified 
& sequenced cDNA 
fragments producing 
raw read counts

Detection of novel genes/transcripts No Limited Yes

Detection of alternatively spliced 
isoforms

Limited No Yes

Detection of single nucleotide 
polymorphisms

No No Yes

Detection of non-coding transcripts Limited Limited Yes

Prior knowledge of gene sequence Yes Limited No

*SAGE – Serial Analysis of Gene Expression.
*Next-Gen – Next Generation.

Table 1. 
Comparison of commonly used methods for gene and transcriptome analysis.
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2.1 Experimental flow in approaches

The flow chart in Figure 1 shows the initial steps involved when carrying out an 
RNA-Seq experiment.

The first step in an RNA-Seq experiment is to isolate RNA from any biological 
sample (e.g. cell or tissue populations). As a quality control step, the integrity of 
extracted RNA samples is commonly measured using an Agilent Bioanalyzer. Based 
on electrophoretic separation of RNA and a built-in software algorithm, it produces 
an RNA Integrity Number (RIN) depicting levels of RNA degradation [43]. The 
next step involves either an enriching or depleting procedure to select specific RNA 
species. In any given total RNA sample, a variety of RNA species would be present 
including messenger RNAs, ribosomal RNAs, precursor RNAs, non-coding RNAs, 

Figure 1. 
Overview of second generation RNA-Seq workflow. Firstly, RNA samples are extracted from biological samples. 
Selection of specific RNA species is carried out either by enriching transcripts expressing poly-adenylated 
(poly-A) tails (usually mRNA) or by removing the abundant ribosomal RNAs (rRNAs). Next, the enriched 
or depleted RNA samples are fragmented followed by reverse transcription to generate cDNA. The next step is 
ligation of adapters, however, standard adapter ligation loses information about RNA strand-specificity hence 
a few methods have been developed to prevent this. These include adding adapters directly to the 5′ and 3′ ends 
of fragmented RNA [31], the BrAD-Seq method which adds an adapter to 5′ end of the RNA:cDNA duplex 
during reverse transcription [41], and lastly the Peregrine method which incorporates tag sequences to 5′ and 3′ 
ends of the first cDNA strand [42]. Once library preparation is completed, samples are amplified by PCR and 
RNA-Seq library is now ready to be sequenced.
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etc. A bulk of the RNA portion (~95%) in most cells comprises of rRNA which if 
not removed, would make up a large part of the sequencing reads. Since this would 
largely restrict the study of less-abundant RNA species, protocols were created to 
circumvent this issue.

One such protocol is the enrichment of polyadenylated (poly-A) RNAs. This pro-
cedure selects for poly (A) + RNA mainly mRNA and exploits the fact that rRNAs 
generally lack this structure. A particular study however did find the presence of 
rRNA polyadenylation but only in small amounts [44]. This selection step can be 
carried out by using magnetic beads coated with oligo-dT or reverse transcription 
(RT) using oligo-dT primers [45]. An alternative step is rRNA depletion which 
serves to eliminate them from total RNA samples. There are various approaches 
used by different researchers for this method. One such approach uses probes like 
biotinylated DNA or locked nucleic acid which are allowed to hybridise to rRNAs. 
This is followed by a depleting step using streptavidin beads [46]. Another method 
that can be used for rRNA depletion is known as probe-directed degradation 
(PDD). This method involves obtaining cDNA:RNA duplexes, circularising them 
and then hybridising them with rRNA-specific probes. The final step involves diges-
tion with Duplex-Specific Nuclease (DSN) which renders the hybridised-sequences 
unusable [47]. Some researchers also use not-so-random (NSR) primers that bind 
to specific RNA molecules during RT, excluding rRNAs [48]. In essence, the variety 
of methods that exist for rRNA depletion focuses on unique features of rRNA that 
can be singled out and developed into an eliminating step. The choice of using 
either poly (A) + selection or rRNA depletion ultimately depends on the aims of the 
experiment. Evaluation of these two methods showed that while rRNA depletion 
could record more unique characteristics of the transcriptome, poly(A) + selection 
was more accurate in terms of gene quantification [49].

Following poly (A) + enrichment or rRNA depletion, RNA samples need to 
be fragmented to shorter sequences according to the size restrictions of sequenc-
ing platforms. RNAs are usually fragmented chemically using alkaline solutions, 
divalent cations or enzymes [45]. Alternatively, RNA can be reverse transcribed 
(RT) first followed by cDNA fragmentation. Similarly, enzymes like DNAses can 
be used to fragment cDNA with recent advances including a transposon-based 
approach [50]. Next, either fragmented RNAs or cDNAs are ligated with adapters 
that are specific to the sequencing platform to be used. This step however overlooks 
RNA directionality whereby there is lack of information about DNA strands and 
their corresponding sense RNA strands. This may impede the identification of novel 
RNA species and also make it harder to accurately measure sense RNA expression 
[45]. Methods have been developed to preserve this directionality and they can 
be carried out either directly on fragmented RNA, cDNA or even on RNA:cDNA 
hybrids that are formed during RT. One of these approaches include adding distinct 
adapters to the 5′ and 3′ ends of fragmented RNA [31]. This difference in sequences 
at both ends preserve the strandedness of RNA. Other methods to preserve strand-
specificity of RNA are BrAD-Seq [41] and the Peregrine method [42]. The BrAD-
Seq method exploits the transient strand separation or ‘breathing’ of RNA:cDNA 
hybrid during reverse transcription to add an adapter to the 5′ end of the duplex. 
This is followed by incorporation of nucleotides by E.coli DNA Polymerase I to 
form the second strand and eventually a complete strand-specific cDNA library. 
Meanwhile, the Peregrine method incorporates short unidentical tag sequences to 
the ends of cDNA during first strand synthesis. These then serve as primer binding 
sites for subsequent adaptor ligation during second strand synthesis.

Finally, after cDNA synthesis and adapter ligation, cDNA libraries need to be 
amplified using PCR. Once amplified, they are ready for sequencing using a chosen 
NGS sequencing technology.
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3. Next-generation sequencing technologies

3.1 Illumina, second generation sequencing technology

In 2005, Solexa released the Genome Analyser which established a quality 
standard for the transformation of sequencing platforms that came after. Solexa 
was bought over by Illumina in 2007 and continued developing second-generation 
sequencing platforms for specific aims [51]. The strategy behind Illumina’s sequenc-
ing process is a four-colour reversible termination sequencing method. After clonal 
amplification of DNA, sequencing occurs through base incorporation onto the 
template strand successively, followed by washing, imaging and cleavage. In this 
method, the polymerisation reaction is halted using fluorescently-labelled dNTPs 
and unincorporated bases are removed. Final analysis is carried out on the obtained 
four-colour images to ascertain base composition [52]. Currently, Illumina provides 
an impressive number of sequencing platforms which include MiniSeq, MiSeq, 
NextSeq 550, NovaSeq 6000, etc. NextSeq 500 was discontinued with the introduc-
tion of NextSeq 550 which has more flexible features of microarray scanning and 
sequencing. Their newest sequencing systems, NextSeq 1000 and 2000, boasts an 
integrated cartridge containing fluidics, waste compartment and reagents. It also 
possesses a novel system taking advantage of super resolution optics resulting in 
higher sensitivity and increased accuracy of imaging data [53].

3.2 Pacific Biosciences, third generation sequencing technology

The single-molecule real-time sequencing (SMRT) method is a third-generation 
sequencing approach developed by Pacific Biosciences (PacBio). This method 
directly observes DNA or cDNA synthesis by DNA polymerase as it occurs in real 
time [54]. The principle behind this method is the use of zero-mode waveguide 
(ZMW) technology. A ZMW is essentially a tiny, zeptoliter-sized hole deposited 
slightly above a glass surface [54]. Within each ZMW is a chamber containing a 
single DNA polymerase molecule affixed to the bottom glass surface using a biotin/
streptavidin system. Fluorophore-labelled nucleotides are added to the compart-
ment above an array of ZMWs. Diffusion then occurs whereby labelled nucleotides 
travel downwards through the ZMW to reach DNA polymerase for incorporation 
onto the DNA strand. The ZMW system is sufficiently sensitive to detect incorpora-
tions against background nucleotides. In addition, one of the first commercially 
available sequencing system employing SMRT contains an assembly of ~75000 
ZMWs [54]. Therefore, single-molecule sequencing can be carried out massively in 
parallel. As of now, PacBio also has an Iso-Seq method used to analyse long reads 
produced by SMRT to examine novel transcripts, gene fusion, alternative splicing, 
etc. Their newest system release is the sequel IIe system that promotes higher qual-
ity data, shorter analysis time and cheaper costs [55].

3.3 Oxford Nanopore Technologies, fourth generation sequencing technology

As suggested by their name, Oxford Nanopore Technologies (ONT) developed 
and commercialised nanopore-based sequencing. The idea behind this strategy is 
that each nucleotide can induce a unique fluctuation in ionic current while passing 
through a tiny channel [56]. An α-hemolysin pore secreted by Staphylococcus aureus 
was used to form single transmembrane channels through which nucleic acid poly-
mers would pass through [56]. This study aimed to determine the length of nucleic 
acid polymers but also proposed that if each nucleotide could provide a character-
istic current change based on their chemical or molecular properties, it could very 
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well be used to determine nucleotide sequences as well. The current technology 
employed by ONT consists of a group of tiny wells contained in a sequencing flow 
cell. Within each well is a synthetic bilayer fabricated with biologic nanopores. As 
described earlier, sequencing is achieved by assessing the distinct current changes 
induced during base incorporation carried out by a molecular motor protein [57]. 
Presently, the devices provided by ONT include the Flongle, MinION, GridION and 
PromethION. Flongle and MinION are more for smaller scale experiments while 
GridION generates high-throughput data up to 150GB. PromethION, on the other 
hand, provides ultra- high-throughput data of up to a remarkable scale of 8 TB [58].

3.4 Other genome analysers

Roche 454 pyrosequencing was the first commercially successful 2nd generation 
sequencing platform, initially developed by 454 Life Sciences and later acquired 
by Roche. Sequencing by this platform depended on the detection of visible light 
produced by a group of enzymes correlating to the pyrophosphate release dur-
ing nucleotide incorporation [59]. Roche however stopped supplying the 454 
sequencing machines and any accompanying reagents since 2016 [51]. Another 
NGS instrument is Sequencing by Oligonucleotide Ligation and Detection (SOLiD) 
released by Applied Biosystems Instruments (ABI). This technology uses sequenc-
ing by ligation. It involves cycles of annealing and ligation of primers and probes. 
Four-colour imaging is also carried out after which ligated probes are cleaved to 
allow another cycle of ligation [60]. Despite being quite accurate, it has a long 
run time and requires experts to analyse raw data [51]. Furthermore, another 
sequencing approach called DNA nanoball sequencing was developed by Complete 
Genomics and later acquired by Beijing Genomics Institute (BGI) [51]. This 
approach combines the principles of hybridization and ligation. DNA nanoballs 
are produced by amplifying DNA or cDNA using rolling-circle replication. They are 
then added onto a flow cell with an array of wells and each nanoball in each well are 
sequenced at high density. This process only yields short reads however and takes 
a long time. Meanwhile, Ion Torrent technology introduced by the team behind 
the 454 sequencer is based on the electronic detection of pH changes as opposed to 
detection of light as previously used [61]. Each incorporated nucleotide generates 
an electronic signal detected by electronic sensors placed at the bottom of each flow 
cell [51]. Lastly, a third generation sequencing platform called Helicos sequencing 
employs the principle of single-molecule fluorescent sequencing [62]. The Helicos 
sequencer, Heliscope, does not require clonal amplification and uses a very sensitive 
fluorescence detection system [60]. This method merges sequencing by synthesis 
and hybridization.

3.5 NGS advantages

All NGS platforms have significant advantages over previously used methods 
however, each platform has their own strengths and unique features. The four 
major sequencing platforms being used currently are Illumina, Pacific Biosciences, 
Oxford Nanopore Technologies (ONT) and Ion Torrent. Both Illumina and Ion 
Torrent are highly accurate but they are relatively more costly and have short reads 
(≤ 400). The problem with short read lengths is that it prevents researchers from 
performing de novo assembly and impedes the detection of structural variations 
[63]. On the other hand, PacBio and ONT platforms produce long reads (≥ 500) but 
they have variable accuracies. Although, both ONT and PacBio have similar read 
lengths, ONT specifically the MinION device, has higher error rates of up to 38.2% 
[64]. ONT also produces a higher yield but PacBio has better data quality overall [65]. 
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All these platforms have a similar disadvantage which is a long turnaround time 
except for ONT. In addition, ONT also has lower capital costs compared to the 
others [66].

Illumina sequencing has error rates of <1% and one of their systems called 
the NextSeq 550, employs the use of two-channel sequencing strategies instead 
of the four-channel strategy used by previous systems. This method only needs 
two images to detect nucleotides which makes data processing much faster [67]. 
However, a few studies found that PacBio sequence data produced better results 
than Illumina datasets specifically when used for de novo assembly purposes in addi-
tion to improved resolution [68–70]. Meanwhile, when comparing Illumina against 
ONT, ONT proved to have a significantly shorter turn-around time of <15 hours 
while Illumina analysis took around 3 to 6 days. Therefore, ONT sequencing was 
deemed more suitable for urgent, smaller scale sequencing requirements especially 
during public health emergencies [71]. Lastly, the Ion Torrent Personal Genome 
Machine (PGM) has a unique plus point which is the ability to identify single 
nucleotide polymorphisms (SNPs) better than Illumina and PacBio [72]. Lahens 
et al. [73] did however conclude from his experiments that both Illumina and Ion 
Torrent are equally capable in detecting differential gene expressions. There are a 
large number of studies that have found certain platforms to perform better than 
others, however it ultimately depends on the aims of the experiment. Another use-
ful method is combining datasets from more than one platform to acquire a more 
complete genome assembly [74–79].

NGS technologies are also capable of producing either single-end or paired-
end reads during sequencing. The question that normally arises is which type 
of sequencing to perform. Single-end sequencing in RNA-Seq is when a cDNA 
fragment is sequenced from only one end whereas paired-end sequencing is when 
both ends of a fragment are sequenced [80]. Paired-end sequencing produces 
twice the amount of data which increases the accuracy of read alignment. It also 
more sensitive and allows the detection of events like gene fusions and new splice 
isoforms. On the other hand, single-end sequencing is much cheaper than paired-
end sequencing. It is also more suitable for some methods such as ChIP-Seq and 
small RNA-Seq [80]. Although it is the more economical choice, it has drawbacks 
such as lower read counts per RNA feature and a weaker ability to assign reads to 
features. In the context of functional profiling, single- and paired-end reads in an 
RNA-Seq experiment only showed a 65% agreement in the top 20 gene ontology 
(GO) terms obtained. However, when looking at the top 300 GO terms, both led 
to similar broad conclusions [81]. Since the cost of sequencing is an important 
consideration to make, Corley et al. [81] suggested that single-end sequencing could 
be carried out with more biological replicates as they found that it was comparable 
to the results obtained using paired-end sequencing if functional analysis is done 
cautiously. As mentioned before, the utility of single- or paired-end sequencing 
ultimately comes down to the research question. For instance, if the main objective 
of the experiment is transcriptome assembly, then paired-end sequencing would be 
the more suitable choice.

4.  Application of systems biology in understanding host-pathogen 
interactions

Systems biology is the comprehensive study of a biological system encompassing 
molecular- level interactions, sub-cellular dynamics and overall physiological func-
tions of cells, tissues and organs [82]. A systems biology approach aims to looks at 
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the larger picture involved in a given system or condition. For a long time, research 
had centred on the molecular understanding of genes and proteins. Current illus-
trations or diagrams of interconnecting pathways are just not enough to completely 
understand a system. Kitano et al. [83] aptly describes these diagrams as mere static 
roadmaps, whereas what we seek to understand leans more toward patterns, their 
causes and regulatory dynamics. In the context of host-pathogen interactions, a 
systems biology view is examining components from both the host and pathogen as 
well as their interactions with one another. Some of the approaches used in systems 
biology include identification of key molecules or biomarkers, inference between 
networks and disease module discovery [84]. The advancement of -omics technolo-
gies supported by high throughput sequencing has increased the whole-system 
analyses focusing on host-pathogen interaction between genes, proteins and small 
ligands [85]. This is accomplished by carrying out dual RNA sequencing whereby 
both host and pathogen transcriptomes are profiled during the course of an infec-
tion. Multiple cascades of events are triggered by an infection and dual RNA-Seq 
allows the monitoring of host and pathogen in parallel. Knowledge gained from 
comprehensive host-pathogen interaction studies especially with the use of dual 
RNA-Seq can guide efforts toward better therapeutics against infection. Dual RNA-
Seq was first described by Westermann et al. [86] however it only started gaining 
attention recently resulting in a surge of studies utilising this method.

4.1 Bacteria-host interaction

Interaction between bacteria and hosts usually begin with a compulsory attach-
ment or adherence of bacteria to host cells followed by subsequent internalisation 
which may involve direct or indirect receptor binding [87]. Entry into the host may 
seem like a straightforward step but it involves a drastic change in environment for 
the pathogen. Hence, entry and any subsequent mechanism employed are bound to 
involve a complex interplay between the host and pathogen. Previous methods were 
limited in the sense that they only allow the analysis of mRNA in either infected 
host cells or bacteria [88]. Dual RNA-Seq has provided researchers everywhere an 
access to the complete story. Some of the host-bacteria interaction studies utilising 
dual RNA-Seq have looked at bacteria infecting humans, such as Salmonella enterica 
[89], Haemophilus influenza [90], Streptococcus pneumonieae [91, 92], Mycobacterium 
tuberculosis [93, 94] and Mycobacterium leprae [95]. Despite the diversity of these 
bacteria-host dual RNA-Seq studies, one similarity is that all their findings encom-
pass several aspects or levels of a biological system instead of mere isolated observa-
tions. For instance, in the study by Baddal et al. [90], not only did they characterise 
preferential binding of nontypeable H.influenzae (NTHi) to ciliated bronchial 
epithelial cells, they also observed differential expression of various bacterial viru-
lence factors, alteration of host cell adherence junctions, host-dependent modula-
tion of NTHi metabolic machinery and rearrangement of host extracellular matrix 
and cytoskeletons. In addition, they discovered small RNA regulatory elements 
that were differentially expressed including novel snoRNAs that have never been 
associated with NTHi before. Meanwhile, Aprianto et al. [91] observed the genera-
tion of reactive oxygen species (ROS) by S. pneumoniae, the glutathione-dependent 
detoxification of ROS as a counteraction by the host, expression of chemokine IL-8 
for immune response repression and also the activation of bacterial sugar transport-
ers sensitive to host-derived non-glucose carbohydrates. Lastly, Yimthin et al. [96] 
analysed the whole blood transcriptome of 29 patients with melioidosis which is 
the infection caused by B. pseudomallei often leading to mortality in endemic areas. 
Using RNA-Seq, they managed to identify survivor- and non-survivor-specific 
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expressions related to cell lineage processes and immune activation pathways with 
the potential to be biomarkers against melioidosis. These findings further reiterate 
the importance of a systems biology-based view when analysing RNA-Seq data 
spanning multiple gene networks and pathways.

4.2 Virus-host interaction

Viruses are obligate intracellular parasites manipulating various machinery and 
components of the host cell. The human body has developed efficient responses 
against viruses particularly the interferon system. An antiviral state is induced by 
the family of interferon proteins and other effectors upon viral infection. However, 
over time, certain viruses have evolved mechanisms to dodge these immune 
responses [97]. Given the complex nature of viral infections, it most certainly 
involves multi-level interactions and a method like dual RNA-Seq can help us 
understand these elaborate interactions networks. One of the first studies examin-
ing host-virus interactions using dual RNA-Seq was carried out using a murine 
infection model for cytomegalovirus (CMV) [98]. This study found some unex-
pected results such as highly abundant viral transcripts with unknown functions 
and also a viral transcript bearing functions of both non-coding RNA and mRNA. 
From the host perspective, expected upregulation of genes involved in inflamma-
tion and immunity were observed. Certain unforeseen results include upregulation 
of genes associated with development and differentiation. More importantly, this 
study found many differentially expressed genes within specific biological path-
ways including certain networks with unknown relevance to infection, providing 
new insights into CMV pathogenesis. The use of dual RNA-Seq has been applied 
to a range of studies analysing host-virus interactions which include infections by 
avian influenza (H5N8) [99], varicella zoster virus [100], Crimean-Congo hemor-
rhagic fever virus (CCHFV) [101], influenza A (H3N2) [102], and Zika virus [103]. 
Similar to host-bacterial studies, a wide range of findings were uncovered including 
variable alternative gene splicing events, association between clinical phenotypes 
and viral gene induction, remodelling of host epidermal environment, inhibition 
of functional pathways, host metabolic regulation and many more. Michlmayr 
et al. [103] successfully identified CD169 (Siglec-1) on CD14+ monocytes as a 
potential biomarker against acute infections of Zika virus while also providing 
evidence that dengue-immune patients did not necessarily have an upper hand 
when faced with Zika virus. Another interesting study by Wesolowska-Andersen 
et al. [104] using dual RNA-Seq found that transcriptionally active respiratory 
viruses were present in children even in the absence of any observable respiratory 
illness. These viral carriers also displayed alterations in their nasal transcriptomes. 
This shows that underlying host-virus interaction networks are still being engaged 
‘silently’ and not necessarily in cases where the illness clearly manifests itself. In 
due time, these studies will hopefully reveal horizontal inter-study patterns which 
will point toward the discovery of common disease modules or host-pathogen 
interaction networks. Furthermore, the discovery of a novel coronavirus in Hong 
Kong was achieved through a series of eliminating laboratory tests and eventually 
genome sequencing [105]. In addition to discovery of novel pathogens, RNA-Seq 
analysis can provide information relating to genome sequence, gene expression, 
pathogen abundance and a myriad of information that will provide useful insight 
regarding the pathogen and how it causes disease [106]. Currently, most RNA-Seq 
studies examining novel viruses are focused on plant viruses [107, 108]. The rapid 
detection of novel viruses in humans by RNA-Seq is an area that should be further 
investigated and optimised as it can help us take precautionary steps before the 
wide spread of disease.
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4.3 Fungi-host interaction

There are at least 712 000 existing fungal species around the world however the 
total number of fungal species is estimated to be more than 1.5 million [109]. The 
proportion of fungal species causing human diseases are quite small comparatively 
[110]. Some of the most common opportunistic fungal pathogens are Aspergillus 
fumigatus and Candida albicans. Previous studies have elucidated certain interac-
tions of these fungi with their host including interference of host phagolysosome 
mechanisms, activation of complement system, morphological switches and forma-
tion of neutrophil extracellular traps (NETs) [111–113]. These studies mainly use 
assay- and imaging-based techniques to study interaction and are mostly focused on 
specific pathways or components. From a systems biology perspective, pathogenic 
fungi often co-evolve with the host and commensals resulting in an equilibrium 
shift within the host leading to a myriad of changes affecting many networks [114]. 
The use of RNA-Seq has allowed a more comprehensive study of host-fungal inter-
actions. Initially, a number of studies used RNA-Seq to delineate transcriptional 
landscapes for fungi like Candida albicans and Candida glabrata [115, 116]. In terms 
of host-fungal interaction, RNA-Seq has shed light on alternative splicing events 
during host invasion, gene expression profiles in mice models of fungal keratitis 
and also differences in regulatory networks between Candia albicans and Mus 
musculus [117–119]. Dual RNA-Seq analysis of Trichophyton rubrum-infected human 
keratinocytes also demonstrated the upregulation of genes increasing the efficiency 
of nutrient uptake, production of keratinolytic proteases as well as host-derived 
antimicrobial proteins [120].

4.4 Combination of pathogens and host interactions

Aside from the pathogens discussed above, some other pathogens that exist 
are parasites, prions and in rare cases, algae [121–123]. Parasites in particular have 
extremely complex life cycles involving different hosts at different life stages [124]. 
A clear comprehension of parasitic life cycles will undoubtedly require a systems 
biology approach and RNA-Seq has provided an avenue for that. RNA-Seq stud-
ies have allowed inter-sex, inter-stage and inter-host studies involving parasites 
like Plasmodium falciparum [125], Trypanosoma vivax [126], Brugia malayi [127], 
Trichuris trichiura [128] and Schistosoma mansoni [129]. A dual RNA-Seq study 
examining the interactions between murine hosts and the parasite Toxoplasma 
gondii also provided many insights into acute and chronic infection stages by this 
parasite that is prevalent in humans [130]. Prions, which are misfolded proteins, 
cause several neurodegenerative diseases in humans including Jakob-Creutzfeldt 
disease, kuru and fatal familial insomnia [122]. Despite being a protein-only infec-
tion, it involves extensive processes occurring simultaneously in the brain including 
synaptic alterations, inflammation, neural cell death and protein aggregation [131]. 
RNA-Seq has revealed unique miRNA profiles produced by components of prion-
infected cells, mechanisms of prion-induced neurotoxicity and signature glial gene 
expressions among others [132–134]. Meanwhile, algal infections in humans are 
quite rare however they have been documented such as human protothecosis caused 
by the Prototheca species [121]. Genome sequencing studies have been carried out to 
study the sequence and expression of these species, however the use of RNA-Seq in 
this area is still scarce [135, 136]. There are also cases of co-infections whereby more 
than one pathogen infects a host simultaneously. Transcriptomic profiling studies 
of co-infections have shed some light on disease mechanism, molecular phenotypes 
and inter-disease relationships. One example of a complex co-infection is when 
HIV-infected patients develop cryptococcal meningitis which is a fungal infection. 
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Some patients undergoing treatment for these infections also start to develop para-
doxical cryptococcosis-associated immune reconstitution inflammatory syndrome 
(C-IRIS) characterised by various clinical deteriorations. By assessing the whole 
blood transcriptome of infected patients, Vlasova-St. Louis et al. [137] identified 
novel and unique biomarkers for both early and late stages of C-IRIS which are 
difficult to distinguish due to their similar clinical manifestations. Moreover, an 
ambitious study by Seelbinder et al. [138] managed to carry out a triple RNA-Seq 
analysis in host monocyte-derived dendritic cells infected by the fungus, Aspergillus 
fumigatus and human cytomegalovirus (CMV). These two pathogens are com-
monly co- occurring pulmonary pathogens. A highlight from their comprehensive 
study is that host expression levels that were upregulated during single infection 
by either pathogen were downregulated instead during co-infection. This implied 
interference or opposing effects of the two distinct host responses induced and also 
a possible synergistic relationship between A. fumigatus and CMV.

5. Bioinformatics and statistical approaches in analysing RNA-Seq data

The initial experimental workflow of RNA-Seq has been described earlier 
which briefly include depletion of rRNA or enrichment of mRNA, fragmenta-
tion of samples and subsequent reverse transcription to form a cDNA library. 
These cDNA fragments are then sequenced using a high-throughput sequencing 
platform. This section will describe the data analysis of RNA-Seq data includ-
ing statistical approaches taken to analyses differentially expressed genes. The 
whole process is simplified in Figure 2, covering all the important analytical steps 
involved.

Once sequencing data is obtained in the form of raw reads, quality control and 
sequence filtering need to be carried. This is a key pre-processing step because 
next-generation sequencing data may contain unexpected artefacts, poor quality 
reads, low-complexity regions, high GC content and sequencing errors [139, 140]. 
The presence of these low-quality sequences will further effect downstream 
analysis leading to inaccuracies in overall RNA-Seq data interpretation. There are 
a variety of tools that can be used to perform data pre-processing. Two important 
pre-processing concepts are the quality assessment of reads and also processing/
filtering to remove contaminants, adapter sequences, low-quality sequences [141]. 
Some of the methods developed include FastQC [142], RSeQC [143], NGSQC 
[144], Trimmomatic [145] and CutAdapt [146]. Weaknesses of these tools include 
the inability to carry out both data quality control and processing steps, slow run 
times and single-platform services [147, 148]. Recently developed tools are more 
comprehensive, encompassing all steps required in raw reads processing. Some of 
these include FastProNGS [147], FastqPuri [149], Zseq [140], RNA-QC-Chain [150] 
and fastp [151].

The next step is mapping or aligning the quality-assessed reads onto a genome or 
transcriptome. Reads can be mapped either uniquely to a single position or multiple 
positions (multi-reads) in the reference genome. Some of the mapping software 
or algorithms available are STAR [152], TopHat2 [153], MapSplice [154], BowTie2 
[155] and Magic-BLAST [156] among others. A range of bench-marking studies 
have compared the efficiencies of various RNA-Seq aligners. Baruzzo et al. [157] 
examined 14 common RNA-Seq aligners, whereas Schaarschmidt et al. [158] evalu-
ated 7 alignment tools. In addition, Engstrom et al. [159] carried out comprehensive 
analysis on a total of 26 alignment protocols. A similarity across these three studies 
is that they all found STAR to be one of the more reliable aligners, although other 
aligners do have their own strengths. After alignment, transcript identification 
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is carried out. Reads that are mapped onto known reference transcriptomes can 
only focus on quantification and not novel transcript discovery. Meanwhile, reads 
mapped onto a reference genome can either be identified as known transcripts or 
alternative transcripts [139]. For rapid discovery of novel transcripts, a popular 
programme called Cufflinks utilises existing annotated genomes as a reference to 
assist in transcript assembly [160]. Other methods focusing on novel transcript 

Figure 2. 
General RNA-Seq data analysis workflow. The first step after sequencing is pre-processing the sequence reads 
to obtain data with higher quality. Reads can be either mapped onto a reference genome (e.g., GRCh38) or in 
cases where a reference genome is unavailable, de novo assembly is carried out. When using a reference genome, 
novel transcript discovery is possible. After identification of relevant transcripts, quantification or counting 
is carried out. When the genome sequence is unavailable, de novo assembly is used to assemble reads into long 
contigs. Reads are then mapped back onto assembled transcriptome followed by quantification. In both cases, 
differential gene expression and alternative splicing analysis can be carried out in addition to other methods 
depending on the experiment. Finally, functional profiling is done to characterise molecular pathways and 
interactions.
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identification are SLIDE [161], iReckon [162] and StringTie [163]. In the case where 
a reference genome is absent or incomplete, de novo transcript reconstruction is 
carried out. Reads are first assembled into longer contigs, then this is treated as the 
‘reference transcriptome’ to which the reads are mapped back onto for quantifica-
tion purposes. Some of the tools available for de novo transcript assembly include 
Trinity [164], SOAPdenovo-Trans [165], TransABySS [166] and Oases [167]. 
Depending on the experiment, transcript identification and quantification can be 
carried out either simultaneously or sequentially. One of the most frequent applica-
tions of RNA-Seq is estimating the abundance of gene or transcript expressions. 
HTSeq-count and featureCounts are two gene-level quantification approaches with 
HTSeq-count being specially designed for downstream differential expression anal-
ysis [168, 169]. These are ‘union exon’-based approaches whereby exons that overlap 
are merged to form a union-exon. This method can assign reads to respective genes 
with high confidence however, difficulty arises when dealing with alternatively 
spliced transcripts [170]. Due to biases related to transcript length and number of 
reads, within-sample normalisation methods are used to standardise reads with 
some common measures like RPKM (reads per kilobase of exon model per million 
reads), FPKM (fragments per kilobase of exon model per million mapped reads) 
and TPK (transcripts per million) [34, 139]. Besides union exon-based methods, 
several transcript-level statistical quantification methods also exist such as RSEM 
[171], eXpress [172] and TIGAR2 [173]. Recently, alignment-free methods have also 
been developed like Salmon [174], kallisto [175] and Sailfish [176].

A crucial step before carrying out differential gene expression (DGE) analysis 
is data normalisation. The within-sample normalisation approaches during quan-
tification are not sufficient in cases where high numbers of differentially expressed 
transcripts exist [139]. The current software that exist for RNA-Seq differential 
gene expression analysis can be mainly categorised into four groups based on the 
statistical methods employed [177]. These include (1) Poisson or negative binomial 
model-based methods – baySeq [178], DESeq [179], DESeq2 [180], EBSeq [181], 
edgeR [182], NBPSeq [183], PoissonSeq [184], TSPM [185], (2) t-test analogical 
methods – Cuffdiff [186], Cuffdiff2 [187], (3) non-parametric methods – NOIseq 
[188] and SAMseq [189], (4) linear models – limma [190] and voom [191]. Other 
methods have also been developed including a hybrid full Bayes-empirical Bayes 
method (ShrinkSeq) and also and binomial distribution-based method called 
DEGSeq [192, 193]. There are also specific methods that have been developed to 
study differential gene expression using de novo transcriptome assemblies [194]. 
There is still no consensus as to which methods are significantly superior however 
many studies have done comparative analyses of these methods. Table 2 sum-
marises past studies that have compared the ability of various statistical methods.

A common finding across these studies is that no single method is superior in 
all circumstances. Each method has their own strengths and weaknesses. Out of 
the seven studies mentioned in Table 2, edgeR and DESeq were commonly found 
to perform better than other softwares however, a few studies did find contrasting 
results. Ultimately, the choice of statistical approach largely depends on the nature 
of study, type of biological sample, number of replicates, budget of study and many 
other factors that need to be matched to the strengths of any particular approach.

The next step usually examines differential gene expression at a transcript level 
which is alternative splicing (AS) events. Many computational tools exist that can 
infer AS events including some of the previously mentioned methods [202]. These 
include exon-based methods like DEXSeq [203] and JunctionSeq [204], event-
based methods like MAJIQ [205], dSpliceType [206] and SUPPA2 [207] and lastly 
isoform-based methods like Cuffidiff2 [187] and DiffSplice [208]. The final step 
is a pathway enrichment analysis. The list of DEGs obtained are further analysed 
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Author (Year) Statistical 

methods 

compared

Data used Main Findings

Robles et al. 
[195]

DESeq, edgeR, 
NBPSeq

Simulations using 
statistical models 
derived from real 
RNA-Seq data

• DESeq performs more conservatively

• More biological replicates result in 
higher quality and reliability of DEG 
detection

Soneson & 
Delorenzi 
[196]

baySeq, DESeq, 
EBSeq, edgeR, 
NBPSeq, 
NOIseq, SAMseq, 
ShrinkSeq, TSPM, 
voom+limma, 
vst + limma

Simulations using 
statistical models 
derived from real 
RNA-Seq data

• voom+limma and vst-limma per-
formed well under many conditions 
like detection of DEGs, gene ranking 
and detection of true positives.

• SAMseq did well with large sample 
sizes

• TSPM most affected by sample size

Rapaport  
et al. [197]

baySeq, Cuffdiff, 
DESeq, edgeR, 
limma, PoissonSeq

Used benchmark 
datasets: SEQC 
dataset & 
ENCODE project 
data

• Negative binomial methods (baySeq, 
DESeq & edgeR) have better specific-
ity, sensitivity & good control of false 
positive errors

• Cuffdiff had low specificity, sensitiv-
ity & high false positives

• Number of sample replicates greatly 
affect DEG detection accuracy.

Zhang et al. 
[198]

Cuffdiff2, DESeq, 
edgeR

Real RNA-Seq & 
simulated datasets: 
MAQC dataset 
(human), K_N 
dataset (mouse), 
LCL dataset 
(human)

• edgeR performs better than Cuffdiff2 
& DESeq in uncovering true positives

• Cuffdiff2 more sensitive to sequenc-
ing depth, DESeq more sensitive 
to unbalanced sequencing depths 
between groups

• All three perform better with biologi-
cal/technical replicates

Seyednasrollah 
et al. [199]

baySeq, Cuffdiff2, 
DESeq, EBSeq, 
edgeR, limma, 
NOIseq, SAMseq

Real mouse RNA-
Seq and human 
RNA-Seq data

• DESeq & limma most reliable choices

• edgeR had large variability, SAMseq 
had low power

• Cuffdiff2 & NOIseq did not do well 
with large replicates

Rajkumar  
et al. [200]

Cuffdiff2, 
DESeq2, edgeR, 
TSPM

Real RNA-Seq 
data from mice 
amygdalae 
micro-punches

• edgeR had relatively high sensitivity 
& specificity

• Cuffdiff2 had high false positive rates

• DESeq2 & TSPM had high false 
negative rates

• RNA sample pooling is discouraged 
due to low positive predictive values

Costa-Silva  
et al. [201]

baySeq, DESeq, 
DESeq2, 
EBSeq, edgeR, 
limma+voom, 
NOIseq, SAMseq

Real RNA-Seq 
dataset produced 
for MAQC project

• DESeq2, limma+voom & NOIseq 
produced most consistent results 
in terms of accuracy, precision & 
sensitivity

Abbreviations: TSPM: Two-stage Poisson Model, DEG: Differentially expressed genes, SEQC: Sequencing Quality 
Control, ENCODE: Encyclopaedia of DNA Elements, MAQC: MicroArray Quality Control, LCL: Lymphoblastoid 
cell line.

Table 2. 
A compilation of numerous studies that have compared common statistical methods used for differential gene 
expression analysis in RNA-Seq.
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to characterise their molecular involvement in biological pathways. Some of the 
RNA-Seq-specific tools developed for this aim are GOSeq [209], Gene Set Variation 
Analysis (GSVA) [210] and SeqGSEA [211]. Annotation databases such as KEGG 
[212], Gene Ontology [213] and Bioconductor [214] also complement functional 
profiling of DEGs. This is an important step particularly in host-pathogen inter-
actions to unravel the interaction networks that exist. Common databases and 
softwares used by dual RNA-Seq studies examining host-pathogen interactions 
are Gene Ontology and KOBAS (KEGG Orthology-based Annotation System) 
[215–217]. Novel transcripts detected based on de novo assembly can be function-
ally annotated by finding orthologous proteins in protein databases. Challenges 
arise when annotating non-protein coding transcripts like long non-coding RNAs 
which still lack proper functional-annotation procedures [139].

6. Other applications of RNA-Seq in host-pathogen interaction studies

RNA-Seq can be applied in very innovative ways to answer many of the ques-
tions and mysteries posed by biology and disease. Initially, it was used for simpler 
research goals like profiling transcriptomes and monitoring gene expression. 
Over time, RNA-Seq technology has developed rapidly and one of its vital uses is 
characterising host-pathogen interaction networks. Dual RNA-Seq in particular 
has been applied to many infection models ranging from bacteria, virus, fungi 
and parasites as described in previous sections. Understanding the mechanics of 
infection induced by pathogens and subsequent host response is a crucial step 
required before proceeding to figure out clinical treatment strategies. Besides 
utilising dual RNA-Seq, as extensively detailed earlier, another application of 
RNA-Seq is single cell RNA sequencing (scRNA-Seq). The difference between 
bulk RNA-Seq and scRNA-Seq is that the latter allows transcriptional comparison 
of single-cell populations and has the ability to capture cellular heterogeneity 
that is normally obscured by bulk RNA-Seq [218]. In the context of host-pathogen 
interaction studies, dual scRNA-Seq is commonly utilised. ScRNA-Seq involves an 
extra step which is isolating single cells from tissue samples using techniques like 
fluorescence-activated cell sorting (FACS), micro-dissection and droplet-based 
methods instead of bulk sequencing various cell populations [218]. While dual 
RNA-Seq provides insight about the bigger picture, dual scRNA-Seq can elucidate 
the smaller scale interactions that sum up to produce the host outcome during 
infection [219].

It is common for bacteria to have distinct co-existing subpopulations due to 
their dynamic adaptability. This heterogeneity can lead to phenotypic variations 
in infection and scRNA-Seq is capable of characterising these variabilities [220]. 
Avraham et al. [220] examined individual macrophages infected with Salmonella 
typhimurium and found molecular variations despite what seemed to be identi-
cal infections in these cells. They discovered that the type I interferon response 
pathway is influenced by PhoPQ activity levels in the bacterium. Host cells infected 
with a bacterium expressing high levels of PhoPQ had an increased type I interferon 
response. Another similar study also examined bone marrow-derived macrophages 
exposed to Salmonella with their method called scDual-Seq [221]. From their 
time-dependent analysis of macrophage single-cell transcriptomes, they found that 
within infected cells, some had fully induced immune responses while others only 
had ‘partially induced’ immune responses. They also found two intracellular classes 
of Salmonella having unique transcriptional signatures. One of their interesting 
findings is how the infection progresses from partially induced to fully induced 
immune responses which also involve changes in Salmonella subpopulations [221]. 
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Meanwhile, scRNA-Seq has also been applied to host-viral interaction studies. In 
HIV infections, the virus has the ability to persist in latent reservoirs where they 
are not completely eradicated by treatments like antiretroviral therapy (ART). 
Golumbeanu et al. [222] used scRNA-Seq to characterise the transcriptomes of 
latent and reactivated HIV-infected cells. They identified two main subpopulations 
with one cell cluster being more predisposed to HIV reactivation. Their results 
provide interesting insights for the identification of potential latency reversing 
agents and biomarkers for susceptible cells. However, the use of scRNA-Seq in host-
pathogen interactions studies are still in its infant stages. Many more questions can 
be answered using scRNA-Seq such as the mechanism behind selective infections 
of host cells, antibiotic tolerance of certain bacteria, the switch between active and 
latent infection in viruses and the list goes on [219].

Furthermore, scRNA-Seq has also played a role in the development of human 
organoids from stem cells by assessing the similarity between these organoids and 
primary tissue counterparts [223]. In addition, scRNA-Seq can be used to properly 
characterise the development and maturation stages of stem cells to specific organ 
tissue or even used as a blueprint to direct the recreation of actual human organs 
[224, 225]. Moreover, scRNA-Seq can be used in conjunction with the well-known 
CRISPR-based gene editing tool to provide confirmation of target gene activation/
repression [226]. Advancements in the application of scRNA-Seq in these research 
areas can provide valuable tools for host-pathogen interaction studies in the future. 
For instance, the successful creation of human organoids which are highly accurate 
to real organs can be used as infection models to study disease mechanisms.

Innovations of RNA-Seq methods based on experimental needs have led to 
its application in various settings. Two of these methods are spatially resolved 
RNA-Seq known as ‘spatialomics’ and ribosome-profiling using RNA-Seq to 
understand the translatome [227]. Spatial information is not provided when using 
bulk RNA-Seq or scRNA-Seq and this information could be crucial to comprehend 
cellular processes and how they relate to gene expression. The main concept behind 
spatialomics is in situ transcriptomics which produce data within tissue sections 
either using sequencing or imaging [227]. Some of the approaches that have been 
used in spatial transcriptomics are fluorescent in situ RNA sequencing (FISSEQ ) 
and also a combination of scRNA-Seq data with single molecule fluorescence in situ 
hybridization method (smFISH) to examine spatial division of genes along liver 
lobules and investigate gene expression as well as post-transcriptional modifications 
while preserving spatial information [228, 229]. The smFISH method however had 
limitations in the number of RNA species that could be imaged at once in single 
cells. Hence, another method called multiplexed error-robust FISH (MERFISH) 
was developed which allows thousands of RNA species to be imaged in individual 
cells with spatial distribution information as well [230]. The use of spatialomics in 
host pathogen interaction studies shows great promise as many infections by patho-
gens induce alterations in specific subcellular compartments [231]. Understanding 
both temporal and spatial changes that occur during the course of an infection 
can improve our comprehension of host-pathogen interplay. As for ribosome-
profiling, the highly regulated process of mRNA translation by ribosomes inspired 
this translatome-based analysis with an assumption that protein synthesis is 
proportional to the density of mRNA ribosomes [227]. By sequencing the ribosome-
protected mRNAs, studies have gained insight on translational control in yeast, 
codon usage biases and unannotated translational events [232–234]. Ribosome 
profiling coupled with RNA-Seq has been carried out as well to study infections by 
pathogens like Toxoplasma gondii and the vaccinia virus. Holmes et al. [235] found 
open reading frames that may be involved in selective stress-induced translation of 
parasitic mRNA while Dai et al. [236] found that mRNAs involved in cellular energy 
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production were increased which supported vaccinia virus replication. The appli-
cations of RNA-Seq and its combinations with existing methods are increasingly 
being advanced and modified to suit specific experimental needs.

7. Challenges in RNA-Seq

The rapid surge of RNA-Seq technology has led to many new discoveries and 
is currently the go-to method for transcriptomic analysis. Although significant 
advancements have resulted from the use of RNA-Seq, it is still continuously 
evolving with many aspects that need to be improved. The drawbacks of short-read 
sequencing platforms as mentioned before have been mostly solved with the advent 
of long-read technology. While long-read technology has its own strengths, analys-
ing long-read datasets still poses a challenge. Aside from lower accuracies per read 
compared to short-read platforms, most of the long-read transcriptomic tools do 
not take into account factors like coverage bias and high error rates [237]. Several 
studies have found beneficial effects of combining short- and long-read technolo-
gies, however integrating different tools are often laborious hence it still needs to be 
improved [238, 239]. There are certain challenges faced with library preparations as 
well. In this process, cDNA is generated from fragmented RNAs followed by adapter 
ligation, amplification and finally sequencing. Linsen et al. [240] compared three 
different library preparation methods and found that each method had large differ-
ences in the frequency of miRNAs captured. Other biases include PCR amplification 
bias which might be introduced due to variations in template length and base com-
position during parallel amplification of multiple templates [241, 242]. Yet another 
issue faced in library preparation is the influence of batch effects. Batch effects may 
arise from various factors including experimental conditions, quality of reagents, 
pipetting abilities and also the individual/technician in charge on a particular day 
[243]. Careful considerations should be made by researchers in order to reduce the 
effects of these confounding variables.

A recent discovery was the abundance of circular RNAs in various eukaryotic 
organisms including humans [244]. Previous RNA-Seq protocols were mostly 
biased against circular RNAs (circRNAs) whereby the poly (A) enrichment step 
would efficiently deplete all circRNAs since they lack poly (A) tails. The develop-
ment of alternate protocols more suited to non-coding transcripts like rRNA deple-
tion improved detection of circRNAs. However, these approaches are not entirely 
efficient for circRNAs and further research is required to improve the detection 
sensitivity of circRNA and possibly other non-coding RNA transcripts [245]. There 
are several technical challenges associated with scRNA-Seq as well. With regard to 
host-bacterial studies, the bacterial lysing protocols employed, whether physical or 
chemical, are not very compatible with further downstream steps in RNA-Seq like 
amplification and library preparation. These steps also do not preserve the RNA 
effectively. Another problem is the accurate identification of minority transcripts 
in bacteria. ScRNA-Seq protocols commonly employ poly (A) enriching strategies 
which are useful for eukaryotes however, prokaryotic mRNAs are not poly-adenyl-
ated. Analysis of non-polyadenylated RNAs have been attempted however, they 
involve complex and specialised protocols which need to be simplified [218, 246]. 
This problem is also faced when analysing viral infections in host cells because 
certain viruses like dengue virus and hepatitis C virus have non-polyadenylated 
mRNAs. There needs to be a more optimum procedure to accurately quantify bacte-
rial and viral transcripts. Furthermore, scRNA-Seq examines individual cells lead-
ing to very low input material. This results in high levels of technical noise which 
can be confused with biological variability [247]. A few statistical models have 
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been proposed which are capable of quantifying this technical noise but additional 
research is required to assess the validity of these models [247, 248].

The development of more complex tools for RNA-Seq analysis are quite possible 
and challenges may arise in the comprehension or use of such approaches. Efforts 
should be made to increase the practicality of approaches to avoid methods that are 
only manageable for those with very high expertise. While many tools exist for the 
analysis of RNA-Seq data, they seem to be more than we can handle. There are a 
multitude of pipelines incorporating many different tools with multiple versions and 
licences [249]. This is a major challenge especially in the context of translating RNA-
Seq into clinic. Bringing a laboratory test into clinic involves an important step that is 
demonstration of analytical validity. One aspect of analytical validity is accuracy that 
is commonly measured by comparing obtained values to a reference standard [249]. 
The development of a reference standard especially for NGS data can reduce method- 
and platform-specific biases [250]. One of the first reference standards that existed 
for RNA-Seq was developed by the External RNA Controls Consortium (ERCC) using 
synthetic RNA spike-in controls [251]. Other projects like the Sequencing Quality 
Control (SEQC) [252], Association of Biomolecular Resource Facilities (ABRF) 
[253] and GEUVADIS [254] carried out extensive studies investigating the accuracy 
of RNA-Seq data across many platforms, protocols and laboratory sites, providing a 
guide for other researchers. The continuous technological advancements occurring 
in the field of sequencing technologies have to be accompanied by more reference 
standards [250]. The constant development and assessment of reference standards 
are required to reduce the variability that arises from the emergence of numerous 
tools. Conquering this challenge will also allow improved translation of RNA-Seq into 
clinic and ensure the smooth transition of NGS technologies into clinical settings.

8. Summary

RNA-Seq has revolutionised the approach taken by researchers in exploring host-
pathogen interactions. From scRNA-Seq to bulk RNA-Seq, the vast amount of infor-
mation derived from these studies provide novel insights into the exact mechanisms 
of disease and host counter- reactions in combating the disease. RNA-Seq has allowed 
us to examine the mechanisms of gene expression, differentially expressed genes in 
development or disease, alternative splicing events, gene fusion events, transcrip-
tional regulation and many more. The use of dual RNA-Seq has changed our current 
perspectives of host-pathogen interactions. It is clear that systems-level alterations are 
induced by infection all the way from immune responses to metabolic processes. These 
studies are laying the foundation for more complex interrogations of our immune 
system and eventually its translation into clinical settings. Other creative innovations 
to RNA-Seq are also bound to occur as long as the determination to answer biological 
questions are present. The use of spatialomics seems very promising as it allows the 
known transcripts to be assessed while preserving the three dimensional suuround-
ing of the tissue. This has major implications especially in studies investigating the 
influence of cellular architecture on infection progression. Single-cell RNA-Seq is also 
slowly gaining momentum in the field of host-pathogen interaction studies namely 
due to its ability to elucidate pathogen subpopulations. This is a key factor that will 
provide further information about their pathogenesis, host cell susceptibility and 
potential targeted treatment strategies. The current discrepancies and biases that exist 
within RNA-Seq protocols are challenges that need to be met in order to ensure its 
upward trajectory. The next few years will be a period of concurrent growth for RNA-
Seq technology and biomedical research. A new biological discovery phase has just 
begun and RNA-Seq has proved to be a valuable tool to guide us through this phase.
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