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Chapter

Regulation of MAPK ERK1/2 
Signaling by Phosphorylation: 
Implications in Physiological and 
Pathological Contexts
Dadnover Vargas-Ibarra, Mariana Velez-Vasquez  

and Maria Bermudez-Munoz

Abstract

Protein phosphorylation represents a rapid and reversible post-translational 
regulation that enables a fast control of protein activation that play key roles in cell 
signaling. For instance, Mitogen Activated Protein Kinase (MAPK) pathways are 
activated upon sequential phosphorylations, resulting in phosphorylation of cyto-
sol and nuclear targets. We focus here on MAPK ERK1/2 signaling that accounts for 
diverse cellular responses such as cell cycle progression, proliferation, differentia-
tion, senescence, migration, formation of GAP junctions, cell adhesion, cell motil-
ity, survival and apoptosis. We review the role of protein phosphorylation in MAPK 
ERK1/2 activation, in its regulation in time and space and how its dysregulation can 
lead to tumorigenesis.

Keywords: phosphorylation, cell signaling, MAPK, ERK1/2, kinase, phosphatase, 
cancer, inhibitors

1. Introduction: cell signaling regulation by phosphorylation

Among post-translational modifications, protein phosphorylation is the most 
common. Vitellin was the first protein which phosphorylation was discovered, by 
Phoebus Levene in 1906 [1, 2]. In 1954, Burnett and Kennedy reported the process 
of enzymatic phosphorylation. Then, Edwin Krebs and Edmond Fischer described 
how phosphorylation and dephosphorylation can take place and they demon-
strated how the process is governed by enzymes [3, 4]. In 1992, the Nobel Prize 
in Physiology or Medicine was awarded jointly to Edmond H. Fischer and Edwin 
G. Krebs for their discoveries concerning reversible protein phosphorylation as a 
biological regulatory mechanism.

Phosphorylation is a reversible protein modification and results from the 
addition of a phosphate group (PO4) to the polar group of amino acids. The most 
common amino acids that are phosphorylated are serine (Ser), threonine (Thr) and 
tyrosine (Tyr). Although phosphorylation of histidine and aspartate residues can 
also occur, they are less stable than others. Phosphorylation of a protein can change 
binding to other proteins: because each phosphate group has two negative charges, 
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phosphorylation can cause a conformational change in the protein by attracting a 
cluster of positively charged amino acid side chains. This can change the binding 
of ligands on the protein surface and therefore its activity. On the other hand, the 
addition of a phosphate group to a protein can be recognized by other proteins 
having for instance SH2 and PTB domains, that then can attach to phosphorylated 
proteins such as the cytoplasmatic tail of receptor tyrosine kinases (RTK). Finally, 
phosphorylation can mask a binding site that otherwise holds two proteins together 
and then can disrupt this interaction.

Enzymes that catalyze the addition of a phosphate group to a protein are 
kinases; the reaction is unidirectional because of the large amount of free energy 
released when the phosphates bonds are broken in ATP to produce ADP. The human 
genome includes more than 500 protein kinases, and it is estimated that more than 
one-third of the 10,000 proteins in a typical mammalian cell are phosphorylated at 
any given time, many with more than one phosphate. Conversely, phosphatases are 
enzymes that remove a phosphate group from a protein, having the opposite func-
tion of kinases. Dephosphorylation has more rapid kinetics than phosphorylation 
by kinases. The human genome contains more than 200 phosphatases, classified 
into different families including protein tyrosine phosphatases (PTP), the metal-
dependent protein phosphatase PPM, the phosphoprotein phosphatase (PPP) that 
are pSer/pThr- specific, the dual specificity phosphatase (DUSP) family and the 
PTEN family of lipid phosphatases [5].

Protein phosphorylation may occur at a single site that primes location for sub-
sequent phosphorylations or directly at multiples sites. Thus, a single protein kinase 
or multiple kinases may act on the target protein, creating a synchronized cascade 
of phosphorylations. These events participate in dynamic intracellular signaling 
that enable cells to respond to extracellular stimuli and to adapt to internal changes. 
Mitogen-protein activated kinases (MAPK) are conserved kinases in eukaryotes, 
integrating cell signaling pathways that regulate processes such as cell proliferation, 
cell differentiation and cell death, from yeast to humans. There are four indepen-
dent MAPK pathways: MAPK ERK1/2, ERK-5 (also referred to as BMK-1), c-Jun N- 
terminal kinase (JNK), and p38 signaling families. MAPK modules contain 3-tier 
kinases that are sequentially activated by phosphorylation. MAPK proteins are 
designated from upstream to downstream signaling pathway: MAPK kinase kinase 
(MAPKKK) phosphorylates MAPK kinase (MAPKK); MAPKK phosphorylates and 
thus activates MAPK. We will focus on MAPK ERK1/2 signaling to illustrate how 
a particular post-translational modification such as phosphorylation can regulate 
a signaling pathway and how its dysregulation can be implicated in pathological 
processes such as tumorigenesis.

2.  MAPK ERK1/2 pathway: a cell signaling of sequential 
phosphorylations

The Extracellular Signal-Regulated Kinases (ERK) have key roles in processes 
like cell growth, cell proliferation and cell survival. In humans, there are three 
isoforms of ERK: ERK-1, ERK-2 and ERK-5. Hereon we will concentrate on classical 
MAPK ERK1/2 to comprehend how this signaling is regulated by phosphorylation.

In the canonical human MAPK ERK1/2 pathway there are three types of 
MAPKKK (A-Raf, B-Raf and Raf-1 or C-Raf kinases), two MAPKK (MEK1, MEK2) 
and two MAPK ERK-1, ERK-2. Interestingly, MAPK ERK1/2 signaling is basically 
regulated by phosphorylations. On the first level, Raf are serine/threonine-protein 
kinases that phosphorylate human MEK on Ser-218 and Ser-222, producing their 
activation. The Raf family of kinases includes three isoforms with high homology 
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and a similar domain organization. On the second level, MEK1/2 are dual specific-
ity protein kinases that phosphorylate a threonine and a tyrosine residue in a Thr-
Glu-Tyr sequence located in ERK1/2, rendering them active. While human ERK-1 
is phosphorylated on Thr-202 and Tyr-204, ERK-2 is phosphorylated on Thr-185 
and Tyr-187 residues for activation. Phosphorylation of ERK1/2 by MEK1/2 leads 
to the rearrangement of several polar contacts, which results in conformational 
changes in neighboring structural elements (reviewed on [6]). Finally, ERK1/2 are 
serine/threonine kinases that phosphorylate a wide variety of substrates in differ-
ent subcellular compartments including the Golgi apparatus, the mitochondrial 
membrane, the cytoplasm and the nucleus.

MAPK ERK1/2 phosphorylate substrates in a short Pro-X- Ser/Thr-Pro consensus 
motif (X representing any residue) and interactions with docking sites are impor-
tant for specificity. Two motifs have been described, the D- and F-motifs, that can 
cooperate to enhance the substrate affinity of ERK and to set phosphorylation kinet-
ics [7]. ERK1/2 phosphorylate more than 600 proteins, leading to responses such 
as cell cycle progression, proliferation, cytokinesis, transcription, differentiation, 
senescence, cell death, migration, formation of GAP junctions, actin and microtu-
bule networks, neurite extension, cell adhesion and motility, survival and apoptosis 
[8]. To ensure that these cell responses are adaptive to stimuli in space and time, a 
fine regulation of MAPK signaling is thus necessary. Remarkably, control of ERK1/2 
signaling is in part ensured by phosphorylations and dephosphorylations.

3. Regulation of MAPK ERK1/2 by kinases and phosphatases

The MAPK ERK1/2 has at least 3 tiers of regulation: the control of the phos-
phorylation and thus of the activity of Raf, MEK1/2 and ERK1/2. Additionally, 
upstream signals from cell receptors to Raf and downstream targets of ERK1/2 play 
an active role in regulating the MAPK ERK1/2 pathway. Interestingly, mechanisms 
of MAPK regulation are based partly on the same mechanisms that activate this 
pathway: phosphorylation events. In this section we specify how phosphorylation 
can regulate MAPK ERK1/2 signaling from Raf to ERK1/2 by the activity of kinases 
in feedback signals, and through dephosphorylation by phosphatases.

When RTK are activated by growth factors, their phosphorylated tyrosines 
enable the coupling of adaptor proteins such as GRB2. This latter binds with SOS, 
a guanine exchange factor that promotes the activation of Ras. From this level, 
MAPK ERK1/2 signaling axis exerts feedback regulations through phosphoryla-
tions. Growth factor stimulation (like epidermal growth factor EGF) of the cell 
induces the phosphorylation of four serine residues in a region encompassing 
three proline-rich SH3-binding sites in the C-terminal domain of SOS1 [9]. These 
phosphorylation events are realized by ERK1/2 and constitute a negative feedback 
regulation that leads to a reduction in Ras activation. Kinetic simulation model 
using parameters collected in living cells found that possibly more than four 
phosphorylation sites decisively suppress SOS activity [10]. Indeed, SOS1 is also 
phosphorylated by the ERK1/2 effector ribosomal S6 kinase 2 (RSK-2) on Ser1134 
and Ser1161, leading to the recruitment of 14-3-3 and is thus a negative regulation 
of ERK1/2 activity [11] (Figure 1 and Table 1).

In platelets and nexus ERK1/2 is also activated downstream of the small GTPase 
Rap1. RasGRP2 is the predominant guanine exchange factor that specifically 
activates Rap1. RasGRP2, playing a similar role to SOS for Ras, is phosphorylated 
by ERK1/2 on Ser394 located in the linker region implicated in its autoinhibition. 
In this case, RasGRP2 phosphorylation results also in a negative feedback loop that 
determines the amplitude and duration of active ERK1/2 [12]. Moreover, Rap1 is 
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able to phosphorylate and activate B-Raf (but not C-Raf) [23]. Upon cell adhesion 
and downstream of the small GTPase Rac, the serine/threonine-protein kinase 
PAK1 phosphorylates the MEK proline-rich sequence (PRS), enhancing its interac-
tion with C-Raf [13] (Figure 1 and Table 1).

Regarding Raf, it has been shown that mitogenic stimuli induce the phos-
phorylation of C-Raf by ERK1/2 on six residues, needing MEK signaling. 
Hyperphosphorylation of these sites promotes the subsequent dephosphorylation 
of C-Raf by PP2A and the return to the inactive state [20]. On the other side, Raf 
interaction with MEK is also regulated by the inhibitor protein RKIP, which binds 
to both proteins preventing their physical association. RKIP interferes with the 
phosphorylation of MEK when bound to C-Raf. Association of RKIP with C-Raf 
is regulated partly by phosphorylation: phosphorylation of RKIP on serine 153 by 
PKC or putatively by ERK induces its dissociation from C-Raf [24, 25]. RKIP has 
then an important role in generating a switch-like behavior of MEK1/2 activity [26].

MEK1/2 is also the target of feedback regulation in the ERK1/2 pathway. Indeed, 
ERK1/2 phosphorylates MEK1 on Thr292, Thr286 and Thr386, resulting in reduced 
MEK activity and thus constitutes a negative feedback for MAPK ERK1/2 signaling 
[18, 19]. Moreover, MEK1 phosphorylation on Thr292 by ERK1/2 interferes with 
MEK1 binding to ERK2 and reduces MEK1 phosphorylation on S298 by PAK, required 
for the activation of MEK1 by cell adhesion [13–15] (Figure 1 and Table 1).

Another example of feedback regulation of MAPK ERK1/2 signaling by 
phosphorylation is the case of the protein scaffold KSR1. In fact, KSR1 can be 
phosphorylated in Thr256, Thr260, Thr274, Ser320, Ser443, Ser463 by ERK1/2 in 
vitro and depends on MEK1/2 activity. These KSR1 phosphorylations interrupt its 
association with B-Raf and MEK1/2, drive the release of KSR1 from the plasma 
membrane, representing then a negative feedback of MAPK ERK1/2 activation 
[16, 17] (Figure 1 and Table 1).

Figure 1. 
Representative phosphorylation events leading to activation and feedback signaling in the MAPK ERK1/2 
pathway. Phosphorylation constitutes activation (red arrows) or inhibition (black arrows) of proteins of 
MAPK ERK1/2 signaling. Specific details are provided in Table 1.
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Protein 

phosphorylated

Phosphorylation site Kinase Type of feedback Consequence References

1 SOS1 Ser1132, Ser1167, Ser 1178, 
Ser 1193

ERK1/2 Negative Decreased binding affinity of Grb2 to 
human Sos1

[9]

2 SOS1 Ser1134, Ser1161 RSK Negative Facilitates 14-3-3 binding, decreasing 
MAPK activation

[10]

3 RasGRP2 Ser394 ERK1/2 Negative Inhibits RasGRP2 ability to activate Rap1, 
leading to decreased activation of ERK1/2

[12]

4 MEK1/2 Proline-rich sequence 
(PRS)

PAK1 Positive Enhances MEK1/2 interaction with C-Raf [13–15]

5 KSR1 Thr260, Thr274, Ser443 ERK1/2 Negative Interrupts association of KSR1 with B-Raf 
and MEK1/2, driving the release of KSR1 
from the plasma membrane

[16, 17]

6 MEK1 Thr292 ERK1/2 Negative Inhibits MEK1 kinase activity towards 
ERK1/2, interferes with the binding of 
MEK1 to ERK2 and reduces the ability 
of PAK to phosphorylate MEK1 on S298 
(required for the activation of MEK1 by cell 
adhesion)

[18, 19]

7 C-Raf Ser29, Ser43, Ser642, 
Ser289, Ser296, Ser301

ERK1/2 Negative Desensitized C-Raf, do not localize to the 
plasma membrane and do not engage with 
activated Ras

[20]

8 DUSP6 Ser159, Ser174, Ser197 ERK1/2 Negative Induces degradation of DUSP6 [21, 22]

9 B-Raf Ser445 Rap1 Positive Activation of B-Raf [23]

Table 1. 
Feedback phosphorylation events in MAPK ERK1/2 pathway.
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Another regulation of MAPK activity is accomplished by phosphatases that 
modulate later phases of ERK1/2 signaling. Ser/Thr phosphatases, protein tyrosine 
phosphatase and dual-specificity Thr/Tyr phosphatases (DUSP) dephosphorylate 
and thus inactivate ERK1/2. MAP Kinase Phosphatases (MKP) belong to DUSP 
and represent specific phosphatases that principally regulate MAPK activity in 
mammalian cells and tissues. While some DUSP dephosphorylate p38, JNK and 
ERK1/2, others are specific for p38/JNK or for ERK1/2. In this latter case are found 
cytoplasmic DUSP that inactivate ERK1/2 in the cytoplasm and include DUSP6/
MKP-3, a specific phosphatase that binds to ERK1 and ERK2, inactivating them. 
This specificity is ensured by the fact that the interaction of DUSP6 with ERK1/2 
is a requirement for the catalytic activation of the phosphatase through conforma-
tional changes [27, 28]. Interestingly, whilst inactivating ERK1/2, DUSP6 is in turn 
regulated by ERK1/2. Indeed, stimulation with serum or PDGF-B alone can induce 
a MEK-dependent phosphorylation of DUSP6 on Ser159, Ser174, and Ser197, which 
is followed by the degradation of the phosphatase by the proteasome [21, 22]. We 
have shown that another pathway involved in growth factor signaling, the PI3K/
mTOR signaling pathway, accounts for a part of the phosphorylation and degrada-
tion of DUSP6 induced by serum growth factors. Furthermore, specific agonists of 
the mTOR pathway, such as amino acids or insulin/IGF-1 are also able to induce the 
phosphorylation and degradation of DUSP6. Mutagenesis studies identified Ser159 
within DUSP6 as the target of the mTOR pathway [29]. Thus, DUSP6 is a point for 
double MAPK control: the phosphatase exerts a negative regulation for ERK1/2 
activity but at the same time, ERK1/2 is able to phosphorylate DUSP6 and then 
induces its degradation. DUSP6 appears therefore as a spot for fine ERK1/2 signal-
ing regulation in time. Moreover, DUSP6 is a branch-point for the crosstalk between 
two major signaling pathways induced by growth factors, the MEK/ERK1/2 
pathway and the PI3K/mTOR pathway. Notably, both pathways are frequently 
overactivated in cancer cells. Thus, a regulation of MAPK ERK1/2 signaling in time 
and space is necessary to warrant cell physiological responses and to avoid aberrant 
signaling activation that facilitates pathological conditions.

4.  Implications of phosphorylation in MAPK ERK1/2 regulation in time 
and space

MAPK ERK1/2 signaling can determine excluding cell responses such as 
proliferation and differentiation. Differences in cell responses upon MAPK ERK 
signaling depend on the regulation of the pathway through protein interactions 
by scaffolds and through inhibitory and adaptor proteins that enhance, decrease, 
or redirect the flow of phosphorylation cascades. In this section, we will describe 
how phosphorylation can be implicated in this type of MAPK ERK1/2 signaling 
regulation. Scaffold proteins bind to multiple interacting proteins by interconnect-
ing them into a stable complex. This allows the rapid transmission of the signal. 
Another role of scaffolds is to sequester sets of interacting proteins to limit interac-
tions with other proteins and minimize crosstalk between pathways that some 
components may share. Scaffold proteins such as KSR1, β-Arrestin, paxillin and 
IQGAP1 regulate the kinetics, amplitude, and localization of ERK1/2 signaling [30]. 
Ras-1 suppressor kinase (KSR1) is one of the best characterized scaffold proteins in 
the ERK1/2 cascade. It has several different domains through which it can interact 
with C-Raf, MEK1/2, and ERK1/2. In response to growth factors, KSR1 translocates 
to the plasma membrane where it promotes the activation of MEK1/2 by present-
ing it to activated Raf. In the absence of stimulus, the ubiquitin-protein isopeptide 
ligase family member IMP and the 14.3.3 protein prevent the function of KSR1. 
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Mitogens induce the dephosphorylation of IMP at S392 by protein phosphatase-2A 
(PP2A) and the degradation of the protein, which is sufficient to allow KSR1 to 
translocate to the cell membrane [31]. Activated Ras also induces phosphorylation 
of KSR1 at residues Thr260, Thr274, and Ser443 [16]. Then, while activated Ras 
prevents the effects of 14.3.3 and IMP that inhibit KSR1 function, it also induces 
its phosphorylation at Thr274, preparing KSR1 for degradation. KSR1 can then 
regulate ERK1/2 activation kinetics and influence the biological fate of the cell. The 
interaction and in particular the synchronization between these processes generates 
a combinatorial control to modulate both the amplitude and the duration of ERK1/2 
activity.

If scaffold proteins play a key role in regulating ERK1/2 signaling in subcellular 
locations, different factors modulate the strength and the duration of ERK signaling 
in time: the density of cell surface receptor and its different internalization pat-
terns, the surrounding extracellular matrix and the interaction between kinases and 
phosphatases. The duration of the signal is critical in determining cell response to 
ERK1/2 signaling. For instance, long-term ERK1/2 activation can cause differentia-
tion while short-term ERK1/2 activation can lead to cell division. This was initially 
demonstrated in rat pheochromocytoma PC-12 cells, in which transient activation 
of ERK1/2 by epidermal growth factor (EGF) or insulin peaks at 5 min and fells 
back to near-background levels within 15 minutes, and results in cell proliferation. 
On the other hand, sustained activation of ERK1/2 by nerve growth factor (NGF) 
persists for more than 60 minutes and induces cell differentiation [32]. This type 
of cell response according to duration of ERK1/2 signaling has been also reported 
in fibroblasts, macrophages and T lymphocytes [33–35]. As this type of studies has 
been made using mainly immunoblotting techniques to monitor ERK1/2 activation 
dynamics, the use of new approaches gaining spatio-temporal resolution will be of 
great interest to advance in the understanding of ERK1/2 signaling in time and in 
subcellular localizations. For example, using Förster Resonance Energy Transfer 
(FRET)-based ERK biosensors, Keyes et al. showed that EGF induces sustained 
ERK1/2 activity near the plasma membrane in contrast to the transient activity 
observed in the cytoplasm and in the nucleus. This supports the concept that 
the spatial and temporal regulation of ERK1/2 activity is integrated by the cell to 
control the specificity of signaling [36].

Studies on RTK receptors have shown that their activation kinetics and regu-
latory mechanisms also play a key role in the activation of the MAPK ERK1/2 
pathway. For example, PC-12 cells that express few NGF receptors do not undergo 
differentiation in response to NGF [37]. Moreover, changing the amount of recep-
tor occupation by decreasing the concentration of agonists alters the duration of 
ERK1/2 signaling. The rate and degree of receptor internalization also contribute 
to ERK signaling, not only as a checkpoint for signal termination, but may exhibit 
additional signaling by the receptor-ligand complex from an internalized cellular 
location [38].

5. Dysregulation of MAPK ERK1/2 signaling in human cancer

The MAPK/ERK signaling module is considered the most important oncogenic 
driver of human malignancies [39]. Mutational oncogenic activation of the Ras/
Raf/MEK/ERK pathway occurs in a wide variety of cancers concerning approxi-
mately 34% of all human cancers. Activation of the ERK1/2 signaling pathway 
promotes proliferation and has anti-apoptotic effects, increasing tumor invasion 
and metastasis. The overexpression of the pathway can lead to cell transformation, 
tumor proliferation, invasion, metastasis, extracellular matrix degradation and 
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tumor angiogenesis. VEGF is an important pro-angiogenic factor and the most 
powerful pro-vascular endothelial growth cytokine that promotes cell division and 
vascular construction. The MAPK ERK1/2 signaling pathway can activate tran-
scription factors to enhance the transcription of VEGF, promoting the formation of 
blood vessels and tumor angiogenesis [40, 41].

Aberrant activation of the Ras/Raf/MEK/ERK pathway may be driven by abnor-
mal receptor kinase activation or by oncogenic mutations of pathway components, 
leading to tumorigenesis. Overactivation of Ras is observed in approximately 30% 
of all human cancers but can be higher in some cancers like pancreas cancer (90%), 
colon cancer (50%) and thyroid cancer (50%) [42, 43]. Mutations in Ras occurs 
in codons 12, 13, 59 and 61, leading to its constitutive activation. Indeed, mutant 
oncogenic Ras proteins are insensitive to GTP-catalyzed GTPase hydrolysis activa-
tor protein, resulting in a constitutively active GTP-bound Ras. K-Ras and N-Ras 
are the most common mutated isoforms in human cancer, although H-Ras can also 
be involved. K-Ras is involved in up to 96% of pancreatic ductal adenocarcinomas, 
52% of colorectal carcinomas and 32% of lung adenocarcinomas [44].

Downstream of Ras, Raf can be activated by mutations that mainly affect B-Raf 
isoform, the most potent activator of MEK1/2 compared with the other Raf iso-
forms (A-Raf and C-Raf). B-Raf can be mutated in 70% of melanomas, in 36-53% 
of papillary thyroid cancer, in 30% of ovarian cancer and in 22% of colorectal 
cancer [45]. The most common mutation of B-Raf is the change of a valine to a 
glutamic acid in position 600 (V600E). Other B-Raf mutations in cancer are mainly 
clustered in the activation segment or the so-called glycine-rich loop in B-Raf [46]. 
Oncogenic mutations of B-Raf lead to hyperactivity of its downstream effectors 
MEK1/2 and ERK1/2. For cellular transformation to occur, two mutations in Ras/
Raf/MEK/ERK1/2 pathway can be needed: for instance, B-Raf and Ras mutations 
can drive tumorigenesis for colorectal cancer (K-ras G13D; B-Raf G463V), for 
ovarian cancer (K-ras G13D; B-Raf G463E), and for non-small cell lung cancer 
(N-Ras Q61K; B-Raf L596V) [45].

Downstream of Raf, MEK1/2 can be highly phosphorylated in colorectal 
cancer, gliomas, prostate cancer, breast cancer and head and neck cancer [47–51]. 
Constitutively active mutants of MEK-1 have higher basal activity than the wild-
type unphosphorylated MEK. Expression of these mutants in mammalian cells 
lead to ERK1/2 activation in growth factor-deprived cells, cellular transforma-
tion and solid tumor growth in nude mice [33, 52, 53]. If mutant MEK can act as 
oncogene, its frequency in human cancers appears to be rare [54]. Finally, MAPK 
ERK1/2 are not frequently mutated. However, some mutations in ERK have been 
described: ERK2 mutants were identified as rare cancer-associated gain- and loss-
of-function gene products: ERK2 D321N, ERK2 E322K, ERK2 L73P, ERK2 S151D 
and ERK2 D319N [55–60]. While ERK2 D319N has not an increased basal kinase 
activity, it shows an elevated sensitivity to low levels of signaling in vivo [55]. 
In human cancer cell lines, ERK2 E322K has constitutive phosphorylation [61]. 
Finally, ERK2 L73P and S151D mutations increase by 8-to-12-fold ERK2 activ-
ity alone, and both mutations have a synergetic action that increases by 50-fold 
ERK2 activity [57]. Moreover, overexpression of ERK2-L73P/S151D can induce 
growth arrest in prostate cancer cell lines [62]. Although ERK1/2 mutations are 
rare, mutations that lead to overactivation of RTK, Ras, Raf and MEK can lead 
to increased ERK1/2 signaling in cancer cells. Downstream of ERK1/2, both 
cytoplasmic and nuclear targets can be upregulated in tumoral contexts. One of 
the main cancer-associated ERK substrates is c-Myc, a transcriptional factor that 
participates in cell cycle progression, becoming an oncogene. Phosphorylation 
of c-Myc by ERK1/2 due to Ras activation keeps overexpressed this transcrip-
tional factor in various cancers [63]. Other important targets of ERK are the 
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transcriptional factor Elk1, c-Fos and Jun. These two latter were identified as viral 
oncoproteins and can play a role in tumorigenesis. Mutations that affect MAPK 
ERK1/2 proteins can then promote protein hyperactivation that induces the 
cascade of phosphorylation downstream events, favoring cell proliferation, cell 
transformation and the emergence and progression of tumors. Currently, MAPK 
inhibitors represent specific target treatments for cancers with overactivation of 
this cell signaling pathway.

6.  MAPK ERK1/2 inhibitors: possibility to regulate cell signaling 
overactivation

Hyperactivation of Ras/Raf/MEK/ERK signaling pathway in human cancers 
prompted the development of small molecule inhibitors that target its components 
for use in cancer therapeutics (Table 2). Pharmacological inhibition of Ras has 
been a major challenge. For instance, the affinity of Ras protein for GTP is extraor-
dinarily high and it is then very difficult to develop a competitive binding strategy. 
Over the past few years, several groups discovered and developed small molecule 
Ras modulators using protein structure-guided design approaches [80–82] and 
exploring SOS as a target for Ras activation [83]. Cysteine-reactive inhibitors that 
bind to the mutant K-Ras G12C, which is commonly found in cancer, have been 
developed: SML-8-73-1 and SML-10-70-1 can selectively inhibit K-Ras G12C, 
changing the nucleotide preference to favor GDP over GTP and thus blocking Ras 
signaling [69, 84]. These compounds may be used in the future for additional K-Ras 
mutations.

Sorafenib is an orally available compound that was initially developed as a C-Raf 
inhibitor and was then identified as a multikinase inhibitor for B-Raf, VEGFR1/2/3, 
Kit, PDGFR, RET, and Flt3. Sorafenib is currently approved by the FDA for renal 
and hepatocellular carcinoma for its anti-angiogenic effects [84, 85]. For other 
cancers like melanoma, sorafenib produced favorable responses in less than 5% of 
patients in clinical trials [85, 86]. This low response rate can be due to the fact that 
its activity against B-Raf V600E mutants and wild-type enzymes is low. Subsequent 
efforts have focused on targeting B-Raf for the treatment of B-Raf mutant mela-
noma. Vemurafenib and dabrafenib, two B-Raf V600E inhibitors, have achieved 
benefits in clinical trials [87, 88]. Currently, vemurafenib is approved by the FDA 
for metastatic and unresectable melanoma with B-Raf V600K mutation [89] and 
dabrafenib for metastatic melanoma with B-Raf V600K-mutated [84, 88].  
Although B-Raf inhibitors have achieved clinical benefit in the treatment of 
cancer, all ATP-competitive Raf inhibitors including vemurafenib, dabrabenib, 
and sorafenib can lead to paradoxical activation of the MAPK pathway in wild-
type B-Raf cells [90, 91]. Some reports suggest that insensitivity to Raf inhibitors 
might be due to EGFR-mediated reactivation of MAPK signaling in B-Raf mutant 
colorectal cancer [92]. Indeed, the combination of EGFR and B-Raf inhibitors 
block the reactivation of MAPK signaling of B-Raf mutant in colorectal cancer cells 
and in vivo [93]. LGX818, TAK-632 and MLN2480 are other selective B-Raf V600E 
inhibitors with a very slow inactivation rate, and thus may be beneficial for the 
treatment of tumors that are resistant to other Raf inhibitors or for the treatment 
of tumors with Ras mutations [66, 94].

Even though MEK1/2 mutations are rare in human cancers, MEK1/2 have 
become an attractive drug target because these proteins are downstream of Ras 
and Raf in the signaling pathway [95]. The first MEK1/2 inhibitor, PD098059, 
is an allosteric inhibitor that acts on the not-phosphorylated form of MEK1 and 
mutant MEK1 S217 and S221E [96]. The allosteric MEK inhibitor CI-1040 was 
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Protein Mutation Cancer Inhibitor Test/effect/approval Reference

B-Raf V600E 
V600K 
V226M

Melanoma 
(66%) 
Ovarian 
cancer 
(35-70%) 
Thyroid 
cancer 
(70%)

Vemurafenib Approved by the FDA for metastatic and unresectable melanoma with B-Raf V600K 
mutation

FDA

Dabrafenib and 
Trametinib

Approved by the FDA and EMA for melanoma cancer, anaplastic thyroid cancer, NSCLC FDA, EMA [64]

LGX818 Approved by the FDA for the treatment of patients with unresectable or metastatic 
melanoma with B-Raf mutations

FDA [65]

TAK-632 TAK-632 demonstrates potent antiproliferative effects both on NRAS-mutated melanoma 
cells and B-Raf-mutated melanoma cells; the combination of TAK-632 and the MAPK kinase 
(MEK) inhibitor TAK-733 exhibits synergistic antiproliferative effects on these cells

[66]

MLN2480 In vitro analysis of MLN2480 and TAK-733 (allosteric MEK kinase inhibitor) demonstrates 
synergistic activity in cell proliferation. In vivo, MLN2480 shows antitumor activity in 
melanoma, colon, lung, and pancreatic cancer xenograft models

[67, 68]

Sorafenib Approved by the FDA for renal and hepatocellular carcinoma FDA

N-Ras Q61R
Q61L
G12D

Melanoma 
(15- 20%) 
Myeloid 
leukemia 
(30%) 
Lung 
cancer 
(35%)

Ribociclib and 
Binimetinib

Phase Ib/II trials in patients with locally advanced or metastatic N-Ras mutant melanoma Clinical trial 
NCT01781572

G12V Thyroid 
carcinoma 
(27%)

Trametinib and 
Palbociclib

Phase I/II trial in patients with solid tumors and with a specific cohort for N-Ras-mutant 
melanoma

Clinical trial 
NCT02065063
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Protein Mutation Cancer Inhibitor Test/effect/approval Reference

K-Ras G12D
G12C
G13D

Lung 
cancer 
(30%) 
Colorectal 
cancer 
(45%) 
Pancreatic 
cancer 
(90%) 
Blandder 
cancer 
(50%)

SML-8-73-1, 
SML-10-70-1

SML-10-70-1, a prodrug of SML-8-73-1, inhibits lung cancer A549, H23, and H358 cells [69]

MEK S217E
S221E

Melanoma 
(3-8%)
Breast 
cancer 
(7-9%)

Selumetinib Approved by the FDA for treatment of pediatric patients aged 2 years and older 
with neurofibromatosis type 1 (NF1) who have symptomatic, inoperable plexiform 
neurofibromas; approved by the EMA for the treatment of neurofibromatosis

FDA, EMA

Trametinib Approved by the FDA and EMA for treatment of patients with unresectable or metastatic 
melanoma with B-Raf V600E or V600K mutations

FDA, EMA

Pimasertib Has demonstrated potent antitumour activity in human lung, colorectal, melanoma cancer 
cells and xenograft models; phase I/II clinical trial in patients with locally advanced or 
metastatic solid tumors

[70–72]

Cobimetinib Approved by the FDA and EMA for use in combination with vemurafenib for the treatment 
of metastatic melanoma

FDA, EMA

G-573, GDC-0623 In vitro GDC-0623 inhibits cellular proliferation of mutant cancer cells A375 (B-Raf 
V600E), HCT116 (KRAS G13D), COLO 205 (BRAF V600E), HT- 29 (BRAF V600E), and 
HCT116 (KRAS G13D). In vivo GDC-0623 causes potent tumor growth inhibition in mouse 
MiaPaCa-2, A375 and HCT116 xenografts

[73]

TAK-733 In vitro TAK-733 demonstrates broad activity in most melanoma cell lines; in vivo TAK-733 
demonstrates broad antitumor activity in mouse xenograft models of human cancer 
including melanoma, colorectal, NSCLC, pancreatic and breast cancer

[74]

Binimetinib(Mek 
162)

Approved by the FDA for treatment in combination with LGX818 for patients with 
unresectable or metastatic melanoma with a B-Raf V600E or V600K mutation; approved by 
the EMA for the treatment of colorectal carcinoma

FDA, EMA
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Protein Mutation Cancer Inhibitor Test/effect/approval Reference

ERK 1/2 NA Melanoma 
(67%)

Ulixertinib 
(BVD-523)

In vitro combined Ulixertinib (BVD-523) and VS-5584 treatment causes significant 
induction of cell death in human pancreatic cancer (HPAC) cells, in pancreatic ductal 
adenocarcinoma cell lines BxPC-3, MIAPaCa-2, and CFPAC-1. Clinical trials in phase I 
for tumor advanced pancreatic and other solid tumors cancer and phase II for advanced 
malignancies harboring MEK or atypical B-Raf alterations.

[75] Clinical trial 
NCT03454035 
and 
NCT04488003

GDC-0994 In vitro Ravoxertinib (GDC0994) decreases the viability of lung adenocarcinoma cell lines 
(A549, HCC827, HCC4006). In vivo GDC0994 results in significant single-agent activity 
in multiple cancer models, including K-Ras-mutant and B-Raf-mutant human xenograft 
tumors in mice. Clinical trials phase I for locally advanced or metastatic solid tumors, 
NSCLC, metastatic colorectal cancer, metastatic NSCLC, metastatic cancers and melanoma

[76] Clinical trials 
NCT01875705 
and 
NCT02457793

SCH772984 In vitro SCH772984 results in a G1 arrest in SCH772984-sensitive melanoma cells. In vivo 
antitumor activity is observed in the K-Ras-mutant pancreatic MiaPaCa model

[77]

AEZS-134 Synergistic effect of triptorelin, ERK inhibitor AEZS-134 and dual PI3K/ERK inhibitor 
AEZS-136 in MDA-MB-231 triple-negative breast cancer cells

[78]

(S)-14 K In vivo (S)-14 k inhibited tumor growth in mouse xenograft models [79]

NA: not available; FDA: food and drug administration of USA; EMA: European medicines agency; NSCLC: non-small cell lung cancer.

Table 2. 
Available inhibitors for MAPK ERK1/2 proteins.
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the first small molecule to enter clinical trials. Although it had antitumor effects, 
the development of this compound was stopped due to poor bioavailability and 
lack of efficacy in phase II clinical trials [97]. Other highly selective inhibitors of 
MEK1 and MEK2 include selumetinib and trametinib [98–100]. This latter pre-
vents Raf-dependent MEK phosphorylation and activation. Other MEK inhibitors 
in development include pimasertib [101], cobimetinib [102], rafametinib [103], 
G-573, GDC-0623 [73], TAK-733 [104], RO5126766, RO4987655 [105, 106] and 
MEK162 [107].

Because there are few ERK1/2 mutations in human cancers, this MAPK has 
been only considered as a target in 35 clinical trials, compared with more than 300 
clinical trials for the inhibition of Raf and MEK. Nonetheless, due to drug resistance 
resulting from Raf and MEK1/2 inhibitors, ERK1/2 have become an interesting 
target for inhibiting MAPK ERK1/2 signaling in cancer [46]. ERK1/2 inhibitors 
can reverse overactivation of the MAPK pathway induced by upstream mutations, 
including Ras mutations [84, 92, 108]. For instance, MAPK inhibition in B-Raf 
V600E mutant metastatic melanoma provokes drug resistance and recovery of ERK 
activity [109, 110]. Interestingly, selective removal of ERK1 or ERK2 in vitro can 
induce melanoma cell death and enhances the action of B-Raf inhibitor [111].

One of the challenges in cancer treatment is developing drug resistance. The 
mechanisms involved in resistance are complicated and include genetic mutations 
that occur in target proteins like in MAPK signaling, loss of functions in the control 
of MAPK signaling feedback, and abnormal tumor suppressor gene alterations 
[112]. Yet, MAPK inhibitors represent good options for targeting cancer cells with 
MAPK overactivation or MAPK ERK1/2 mutations. In the future, cell-specific 
deliverance of MAPK inhibitors to tumoral cells should enhance their efficiency 
and decrease side effects in patients.

7. Conclusions

MAPK are conserved kinases in eukaryotes, containing 3-tier kinases that are 
sequentially activated by phosphorylation. This post-translational modification 
plays an essential role in MAPK ERK1/2 signaling. Not only the activation but also 
the regulation of this pathway is achieved through the actions of kinases and phos-
phatases, establishing positive and negative signaling feedbacks. Control of MAPK 
ERK1/2 signaling in time and space is ensured by proteins such as scaffolds that are 
themselves regulated by phosphorylation events. Changes in duration of ERK1/2 
phosphorylation and thus activity, can result in different cell responses, can result 
in different cell responses. Thus, a tight regulation of MAPK ERK1/2 signaling is 
needed to guarantee adaptive cell responses. Aberrant activation of Ras/Raf/MEK/
ERK pathway can lead to tumorigenesis and MAPK inhibitors, already in clinical 
use, represent good options for targeting cancer cells with MAPK overactivation or 
MAPK ERK1/2 mutations.
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Appendices and nomenclature

DUSP dual specificity phosphatase
EGF epidermal growth factor
EMA European medicines agency
ERK extracellular signal-regulated kinases
FDA food and drug administration
FRET Förster resonance energy transfer
GRB2 growth factor receptor-bound protein 2
KSR1 Ras-1 suppressor kinase
MAPK mitogen-protein activated kinases
MAPKK MAPK kinase
MAPKKK MAPK kinase kinase
MKP map kinase phosphatase
mTOR mechanistic target of rapamycin
NGF nerve growth factor
NSCLC non-small cell lung cancer
PDGF-B platelet-derived growth factor subunit B
PDGFR platelet-derived growth factor
PI3K phosphatidylinositol 4,5-bisphosphate 3-kinase
PPM metal-dependent protein phosphatase
PPP phosphoprotein phosphatase
PRS proline-rich sequence
PTEN phosphatidylinositol 3,4,5-trisphosphate 3-phosphatase and  

dual-specificity protein phosphatase
PTP protein tyrosine phosphatases
RTK receptor tyrosine kinase
RSK-2 ribosomal S6 kinase 2
SOS1 son of sevenless homolog 1
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