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Chapter

Pareto-Based Multiobjective
Particle Swarm Optimization:
Examples in Geophysical
Modeling
Ersin Büyük

Abstract

It has been recently revealed that particle swarm optimization (PSO) is a mod-
ern global optimization method and it has been used in many real world engineering
problems to estimate model parameters. PSO has also led as tremendous alternative
method to conventional geophysical modeling techniques which suffer from
dependence to initial model, linearization problems and being trapped at a local
minimum. An area neglected in using PSO is joint modeling of geophysical data sets
having different sensivities, whereas this kind of modeling with multiobjective
optimization techniques has become an important issue to increase the uniqueness
of the model parameters. However, using of subjective and unpredictable weighting
to objective functions may cause a misleading solution in multiobjective optimiza-
tion. Multiobjective PSO (MOPSO) with Pareto approach allows obtaining set of
solutions including a joint optimal solution without weighting requirements. This
chapter begins with an overview of PSO and Pareto-based MOPSO presented their
mathematical formulation, algorithms and alternate approaches used in these
methods. The chapter goes on to present a series synthetic modeled of seismological
data that is one kind of geophysical data by using of Pareto-based multiobjective
PSO. According to results matched perfectly, we believe that multiobjective PSO is
an innovative approach to joint modeling of such data.

Keywords: particle swarm optimization, Pareto-based optimization,
multiobjective, geophysical modeling

1. Introduction

As a conventional approach, least squares and linear programming optimization
methods have been used modeling of geophysical data with a general form without
requiring any special case. However, due to some disadvantages of these methods
such as computational time and linearization problems, it has become inevitable to
tend to new approaches for the researchers. Unlike traditional optimization
methods, optimization of nonlinear models has been improved in two ways which
are derivative based and non-derivative search methods. Unfortunately, one of the
major disadvantages of derivative based methods is that solutions potentially trap
at a local minimum because of depending on initial model. On the other hand,
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non-derivative search methods partly provide a global solution, however, signifi-
cantly increase computing time.

In recent years, two approaches that are artificial intelligence and meta-heuristic
optimization algorithms have been effectively put forward in geophysical modeling
studies having complex and nonlinear models. Meta-heuristic optimization algo-
rithms called as modern global optimization methods are based on systematic char-
acteristics of biological, molecular, neurobiological and animal swarms [1]. PSO as
one of the modern global optimization algorithms, has increased its popularity with
rapid convergence compared to various optimization algorithms [2, 3], especially
when real model parameters are used [4].

PSO for multiobjective optimization has also been used in many studies in order
to solve real world engineering problems having conflicted solutions between
objective functions [5]. Despite this interest, very few researchers have studied
MOPSO for joint modeling of geophysical data such as electromagnetic and gravity
[6, 7]. In fact, simultaneous optimization of multiobjective functions is also favored
to increase uniqueness of model parameters in joint modeling of geophysical data
that are generally sensitive to different physical phenomena. Multiobjective func-
tions can be transferred into single-objective by combination of objective functions
by using weighted-sum approach. However, it is very difficult to find reasonable
and optimum weigting coefficients [5]. In engineering problems, subjective and
unpredictable weightings used to objective functions are the primary cause of a
misleading solution, because different sensitivities and unpredictable noise of dif-
ferent data sets lead to uncertainty in weighting. Pareto optimality approach is a
good way to obtain set of possible solutions including an optimum solution in
objective function space overcoming the use of weighting and combining.

The purpose of this chapter is to review the literature on Pareto-based MOPSO.
This chapter first gives a brief overview of the methods and approaches used in PSO
and Pareto-based MOPSO and to look at how mathematical formulations and
general algorithms of these optimization techniques work. In order to show the
superiority of Pareto-based MOPSO over weighting-sum approaches, the chapter
proceeds as joint modeled of two synthetic seismological data using Pareto-based
MOPSO and analyses the obtained results. The results demonstrate that Pareto-
based MOPSO is a useful approach to joint modeling of seismological data as explain
in detail in our previous paper [8], of which TÜBİTAK is the publisher. Findings
validate the usefulness of MOPSO as a technique to optimize objective functions
simultaneously without weighting requirements. Finally, conclusion section gives a
brief summary of MOPSO and critique of findings in modeling.

2. Particle swarm optimization

PSO method, inspired by social behavior of the bird or fish flock to reach to
target in a shortest route was originally introduced by [9]. It was noticed that
members of flocks suddenly change their movements as scattering and regrouping,
when trajectory of swarms was observed. A striking feature of that was an effort of
members to reduce their distance from both flock and surrounding members. It was
found that knowledge within a flock was continuously shared by all members. PSO
method was developed by defining each member in a flock as a particle. According
to PSO, particles bearing an information of decision variable or model parameters
take a position in an objective function space. Each particle is in communication and
learning with other particles as schematically illustrated in Figure 1a. If a minimi-
zation problem is considered, each particle changes its position with a velocity
vector and converges a global minimum as shown in Figure 1b.
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The basic algorithm of PSO is outlined in Figure 2. According to this scheme,
particles which velocities are initially assigned as zero are initiated by randomly
selection between the minimum and maximum value of decision variables. After

Figure 1.
For a minimization problem, schematic illustration of a swarm trajectory. Randomly distributed particles in an
objective function space (a); trajectory of a swarm towards a global best solution (b), where x and f(x) denote a
decision variable and an objective function, respectively.

Figure 2.
General PSO algorithm.
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each particle is evaluated with an objective function, particle with best fitness value
is assigned as a global best solution. Particles move to the next position with a
velocity vector

V
!kþ1

i ¼ ωV
!k

i þ c1γ1 ⊗ x
!
pbest,i � x

!k

i

� �

þ c2γ2 ⊗ x
!
gbest � x

!k

i

� �

, (1)

where,

x
!kþ1

i ¼ x
!k

i þV
!kþ1

i , (2)

subscript i is the number of particles and k is the number of iterations.

Position and velocity vector of a particle i at iteration k are shown as x!
k

i and V
!k

i ,
respectively. ω is the inertia weight term forced on velocity vector. c1 and c2 are
local and global learning constants, γ1 and γ2 are uniformly random numbers in the
range [0,1]. x!pbest,i is the best position of particle i in the past. x!gbest called as leader
of a swarm is the position of the best particle indicating the best fitness value. If one
particle position updated by a new velocity vector has a fitness value better than its
previous best, new position is assigned as x!pbest. If one of the particles has a best

fitness value than the others, it is assigned as x!gbest. These processes are repeated in a
balance between exploration and exploitation until maximum iterations or mini-
mum error criteria is not satisfied.

2.1 Selection of the PSO parameters

Velocity vector in Eq. (1) is controlled in the following factors: velocity limita-
tion, learning coefficients and inertia weight. These factors are significantly con-
tribute to prevent explosion in a swarm and ensure convergence.

Velocity limitation: In the PSO method, each particle changes its velocity
vector by stochastic process. However, this leads a tendency exploding of velocity
vector and exceeding limit of one particle constrained in a search space, especially if
the particle is far from the personal and global best position. Therefore velocity
limit approach, introduced by [10], has been exploited to avoid such problems. By
this limitation of movement, it is ensured that particle does not exceed a search
space. Fan and Shi [11] suggested that maximum and minimum velocity limits as
follows: V max ,min ¼ �U, where U ¼ xmax � xminð Þ=N. xmax and xmin are the upper
and lower limit of a particle. N is an interval number defined by user considering
the xmax and xmin.

Learning coefficients: Local and global learning coefficients illustrated in
Eq. (1) control acceleration of a particle. While local learning coefficient (c1Þ
enables particle to approach its individual best position, global learning coefficient
c2ð Þ enables to be pulled towards the global best solution. These parameters some-
times called as acceleration coefficients are important to control the convergence.
Higher learning coefficients can provide a rapid convergence, but also probably
prevents exploration in an objective function space. In [12], author suggested that
dynamic learning coefficients for optimization with a large number of unknown
parameters. In addition, Ozcan and Mohan [13] concluded that if c1 þ c2 > 4,
trajectory of a swarm goes to infinity.

Inertia weight or constriction factor: Inertia weight term (ωÞ introduced by
Shi and Eberhart [14] maintains a balance between exploitation and exploration by
acting upon the current velocity vector. They proposed that linearly decreasing
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inertia weight from 0.9 to 0.4 in each iteration to increase performance of the
algorithm. If ω > 1 is selected, particles tend to move away through boundary of a
search space as velocity vectors increase continuously [5]. In [15], the author
observed that particles indicate a stable and reasonable searching in case of c1 þ
c2 ≤4. Nevertheless, it has even suggested a velocity limit by [16] to prevent
drastically growing of velocity vector. In a major advance, Clerc [17] proposed a
constriction factor (χ) to the PSO velocity vector equation. PSO algorithm with a
constriction factor allowed us to rapid and reliable convergence without velocity
limit requirements in case that ϕ ¼ ϕ1 þ ϕ2 >4, where ϕ1 and ϕ2 are the learning
coefficients substituted with c1 and c2. The velocity vector is changed in the
following way:

V
!kþ1

i ¼ χ V
!k

i þ ϕ1γ1 ⊗ x
!
pbest,i � x

!k

i

� �

þ ϕ2γ2 x
!
gbest � x

!k

i

� �

� �

: (3)

Eq. (3) reveals that χ influences not only current velocity, but also new velocity
vector. Theoretical studies in [18] show that if ϕ1 and ϕ2 used as 2.05, therefore ϕ =
4.1, and χ = 0.7298, rapidly convergence is observed without using velocity limits. On
the other hand, in [2] the authors analyzed that if ϕ1 and ϕ2 are used as randomly,
swarm trajectory behaves as a combination of divergence and convergence.

2.2 Swarm topologies

Network of particles in a swarm is provided by kind of neighborhood topologies
that regulate sharing of information between particles. Small-scale topologies are
selected to use in solving complex problems, whereas large-scale topologies are
selected for simpler problem [19]. Empty, local best, fully connected, star network
and tree network are the list of the neighborhood network topologies which are
generally used in PSO [20].

Empty graph: Each particle is connected to itself and compared with personal
best position. In this topology, it is considered that c2 as equal to zero.

Local best: Local best x
!
lbest

� �

indicates that the best particle position between

one particle and its nearest neighbors. In this topology, particles are affected by
both their personal best and local best which is also defined as equivalent to a leader.
Each particle is connected to k nearest neighbors and if k = 2, network structure of
particles is called ring topology as shown in Figure 3a.

Fully connected graph: All particles in a swarm are connected to one another as
illustrated in Figure 3b. In fully connected topology also called as star topology [21],
each particle is affected by both its personal best and a global best defined as
equivalent to leader. Kennedy [22] analyzed that this structure tends to ensure that
a rapidly, but also a premature convergence.

Figure 3.
Neighborhood topologies generally used in PSO: Ring (a), fully connected (b), star network (c) and tree
network topology (d).
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Star network: In this topology, one particle called as focal particle [23] is in
connection with others as shown in Figure 3c. Focal particle defined as equivalent
to a leader adjusts trajectory of a swarm by comparing positions of others.

Tree network: In this network structure, all particles are taken shape of a tree
and, each of nodes of tree consists of exactly one particle as illustrated in Figure 3d
[24]. One particle at the node is connected to both child nodes bottom in a tree and
a parent node directly above in a tree. If one of the child node particle has a solution
better than its parent solution, position of both particles are replaced. In this topol-
ogy, parent particle is defined as equivalent to a leader.

3. Pareto multiobjective optimization

In multiobjective optimization problems (MOOP) indicated as an optimization
of more than one objective function, “trade-off” solutions that are conflicted to each
other are obtained rather than single solution. MOOP is generally defined to obtain
decision variables

x ¼ x1, x2, x3, … … … xp
� �

∈ S (4)

Figure 4.
Conceptual representation of the non-dominated and dominated particles in objective function space. Here,
f
1
xð Þ and f

2
xð Þ are objective functions. [8].
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in p dimensional of model space S, while simultaneously optimizing of a vector

f xð Þ ¼ f 1 xð Þ, f 2 xð Þ, f 3 xð Þ… … fN xð Þ
� 	

(5)

including all objective functions [25]. In MOOP, all objective functions in f xð Þ
vector may not be optimized simultaneously. Therefore Pareto optimality some-
times called as Pareto dominance approach is used to find set of possible solutions.
According to Pareto approach, if x is better solution than y in minimization prob-
lem, f xð Þ dominates f yð Þ, if and only if f k xð Þ≤ f k yð Þ, k ¼ 1, … :,N. If there is no
other x∈ S satisfies a condition such that f xð Þ< f xð Þwithout deteriorating any other
objective function, non-dominated solutions called Pareto optimal set P ∗

∈ S or
Pareto front PF ∗ ¼ f xð Þ∈f j x∈P ∗ g exists in an objective function space as
schematically illustrated in Figure 4.

All particles of Pareto front generally spreads in two ways which are concave
and L-shaped curves. Concave shaped spreading indicates that one objective func-
tion does not be ameliorated without deteriorating any other objective function(s).
On the other hand, L-shaped spreading indicates that complete optimal solution
which means that all objective functions can be optimized simultaneously [26].
Other remarkable distribution of Pareto front is its deviation from symmetry
referenced by utopia point [0,0]. Deviation is an indication that one objective
function has many local minimums relatively the others (minimum one or more)
and/or modeling has not properly accomplished with defined parameter search
space and used methods [27].

4. Pareto-based multiobjective particle swarm optimization

Several considerations that are increasing the diversity, maintaining the non-
dominated particles and selecting a leader should be taken into account when using
MOPSO. [20] A general MOPSO algorithm modified from PSO algorithm by these
considerations outlined below is shown in Figure 5.

Increasing of diversity: In MOPSO, it is expected to increase of diversity of all
particles, while dominated particles are required to converge towards to Pareto-front.
Mutation, niching and clustering techniques are generally used to increase diversity.
Mutation operator is originally a stage of the genetic algorithm and it prevents to trap
of particles a local minima by altering decision variables within the bounds of possi-
bility [28, 29]. suggested that polynomial and dynamic mutation rate which should be
changed from higher to lower degree to keep increasing diversity in an entire search
space. This feature allows particles to be explored, even in far field on this space [30].
Niching method, which was also developed for evolutionary algorithms [31], pre-
vents a premature convergence that is a leading cause of a movement of particles
towards a solution [32]. In NichePSO presented by [33], alteration of each particle is
kept track after each iteration. If some particles do not change after several iterations,
niche formed as a sub-swarm including both these particles and their surroundings is
generated with a radius called σshare as illustrated in Figure 6. By comparing of two
particles in niches, a control mechanism is provided to be adding particles to a sub-
swarm or to be merging of sub-swarms [34]. In clustering technique introduced by
[35], main swarm is divided into k sub-swarms and determined leader in each sub-
swarm is moved to centroid of its sub-swarm. Diversity is provided by a migration of
leaders to different sub-swarms [36].

Maintaining non-dominated particles: Maintaining non-dominated particles is
key component of MOPSO. External archive technique allowing a storage of non-
dominated particles is generally used to spread and maintain Pareto-front. Global
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best, personal best or local best can be stored to an archive when extending PSO to
MOPSO. However, as dominated particles tending to converge and join to Pareto-
front, a rapid increase number of particles in an archive is a disadvantage [20]. A
restriction is applied to prevent rapidly growing number of non-dominated parti-
cles. In [37], they proposed ϵ-dominance value defined as set of boxes in objective
function space as shown in Figure 7 controls adding of dominated particles to
Pareto-front by sizing of an archive. In [38], their attempts to update of external
archive is composed niching method used to add or remove particles from archive
when it is full. In [30], geographically-based global repository approach is used to
update of an archive based on removing of non-dominated solutions from cells
which have fewer particles. Li [39] proposed non-dominated sorting method to
determine Pareto-front in each iteration. In his study, rather than comparing of a
new position with a personal best, temporary swarms have been generated by
combining both of them. In fact, the fundamental condition maintaining non-
dominated particles is that a new archive should be dominant over previous
archives. ϵ-dominance approach is one of the most feasible method to provide this
condition [20].

Leader selection: Unlike one leader that guides a swarm in the PSO, non-
dominated particles of Pareto front set indicate presence of multiple leaders in
MOPSO. Neighbor density and kernel density estimator methods based on density
measurement techniques are suggested to determine particles that are most likely to
be selected as a leader. In [40], they studied and further supported the concept of
crowding factor according to nearest neighbors of a given particle. The value of

Figure 5.
General MOPSO algorithm.
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Figure 6.
Niches having radius indicated by σshare are generated to compare of particles that have not change after several
iterations.

Figure 7.
ϵ-dominance concept for minimizing two objective functions. Particle A, B and C are incommensurable particles,
however, particle a is considered to be dominant to B and C due to more closer the lower left hand corner.
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estimators are determined by perimeter of a rectangular formed between one par-
ticle and neighbors as illustrated in Figure 8. Particles which have larger value of
estimator are preferred to select as a leader.

The kernel density estimator is based on the niching method. A niche which has
radius as σshare is generated for each of non-dominated particles. It is preferable
selected a leader from the least crowded niche [41]. As for leader selection from
preferred area, different ways are used. For instance, neighbor density estimator has
been used by Raquel and Naval [42] to select a leader randomly from top a list
ranking in descending order according to estimator values. If an external archive is
full, particle has been removed by randomly selecting from bottom of the list. To
select a leader, Coello Coello et al. [30] suggested to fitness values based on the
number of particles in each hypercube formed by division of an objective function
space. A leader is randomly selected from a hypercube determined by roulette-wheel
selection scheme which its lengths of divided segments proportional to fitness values.

5. Selecting the methods and parameters for Pareto-based
multiobjective particle swarm optimization

We joint modeled two synthetic seismological data obtained by response of five-
layered models by using MOPSO. In one synthetic model, shear wave velocities
increase smoothly with depth (SM-1), while the other has a noticeable velocity
contrast at third layer interface (SM-2). In the modeling stage, we simultaneously
optimized two objective functions related with Rayleigh wave dispersion (RWD)
and horizontal to vertical spectral ratio (HVSR) methods, which have different
sensivities to physical phenomena. The estimated parameters were shear-wave
velocities and depth obtained by cumulative sum of layer thicknesses in each layer.
Parameter search space and more technical details were be given in [8].

Minimization was carried out between observed data obtained by response of
synthetic models (yobsi Þ and calculated data (ycali Þ obtained by response of models

Figure 8.
Neighbor density estimator defined by perimeter of rectangular formed between one particle and its neighbors.
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which their parameters changing with particle movements. Fitness value αð Þ
minimized at each of the objective function was calculated using,

α ¼
1
n

X

n

i¼1

yobsi � ycali

� �2

" #1=2

, (6)

where n is the number of observations. Number of iterations and particles was
selected as 200 and 100, respectively. Number of particles was selected as 100
referenced by 10-fold the number of model parameters (thicknesses and velocities
for 5 layers). We used PSO parameters defined in [43] with velocity equation in
Eq. (3) which provides an optimization without a velocity limitation. A mutation
operator was used to increase diversity and mutation rate was selected as two
percent. ϵ-dominance approach was selected to maintain of non-dominated parti-
cles and the value of ϵ was used as 0.01 for each of the objective functions. Number
of hypercubes was selected as 30 for 100 particles recommended by [30].

Figure 9.
Results for SM-1. Synthetic model and a model obtained from the Pareto optimum particle and the parameter
search space (a); the fit between the observed and calculated RWD (b), and HVSR (c); the Pareto optimum
solution marked as + and Pareto front (dark dots) with the dominated particles (light dots) for all iterations (d);
and the Pareto optimum solution (+) with Pareto front and dominated particles at the last iteration (e) [8].
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Hypercubes having more particles were preferred for leader selection. After a
fitness hypercube was determined by using Roulette-wheel approach, a leader was
selected randomly from this hypercube.

6. Results and discussions

The results of synthetic models (SM-1 and SM-2) are shown in Figure 9 and
Figure 10, respectively. As can be seen in Figure 9a and Figure 10a, MOPSO was
successful in proving to obtain the real models with defined methods and parame-
ters. These tests showing matched perfectly between synthetic data and model

Figure 10.
Results for SM-2. Synthetic model and a model obtained from the Pareto optimum particle and the parameter
search space (a); the fit between the observed and calculated RWD (b), and HVSR (c); the Pareto optimum
solution marked as + and Pareto front (dark dots) with the dominated particles (light dots) for all iterations (d);
and the Pareto optimum solution (+) with Pareto front and dominated particles at the last iteration (e) [8].
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responses as seen in Figure 9b, Figure 9c, Figure 10b and Figure 10c, further
strengthened our confidence in MOPSO modeling such seismological data. The
most conspicuous observation to emerge from the result of both models was the
distribution of dominated particles and Pareto front. Dominated particles in
Figure 9d show a clear and balanced distribution for SM-1, however, as in
Figure 10d dominated particles tend to towards the αRWD axis for SM-2. This results
showed that if only HVSR optimization was done, many local minima and non-
unique solutions could be obtained in modeling of data obtained by response of
such as SM-2 model. In contrast to earlier findings in [27], deviation from symmetry
and divergence from an objective function axis were not only related to a improp-
erly accomplished modeling, but also to the characteristic of HVSR optimization in
case of model such as SM-2 that its optimization indicated non-uniqueness solu-
tions. In addition, as shown in Figure 9b, spreading of Pareto front in SM-1 model-
ing showed a concave shaped curve that means an objective function could not
further minimized without maximized to other objective function. However, for
SM-2 model, Pareto front showed a similar distribution to L-shape, indicating that
both objective functions were minimized independently and simultaneously.

7. Conclusion

This chapter considered is an overview of methods and parameters generally
used in PSO and Pareto-based MOPSO, in the first step. The parameters and
methods used in the literature are reliable but do not have an obvious superiority to
each other. In spite of that MOPSO has been widely applied in many real world
engineering problems, a few attempts have been made in order to modeling geo-
physical data. Until our previous study, this methodology have not been applied
modeling seismological data. A set of solutions demonstrated in this chapter support
the idea that MOPSO provides a powerful methodology for joint modeling of data
having different sensivity. The present findings have important implications in
order to solve weighting problem encountered in joint modeling approach. A clear
benefit of MOPSO in the prevention of weighting-sum approaches could be clearly
identified in this analysis. A further important implication is that divergence of
particles from an objective function axis is not only related to properly defined
parametrization and accomplished modeling, but also to non-uniqueness solutions.
Our investigations into this point are still ongoing and seem likely to confirm our
hypothesis. The evidence from this study implies that MOPSO is considered to be
very attractive for joint modeling geophysical data in the future. However, further
work needs to be performed to confirm whether MOPSO is beneficial to joint
modeling of different types of geophysical data.
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