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Chapter

Machine Learning and EEG for 
Emotional State Estimation
Krzysztof Kotowski and Katarzyna Stapor

Abstract

Defining “emotion” and its accurate measuring is a notorious problem in the 
psychology domain. It is usually addressed with subjective self-assessment forms 
filled manually by participants. Machine learning methods and EEG correlates 
of emotions enable to construction of automatic systems for objective emotion 
recognition. Such systems could help to assess emotional states and could be used to 
improve emotional perception. In this chapter, we present a computer system that 
can automatically recognize an emotional state of a human, based on EEG signals 
induced by a standardized affective picture database. Based on the EEG signal, 
trained deep neural networks are then used together with mappings between emo-
tion models to predict the emotions perceived by the participant. This, in turn, can 
be used for example in validation of affective picture databases standardization.

Keywords: EEG, emotion recognition, emotion perception, machine learning,  
deep neural networks

1. Introduction

In psychological research, the most common method of measuring perceived 
emotions or emotional states is through self-assessment forms filled manually by 
participants. The information they give is useful but very subjective and dependent 
on many extraneous factors, i.e. the construction of the form, the instructions, and 
the level of emotional intelligence of the participant. Also, the forms cannot be used 
when working with children or mentally disabled people. The physiological signals 
can give a more objective view of the emotional reactions of the body. Among 
measurement techniques using galvanic skin response (GSR), facial electromy-
ography (EMG), electrocardiography (ECG), breathing rate, or temperature; 
electroencephalography (EEG) is one of the most common in emotion recognition 
applications. It is non-invasive and offers high-resolution, high-dimensional data 
about the source of the emotions itself - the brain activity. In EEG, highly conduc-
tive electrodes placed on the scalp collect the electrical charge induced by the 
activity of the brain.

The correlation between emotional state and EEG is widely used in cognitive 
psychology, psychophysiology, and medicine [1] for the examination of mental 
disorders like depression [2], autism spectrum disorder (ASD) [3], attention-deficit 
hyperactivity disorder (ADHD) [4], or schizophrenia [5]. From a psychological 
point of view, EEG gives insights into the mechanisms of how emotions are made. 
Emotion recognition systems, like the one presented in this chapter, can be used 
to assess the emotional perception of humans. However, the analysis of complex 
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and high-dimensional EEG patterns and correlations would be virtually impossible 
without computers and computational methods like machine learning. The emotion 
recognition algorithms are a part of a special branch of computer science called 
affective computing [6]. It is also a part of the artificial intelligence field as it relates 
to the understanding and displaying emotions by machines. Automatic emotion rec-
ognition systems based on EEG have already shown outstanding accuracy in many 
different applications [7] and well-established benchmarks like DEAP (database 
for emotion analysis using physiological signals) [8]. Machine learning algorithms 
are used in the vast majority of these systems and are considered state-of-the-art in 
the domain. Among them, deep neural networks are the most promising emerging 
approach which does not require additional feature extraction steps [9].

The chapter presents the idea and design of the system for validation of affec-
tive picture databases by confronting its result with predictions of EEG-based 
artificial deep neural networks. Consecutive sections are a step-by-step guide for 
creating such a system. In Section 2, different psychological models of emotion are 
described, the problem of mapping between emotion models is introduced, and our 
new mapping is proposed. In Section 3, the instructions for designing a complete 
EEG experiment for machine learning emotion recognition are given, together 
with a list of affective picture sets, and state-of-the-art algorithms. In Section 4, the 
system for validation of affective databases is presented. The chapter ends with a 
summary and future work section.

2. Psychological models of emotion

Recognition of emotions must start from the definition of the model in which 
they are measured. This is the main dividing line in the field of emotion analysis 
[10]. The theory of emotions is still an open topic despite plenty of publications and 
research. The reason is that human emotions are mental states generated by the cen-
tral nervous system [11], and as such, they are hard to assess, nondeterministic, and 
subjective phenomena. Individuals with different levels of emotional intelligence 
may not be able to assess their emotional state accurately [ref]. Moreover, similar 
stimuli may induce very different states in two similar people, and the same person 
may respond differently to the seemingly similar stimuli. The age, time of the day, 
mood, experience, fatigue may all affect the perception of emotions.

However, there is some evidence for neural circuits that are responsible for 
particular basic emotional events [3], so some assumptions and simplifications 
were made to extract several different emotion models. In general, they divide into 
discrete (or categorical) and dimensional (or continuous) models.

The discrete emotion models describe different numbers of independent 
emotion categories. One of the most popular models by Paul Ekman describes six 
universal basic emotions of anger, disgust, fear, happiness, sadness, and surprise 
[12]. The model is derived from the observation of universal facial expressions. The 
paper describing the model has been cited and discussed by thousands of research-
ers, but, the existence of basic emotions is still an unsettled issue in psychology, 
rejected by many researchers [13–15]. Another model by Plutchik describes 8 
primary bipolar emotions: joy and sadness; anger and fear; surprise and anticipa-
tion; and trust and disgust [16]. But, unlike in Ekman’s model, Plutchik’s wheel of 
emotions relates these pairs in the circumplex model. Recently, the model consisting 
of as many as 27 classes bridged by continuous gradients was proposed [17].

The continuous models are usually represented in numerical dimensional space. 
The most popular dimensions were defined by Mehrabian and Russell in [18] as 
pleasure, arousal, and dominance (PAD model). The first dimension is frequently 
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called valence in the literature, it describes how pleasant (or unpleasant) is the 
stimuli for the participant. The arousal dimension defines the intensity of emotion. 
Dominance is described as a level of control and influence over one’s surroundings 
and others [19]. Usually, less attention is paid to this third dimension in the litera-
ture [20]. However, only the dominance dimension enables to distinguish between 
angry and anxious, alert and surprised or relaxed from protected [19]. The model 
that includes only valence and arousal levels is called a circumplex model of affect 
[21] and is one of the most commonly used to describe the emotions elicited with 
stimuli. Currently, this model is facing some criticism, because complex emotions 
in particular are hard to define within only these two general dimensions [22, 23]. 
The effort to present scientific results in a simple and structured form may lead to 
a critical reduction of the phenomena. The newest research findings on the global 
meaning structure of the emotion domain pointed out that more than two dimen-
sions are needed to describe the nature of the human emotional experience suf-
ficiently [23, 24].

2.1 Mappings between models

Discrete and dimensional models are not defined as contradictory. Instead, they 
both can give unique value that can assist in understanding the functions of emo-
tions [25]. There are multiple works on mappings between different, both discrete 
and continuous, emotion models [22, 26, 27]. They are usually based on self-
assessment questionnaires of the group of participants who assesses the discrete 
emotions (induced or represented by words, images, videos, short stories, or facial 
expression) in a few continuous dimensions of circumplex, PAD, or similar models, 
i.e. Valence-Arousal-Control-Utility [22], Valence-Arousal-Approach/Avoidance 
[28]). Formerly, the questionaries were based on Self-Assessment Manikins (SAMs) 
[29] or several-point (usually 5, 7, or 9 points) Likert scale (like in IAPS [30] or 
OASIS [31] datasets). The new trend is to use more fine-grained continuous scales 
like selecting a point on the 10 cm line [22] or Affective Slider [32].

Two popular mappings based on emotion words are presented in Figure 1. The 
three-dimensional visualizations are adapted from [22]. The emotion words are 
placed in the position representing their average PAD assessment by 300 [19] and 
70 subjects [27] accordingly. The length of the dashed lines is proportional to the 

Figure 1. 
Average locations of 12 emotion words in PAD dimensions according to Russell and Mehrabian lexicon [19] (on 
the left) and Hoffmann et al. [27] (on the right).
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pleasure/valence value. In both models, the most pleasure-inducing words are Love, 
Happiness, Hope, and Gratefulness. On the other end, we have highly-arousing 
Anger and Fear that can be differentiated only by the dominance dimension. The 
least arousing and pleasant word is Sadness which is also of low dominance. The 
main difference between mappings is the location of Hate which is relatively less 
arousing in the Hoffmann mapping. Some of the emotion words like Contempt, 
Disgust, or Compassion have equivalents only in the model presented in Figure 2.

Figure 2 is based on data from [22], it presents the average assessment of 16 
common emotion words by 187 subjects in Valence-Arousal-Control dimensions 
(the dimension of Utility was also assessed, but is omitted in the figure) before and 
after multi-dimensional scaling (MDS) into 3 dimensions that results with a far 
more “honest” Euclidean space between emotion instances. As can be observed, 
the locations of emotion words after MDS are much more scattered across space, 
but they keep some basic relationships, i.e. Love, Happiness, Gratefulness, and 
Compassion have still larger values in Dimension 1 (similar to Valence); pairs of 
similar emotions like Sadness and Disappointment, or Happiness and Love are 
still relatively close to each other. Thus, this MDS mapping may be a good basis for 
machine learning algorithms based on dimensional proximities.

2.2 Own mapping between NAPS and CAP-D affective picture sets

In our example, we will use the set of 266 affective pictures from NAPS (Nencki 
Affective Picture System) [28] and NAPS BE (a subset of NAPS with 6 basic emo-
tion labels added) [33] that were included in CAP-D (Categorized Affective Pictures 
Database) [34]. Subsets of images from this set were assessed in several emotion 
models by different groups of participants:

• valence, arousal, and approach-avoidance dimensions (266 images assessed by 
119 female and 85 male subjects in NAPS)

• valence and arousal dimensions (144 images assessed by 67 female and 57 male 
subjects in NAPS-BE)

• arousal dimension (266 images assessed by 73 female and 60 male subjects 
in CAP-D)

Figure 2. 
Average locations of 16 emotion words in Valence-Arousal-Control dimensions before (on the left) and after 
multidimensional scaling (on the right) as calculated in [22].
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• intensities of 6 basic Ekman emotions and dominant emotion (or emo-
tions) per picture (144 images assessed by 67 female and 57 male subjects in 
NAPS-BE)

• categorization and intensity in 10 emotion categories including 6 basic Ekman 
emotions: anger, compassion, disgust, fear, happiness, love, peacefulness, 
pride, sadness, surprise (266 images assessed by 73 female and 60 male 
subjects, and 15 clinical psychologists in CAP-D)

Several mappings between dimensional and discrete emotion models can be 
built on this diverse set of responses. The diagram of possible mappings is presented 
in Figure 3.

Among the options presented in Figure 3, we selected three mappings from 
10 emotions from CAP-D onto Valence-Arousal-Approach/Avoidance from NAPS 
(Table 1 and Figure 4), Valence-Arousal from NAPS, and Valence-Arousal from 
NAPS-BE (Figure 5). In order to establish each mapping, the dimensional assess-
ments for all images representing a specific discrete class in CAP-D (as the 1st 
emotion) were normalized to <−1, 1 > range, averaged, and placed in the calculated 
coordinates in the dimensional space (Figures 4 and 5). In practice, only 9 discrete 
emotions could be mapped for NAPS as there were no images representing surprise 
as the 1st emotion in CAP-D. And, only 8 discrete emotions for NAPS-BE (no sur-
prise and pride as the 1st emotions). In all three mappings, two main groups can be 
observed: the group of higher valence, lower arousal emotion categories (happiness, 
love, peacefulness), and the group of lower valence, higher arousal emotions, with 
disgust and anger as the most extreme examples. The main difference from map-
pings in Figure 1 (based on emotion words, not images) is that love and happiness 
have relatively low arousal. As commented by authors of NAPS, it is hard to induce 
highly arousing positive emotions using just still images (without using erotic 
content such as included in NAPS ERO [35]). Another observation is that pairs of 
emotions sadness-compassion, love-peacefulness, and anger-disgust are very close to 
each other in Valence-Arousal mappings. Considering the fact they are based on the 
assessment of different groups of people, it may suggest that these pairs of emotions 
are universally, closely related with each other when induced using images (or at 
least images from NAPS).

Figure 3. 
The diagram of possible mappings between dimensional and discrete emotion models assessed by participants 
in NAPS, NAPS BE, and CAP-D. Arrows are directed from subsets to supersets of images. Solid/dashed lines 
represent mappings based on the assessment of the same/different group of participants accordingly.
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Anger Compas. Disgust Fear Happ. Love Peace. Pride Sadness

Valence −0.50 −0.28 −0.47 −0.31 0.44 0.47 0.44 −0.11 −0.31

Arousal 0.38 0.25 0.36 0.34 −0.03 −0.21 −0.23 0.28 0.21

Appr/Avoid −0.41 −0.17 −0.49 −0.17 0.36 0.38 0.42 −0.08 −0.20

Table 1. 
Average assessment of 9 discrete emotions from CAP-D in Valence-Arousal-Approach/Avoidance dimensions as assessed in NAPS.
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The presented mapping will be used in section 4. as a part of the EEG system for 
validation of affective databases standardization. When using this mapping in this 
system, we need also a specific method for the discretization of the coordinates. 
We can use the estimate which checks if the coordinates in the dimensional space 
predicted by the algorithm are closer than a standard deviation from the discrete 
emotion position in the mapping. Also, we can just limit to the nearest discrete 
emotion in the dimensional space. A detailed discussion about discretization and 
precision metrics in emotion recognition can be found in [26].

3. Machine learning for EEG-based emotion recognition

The emotion recognition from EEG is an example of a problem that wouldn’t 
have a solution without the use of modern machine learning methods. Physiological 

Figure 4. 
Average locations of 9 discrete emotions from CAP-D in Valence-Arousal-Approach/Avoidance dimensions as 
assessed in NAPS.

Figure 5. 
Average locations of discrete emotions as assessed in CAP-D mapped to Valence-Arousal dimensions as assessed 
in NAPS (on the left) and NAPS-BE (on the right).
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signals like EEG have very high dimensionality, high level of noise, and physi-
ological artifacts. It is very hard to define simple hand-crafted algorithms to deal 
with this kind of data. This section is a short introduction to the design of machine 
learning classifiers, and a summary of current trends and applications of computer-
aided emotion recognition.

Machine learning (ML) describes the methods of automatic knowledge extrac-
tion and drawing conclusions from the provided database. It is a part of the broader 
domain of artificial intelligence (AI) that is connected with automatic reasoning 
and higher cognitive functions in machines. The simplest ML algorithms like 
k-nearest neighbors (kNN) or k-Means just compare the test samples with the 
existing database and classify them based on the similarity. More complex ML 
algorithms induce general rules present in the database and use these rules to 
predict test samples (decision trees). Algorithms like support vector machines 
(SVMs) transform and divide the database using multi-dimensional planes that 
split samples of different categories.

All these traditional algorithms have one common disadvantage: they do not 
work well with massive amounts of high-dimensional data like EEG. Thus, it is usu-
ally necessary to extract some lower-dimensional features like power or frequencies 
of brain waves. This is not the case for deep learning methods that can operate on 
raw data. Deep learning is inherently connected with artificial neural networks. 
They are inspired by the biological model of neural networks in the brain. Such 
deep artificial neural networks can be seen as very complex non-linear functions 
translating input data into output data of any kind. They encode all the features and 
knowledge about the data in the connections between neurons in the network. Deep 
neural networks have shown outstanding accuracy in different EEG applications 
[9]. Thus, we use them as a “core algorithm” in our examples. However, it is possible 
to replace it with any other traditional machine learning method based on features 
like brain waves, event-related potentials (ERPs) and synchronization, frontal EEG 
asymmetry, or steady-state visually evoked potentials (SSVEPs) [7, 36].

The main part of the system is an emotion recognition machine learning algo-
rithm. The algorithm learns to translate EEG signals into values (discrete, dimen-
sional, or both) defined by each emotion model (or combination of models). The 
core (architecture, hyperparameters, initialization) of the algorithm is the same for 
each model, only the definition of the outputs and loss functions are changing. For 
discrete models, the traditional classification approach is applied. For dimensional 
models, emotion recognition becomes a regression problem [37]. There is also the 
possibility to design a multi-output algorithm based on both discrete and dimen-
sional models. If this multi-target optimization increases the generalizability of the 
algorithm it may support the importance of both dimensional and discrete models 
of emotions [25]. In our example in Figure 6, we present an intra-subject learning 
approach where the neural network is trained on a representative sample of affec-
tive images – the distribution of pictures’ features (e.g. picture categories, emotions 
induced, colors, brightness) used during training should be similar in the affec-
tive database validated in the final system. We keep the same set of participants 
in training and in the final system to ensure comparability of the physiological 
responses.

3.1 Designing an EEG experiment for emotion recognition

Perhaps, the hardest, but essential part of creating an EEG-based classifier is the 
design of proper experimental procedures for data acquisition. It is a crucial part 
that requires specialistic knowledge in psychology, hardware, and signal processing. 
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One mistake in this phase may cause a failure of the whole study. The best way to 
start is to check the literature for similar experiments and learn from their ideas and 
mistakes. To train and then test EEG-based classifiers correctly, it is important to 
follow the same procedures and maintain the conditions of the experiments. Our 
knowledge about cognitive brain functions is incomplete, so potentially irrelevant 
confounding variables may have a strong impact on the brain response. The list 
of confounding variables typically includes: observer-expectancy effect (the way 
instructions are provided, presence of researcher during the experiment), age and 
gender of participants (many confirmed differences between women and men in 
the literature), the time of the day, the mood, fatigue, and motivation of the partici-
pant (usually increased by some reward), left/right-handedness (if the participant 
responds for stimuli), or impact of drugs and stimulants.

The dependent variable in the emotion recognition EEG experiments is usu-
ally defined in time or frequency space, and the independent variable is usually 
a class of emotion or a value in the dimensional model that intends to be induced 
using the specific stimulus. According to a thorough survey from [7], the most 
frequently used types of stimuli are affective images (in over 35% of articles) before 
videos, music, and other modalities like games or imagination techniques. This is 
partly because of the high availability of affective picture sets described in the next 
section.

3.2 Affective picture databases

There are several publicly accessible affective picture sets for emotion recog-
nition (Table 2). Arguably, the most popular one in the literature is IAPS [38] 
(International Affective Picture System, pronounced “eye-apps”). It contains color 
photographs of objects, landscapes, and animals, but also dead bodies and erotic 
content in order to induce a wide range of emotional states. It uses three-dimen-
sional scales of valence, arousal, and dominance/control. However, there are newer 
sets like NAPS (Nencki Affective Picture System) [28] and OASIS (Open Affective 
Standardized Image Set) [31] that contain many more pictures and/or assessments. 
The largest NAPS set also has scales in three similar dimensions of valence, arousal, 
and approach/avoidance, and may be easily extended by discrete emotion labels 
from NABS-BE [33], erotic pictures from NAPS-ERO [35], or fear-inducing pic-
tures from SFIP [39] (Set of Fear Inducing Pictures). The pictures in NAPS are of 
high-quality, and represent 5 main categories (people, faces, animals, objects, and 
landscapes). The newest CAP-D dataset [34] aggregates subsets of pictures from 
IAPS, NAPS, and GAPED, and extended them with discrete  emotional categories.

Figure 6. 
The schematic diagram of the process of training deep neural networks for EEG-based emotion recognition 
from affective pictures. The presented stimuli come from the NAPS set [28].
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3.3 EEG devices

The selection of an EEG device is dependent on the purpose and goal of the 
study. For sophisticated psychological or medical research in emotion recognition, 
it is crucial to use more expensive research-grade or medical-grade hardware. The 
examples of EEG caps of such devices are presented in Figure 7. However, the heart 
of the system is not the cap, but the amplifier. It should provide at least 32 channels 
for electrodes with at least 256 Hz sampling to record all relevant frequencies, and 
the voltage resolution of less than a few nanovolts to capture small differences in the 

Figure 7. 
Three most popular EEG caps from research-grade EEG systems. From left to right: Biosemi ActiveTwo 128 
channels, BrainProducts ActiCap 32 channels, and Compumedics Quik-Cap 64 channels (image source: [1]).

Dataset name [ref] 

(Year)

Number of pictures and 

assessments

Assessment 

method

Emotion models used

IAPS [38] (2005) 956 pictures, 100 
subjects (50 women)

5-point Self-
Assessment 
Manikin (SAM)

Dimensional model: 
valence, arousal, 
dominance/control

NAPS [28] (2014) 1356 pictures, 204 
subjects (119 women)

9-point sliding scale Dimensional model: 
valence, arousal, approach/
avoidance
6 basic emotions (only for a 
subset of 510 images) [33]

OASIS [31] (2017) 900 pictures, 822 
subjects (420 women)

7-point Likert scale Dimensional model: 
valence, arousal

GAPED [40] (2011) 730 pictures, 60 subjects 
(no gender given)

100-points rating 
scale

Dimensional model: 
valence, arousal, 
congruence with moral and 
legal norms

CAP-D [34] (2018) 513 pictures, 133 subject 
(73 women), 15 clinical 
psychologists

Describing the 
picture with 1 of 10 
emotion words

10 discrete emotions, 
arousal and intensity 
dimensions

SFIP [39] (2017) 288 pictures, 1671 
subjects

5-point Likert scale 
for fear,
9-point Self-
Assessment 
Manikin for valence

Intensity of fear, valence

Table 2. 
The affective picture sets for emotion recognition.
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signal between conditions. Additional channels for electrooculogram (EOG) and 
accelerometers are necessary for artifact filtering algorithms.

There is an emerging interest in low-cost solutions, especially for applications in 
brain-computer interfaces. One of the examples is Emotiv EPOC+ that was vali-
dated to work well with emotion recognition [41, 42].

3.4 State-of-the-art emotion recognition algorithms

There are a couple of thorough reviews of EEG-based emotion recognition 
systems in the literature [1, 7, 36, 43]. The vast majority of top-performing algo-
rithms are based on machine learning approaches. The methods from the literature 
achieve levels of up to 94% for 2-class discrete problems (such as arousal vs. neutral 
or happiness vs. sadness) and up to 82% for 4-class classification (such as joy, anger, 
sadness, and pleasure). On the example of the DEAP (database for emotion analysis 
using physiological signals) [8], the paper [44] shows the comparison of different 
classifiers for 4 quadrants of the circumplex model: 63% for the kNN, 67% for the 
SVM, 70% for deep convolutional neural network and 75% for the deep hybrid 
neural network. On the example of the eNTERFACE06_EMOBRAIN database, the 
best classification accuracy among calm, exciting positive, and exciting negative 
emotional states achieved around 77% [45]. On the SEED dataset, the emotion 
classification into positive, neutral, and negative classes has achieved accuracy up to 
83% [46]. Presented accuracies are virtually unreachable for humans.

4.  EEG-based system for validation of affective picture databases 
standardization

In this section, we present the idea of the system for EEG-based validation of 
affective picture databases (Figure 8). The system consists of:

• a computer displaying affective pictures, collecting self-assessment responses, 
and providing feedback to the participant

• EEG device placed on the participant’s head

• a set of trained deep neural networks (DNNs) for emotion recognition 
from EEG

• a set of mappings between emotion models

In our example, stimuli from the CAP-D picture set are displayed on the screen. 
Participant assesses each picture following the emotion categorization procedure 
from CAP-D. For each stimulus display period, the EEG signal is collected and 
passed to the input of trained DNNs for emotion recognition. The process of 
training such DNNs is described in Section 3. Based on the input EEG signal, each 
DNN outputs coordinates in the specific dimensional emotion model. They need 
to be mapped onto discrete emotions used in the emotion categorization of CAP-D. 
An example of such mapping is presented in Section 2.2. The mappings are crucial 
when operating on datasets described using different emotion models.

In the results validation phase, the information about the discrete emotion class 
labels from the emotion categorization, output of the selected mapping, and the 
ground truth label of the image are compared. There are several possible outcomes 
from such a comparison:
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1. All the labels are the same – the normative label from the database is in 
 agreement with the participant’s categorization and physiological response.

2. The normative label alone is different – the emotion induced in the participant 
consistently differ from the normative label.

3. The participant’s categorization alone is different – the physiological response 
is in agreement with the normative label but was assessed differently by the 
participant.

4. The output of the mapping alone is different – the participant’s categorization 
is in agreement with the normative label, but the physiological response 
suggests a different label.

5. All the labels are different – there is no agreement between ground truth,  
self-assessment, and mappings.

Based on these outcomes several conclusions can be drawn and translated into 
the feedback about the database standardization. For outcome 1., the feedback 
should say about positive validation of the normative label. This is the desired 
outcome of the system. On the other hand, outcome 2. suggests a serious problem 
with the normative label for the particular participant, as both subjective and 

Figure 8. 
The diagram of the system for validation of affective picture databases standardization.
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physiological responses agree on a different label. This situation itself does not 
mean the validation is negative. Only if this problem persists among the majority 
of participants the label should be reconsidered. The supporting example here is 
the picture of a happy dog that should induce happiness according to the normative 
label but induces fear in individuals with cynophobia (the fear of dogs). Outcome 
3., if consistent among the population, may suggest problems with naming the 
proper emotion on the picture. The physiological response is as expected for the 
normative label, but participants do not select the expected label. The supporting 
example here is the picture with a normative label of “fear” presenting the wolf 
eating its prey that induces fear in the physiological response. But, participants may 
focus on the prey’s appearance in the subjective response and select the label “dis-
gust”. In this example, we may face the problem of ambiguous labeling of the image. 
If outcome 3. is present only in individual participants it may rather suggest their 
problems of emotion perception. Outcome 4. should be a suggestion for the authors 
of the database that the normative label of the picture may be biased by subjective 
responses of the participants (e.g. because of some cultural or ethical reasons), 
so their physiological responses disagree with conscious categorization. E.g., they 
cannot answer differently because it would put them in a bad light. Outcome 5 is the 
only one resulting with clearly negative validation where all participant’s reactions 
are different. It may suggest that the normative label is too ambiguous or too weak 
to be perceived correctly.

The system was designed to be generic. The described validation may be per-
formed for any discrete and dimensional models with little to no modifications of 
the flow. The only requirement is the existence of at least one algorithm trained to 
recognize the assessed emotions or at least one mapping which translates recogni-
tion results (in a different emotion model) into the target model. The more algo-
rithms and mappings the more detailed validation results. Also, the system can be 
easily adapted to videos, sound, or text stimuli. Additionally, this system may select 
the most feasible emotion model for the participant and can be calibrated for him 
by fine-tuning the networks using his consecutive responses.

This system may be further adapted as a tool for training emotion perception -  
one of the branches of emotional intelligence that is measured in the Mayer-
Salovey-Caruso Emotional Intelligence Test (MSCEIT) [47]. The feedback from 
the system provides suggestions of improvements in the emotional perception and 
points to the differences between self-assessment and normative benchmark that 
should be considered by the participant.

5. Summary and future work

The chapter presents a conceptual design of the computer system that uses 
EEG signals and deep neural networks to assess the affective picture databases 
standardization. According to the presented current state-of-the-art in psychol-
ogy and machine learning, this kind of system is possible to create. All elements of 
the systems are ready to use. The only challenge is the selection of a representative 
population and collection of a significant amount of EEG data to train the deep 
neural networks.

As there are many models for describing emotions, we focused here on the map-
pings between emotion models. Such mappings allow using machine learning meth-
ods trained on one model for emotion recognition in a different model. There is a 
lack of emotion mappings for affective picture sets, so our new mappings between 
dimensions of valence, arousal, approach/avoidance, and discrete emotions are 
the value added by the chapter. There is also a possibility that one consistent and 
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dominant model of emotion will be established in the future. Then, the mappings 
may be deprecated, and one “general” model may be used to train the deep neural 
network.

The genericity of the system opens many possibilities for future work and 
adaptations to different applications. Besides emotion self-assessment valida-
tion, the system can be adapted for validation of emotion mappings, or emotional 
intelligence tests, e.g. emotion perception task from MSCEIT. It may be used in the 
future for the rehabilitation of people with emotion perception disorders like ASD. 
Also, the new machine learning methods can be inserted into the system and com-
pared with existing deep neural networks. Even the EEG device may be replaced or 
extended with other physiological measurements without big changes in the system 
architecture.

The exploration of top-performing deep neural networks and emotion map-
pings may help to understand the underlying biological model of emotion, e.g. by 
using feature visualization approaches [48].
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